Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Marianna Rapoport
iris-coq
Commits
752d27aa
Commit
752d27aa
authored
Jan 16, 2016
by
Robbert Krebbers
Browse files
Hints for reflexivity also on goals that are not identical.
parent
13680b70
Changes
4
Hide whitespace changes
Inline
Side-by-side
modures/cmra.v
View file @
752d27aa
...
...
@@ -8,7 +8,7 @@ Definition includedN `{Dist A, Op A} (n : nat) (x y : A) := ∃ z, y ={n}= x ⋅
Notation
"x ≼{ n } y"
:
=
(
includedN
n
x
y
)
(
at
level
70
,
format
"x ≼{ n } y"
)
:
C_scope
.
Instance
:
Params
(@
includedN
)
4
.
Hint
Extern
0
(
?x
≼
{
_
}
?
x
)
=>
reflexivity
.
Hint
Extern
0
(
?x
≼
{
_
}
?
y
)
=>
reflexivity
.
Record
CMRAMixin
A
`
{
Dist
A
,
Equiv
A
,
Unit
A
,
Op
A
,
Valid
A
,
ValidN
A
,
Minus
A
}
:
=
{
...
...
modures/cofe.v
View file @
752d27aa
...
...
@@ -5,7 +5,7 @@ Class Dist A := dist : nat → relation A.
Instance
:
Params
(@
dist
)
3
.
Notation
"x ={ n }= y"
:
=
(
dist
n
x
y
)
(
at
level
70
,
n
at
next
level
,
format
"x ={ n }= y"
).
Hint
Extern
0
(
?x
={
_
}=
?
x
)
=>
reflexivity
.
Hint
Extern
0
(
?x
={
_
}=
?
y
)
=>
reflexivity
.
Hint
Extern
0
(
_
={
_
}=
_
)
=>
symmetry
;
assumption
.
Tactic
Notation
"cofe_subst"
ident
(
x
)
:
=
...
...
modures/ra.v
View file @
752d27aa
...
...
@@ -16,7 +16,7 @@ Notation "(⋅)" := op (only parsing) : C_scope.
Definition
included
`
{
Equiv
A
,
Op
A
}
(
x
y
:
A
)
:
=
∃
z
,
y
≡
x
⋅
z
.
Infix
"≼"
:
=
included
(
at
level
70
)
:
C_scope
.
Notation
"(≼)"
:
=
included
(
only
parsing
)
:
C_scope
.
Hint
Extern
0
(
?x
≼
?
x
)
=>
reflexivity
.
Hint
Extern
0
(
?x
≼
?
y
)
=>
reflexivity
.
Instance
:
Params
(@
included
)
3
.
Class
Minus
(
A
:
Type
)
:
=
minus
:
A
→
A
→
A
.
...
...
prelude/base.v
View file @
752d27aa
...
...
@@ -209,9 +209,9 @@ Instance: Params (@equiv) 2.
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Instance
equiv_default_relation
`
{
Equiv
A
}
:
DefaultRelation
(
≡
)
|
3
.
Hint
Extern
0
(
_
≡
_
)
=>
reflexivity
.
Hint
Extern
0
(
?x
≡
?y
)
=>
reflexivity
.
Hint
Extern
0
(
_
≡
_
)
=>
symmetry
;
assumption
.
Hint
Extern
0
(
_
≡
{
_
}
_
)
=>
reflexivity
.
Hint
Extern
0
(
?x
≡
{
_
}
?y
)
=>
reflexivity
.
Hint
Extern
0
(
_
≡
{
_
}
_
)
=>
symmetry
;
assumption
.
(** ** Operations on collections *)
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment