Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Marianna Rapoport
iris-coq
Commits
79bddd1a
Commit
79bddd1a
authored
Nov 03, 2017
by
Robbert Krebbers
Browse files
`IntoForall` and `FromForall` instances for `except_0`.
parent
170c76a3
Changes
1
Hide whitespace changes
Inline
Side-by-side
theories/proofmode/class_instances.v
View file @
79bddd1a
...
...
@@ -772,6 +772,9 @@ Proof. rewrite /IntoForall=> HP. by rewrite HP persistently_forall. Qed.
Global
Instance
into_forall_later
{
A
}
P
(
Φ
:
A
→
uPred
M
)
:
IntoForall
P
Φ
→
IntoForall
(
▷
P
)
(
λ
a
,
▷
(
Φ
a
))%
I
.
Proof
.
rewrite
/
IntoForall
=>
HP
.
by
rewrite
HP
later_forall
.
Qed
.
Global
Instance
into_forall_except_0
{
A
}
P
(
Φ
:
A
→
uPred
M
)
:
IntoForall
P
Φ
→
IntoForall
(
◇
P
)
(
λ
a
,
◇
(
Φ
a
))%
I
.
Proof
.
rewrite
/
IntoForall
=>
HP
.
by
rewrite
HP
except_0_forall
.
Qed
.
(* FromForall *)
Global
Instance
from_forall_forall
{
A
}
(
Φ
:
A
→
uPred
M
)
:
...
...
@@ -801,6 +804,9 @@ Proof. rewrite /FromForall=> <-. by rewrite persistently_forall. Qed.
Global
Instance
from_forall_later
{
A
}
P
(
Φ
:
A
→
uPred
M
)
:
FromForall
P
Φ
→
FromForall
(
▷
P
)
(
λ
a
,
▷
(
Φ
a
))%
I
.
Proof
.
rewrite
/
FromForall
=>
<-.
by
rewrite
later_forall
.
Qed
.
Global
Instance
from_forall_except_0
{
A
}
P
(
Φ
:
A
→
uPred
M
)
:
FromForall
P
Φ
→
FromForall
(
◇
P
)
(
λ
a
,
◇
(
Φ
a
))%
I
.
Proof
.
rewrite
/
FromForall
=>
<-.
by
rewrite
except_0_forall
.
Qed
.
(* FromModal *)
Global
Instance
from_modal_later
P
:
FromModal
(
▷
P
)
P
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment