Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Marianna Rapoport
iris-coq
Commits
48d958f2
Commit
48d958f2
authored
Sep 28, 2016
by
Robbert Krebbers
Browse files
Induction principle for finite sets with Leibniz equality.
parent
e4090611
Changes
1
Hide whitespace changes
Inline
Side-by-side
prelude/fin_collections.v
View file @
48d958f2
...
...
@@ -157,6 +157,9 @@ Proof.
apply
Hadd
.
set_solver
.
apply
IH
;
set_solver
.
-
by
rewrite
HX
.
Qed
.
Lemma
collection_ind_L
`
{!
LeibnizEquiv
C
}
(
P
:
C
→
Prop
)
:
P
∅
→
(
∀
x
X
,
x
∉
X
→
P
X
→
P
({[
x
]}
∪
X
))
→
∀
X
,
P
X
.
Proof
.
apply
collection_ind
.
by
intros
??
->%
leibniz_equiv_iff
.
Qed
.
(** * The [collection_fold] operation *)
Lemma
collection_fold_ind
{
B
}
(
P
:
B
→
C
→
Prop
)
(
f
:
A
→
B
→
B
)
(
b
:
B
)
:
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment