Commit 3d79ec6c by Ralf Jung

### docs: type-level later

parent 979bd7af
 ... ... @@ -40,6 +40,7 @@ Note that $\COFEs$ is cartesian closed. A (bi)functor $F : \COFEs \to \COFEs$ is called \emph{locally non-expansive} if its action $F_1$ on arrows is itself a non-expansive map. Similarly, $F$ is called \emph{locally contractive} if $F_1$ is a contractive map. \end{defn} Note that the composition of non-expansive (bi)functors is non-expansive, and the composition of a non-expansive and a contractive (bi)functor is contractive. \subsection{RA} ... ...
 % !TEX root = ./appendix.tex \section{COFE constructions} \subsection{Next (type-level later)} Given a COFE $\cofe$, we define $\latert\cofe$ as follows: \begin{align*} \latert\cofe \eqdef{}& \latertinj(\cofe) \\ \latertinj(x) \nequiv{n} \latertinj(y) \eqdef{}& n = 0 \lor x \nequiv{n-1} y \end{align*} $\latert(-)$ is a locally \emph{contractive} bifunctor from $\COFEs$ to $\COFEs$. \clearpage \section{CMRA constructions} \subsection{Product} ... ...
 ... ... @@ -101,6 +101,7 @@ \newcommand{\nequivset}[2]{\ensuremath{\mathrel{\stackrel{#1}{=}_{#2}}}} \newcommand{\nequivB}[1]{\ensuremath{\mathrel{\stackrel{#1}{\equiv}}}} \newcommand{\latert}{\mathord{\blacktriangleright}} \newcommand{\latertinj}{\textlog{next}} \newcommand{\Sem}[1]{\llbracket #1 \rrbracket} ... ...
 ... ... @@ -41,7 +41,7 @@ It does not matter whether they fork off an arbitrary expression. \end{enumerate} \end{defn} \subsection{The concurrent language} \subsection{Concurrent language} For any language $\Lang$, we define the corresponding thread-pool semantics. ... ... @@ -64,7 +64,7 @@ For any language $\Lang$, we define the corresponding thread-pool semantics. \end{mathpar} \clearpage \section{The logic} \section{Logic} To instantiate Iris, you need to define the following parameters: \begin{itemize} ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!