Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Marianna Rapoport
iris-coq
Commits
3a86d2ff
Commit
3a86d2ff
authored
Feb 10, 2016
by
Ralf Jung
Browse files
Merge branch 'master' of gitlab.mpi-sws.org:FP/iris-coq
parents
30394154
46fafcf5
Changes
4
Hide whitespace changes
Inline
Side-by-side
heap_lang/heap_lang.v
View file @
3a86d2ff
...
...
@@ -19,8 +19,6 @@ Inductive expr :=
|
Var
(
x
:
string
)
|
Rec
(
f
x
:
string
)
(
e
:
expr
)
|
App
(
e1
e2
:
expr
)
(* Let *)
|
Let
(
x
:
string
)
(
e1
e2
:
expr
)
(* Base types and their operations *)
|
Lit
(
l
:
base_lit
)
|
UnOp
(
op
:
un_op
)
(
e
:
expr
)
...
...
@@ -78,7 +76,6 @@ Definition state := gmap loc val.
Inductive
ectx_item
:
=
|
AppLCtx
(
e2
:
expr
)
|
AppRCtx
(
v1
:
val
)
|
LetCtx
(
x
:
string
)
(
e2
:
expr
)
|
UnOpCtx
(
op
:
un_op
)
|
BinOpLCtx
(
op
:
bin_op
)
(
e2
:
expr
)
|
BinOpRCtx
(
op
:
bin_op
)
(
v1
:
val
)
...
...
@@ -104,7 +101,6 @@ Definition fill_item (Ki : ectx_item) (e : expr) : expr :=
match
Ki
with
|
AppLCtx
e2
=>
App
e
e2
|
AppRCtx
v1
=>
App
(
of_val
v1
)
e
|
LetCtx
x
e2
=>
Let
x
e
e2
|
UnOpCtx
op
=>
UnOp
op
e
|
BinOpLCtx
op
e2
=>
BinOp
op
e
e2
|
BinOpRCtx
op
v1
=>
BinOp
op
(
of_val
v1
)
e
...
...
@@ -133,8 +129,6 @@ Fixpoint subst (e : expr) (x : string) (v : val) : expr :=
|
Var
y
=>
if
decide
(
x
=
y
∧
x
≠
""
)
then
of_val
v
else
Var
y
|
Rec
f
y
e
=>
Rec
f
y
(
if
decide
(
x
≠
f
∧
x
≠
y
)
then
subst
e
x
v
else
e
)
|
App
e1
e2
=>
App
(
subst
e1
x
v
)
(
subst
e2
x
v
)
|
Let
y
e1
e2
=>
Let
y
(
subst
e1
x
v
)
(
if
decide
(
x
≠
y
)
then
subst
e2
x
v
else
e2
)
|
Lit
l
=>
Lit
l
|
UnOp
op
e
=>
UnOp
op
(
subst
e
x
v
)
|
BinOp
op
e1
e2
=>
BinOp
op
(
subst
e1
x
v
)
(
subst
e2
x
v
)
...
...
@@ -178,9 +172,6 @@ Inductive head_step : expr -> state -> expr -> state -> option expr -> Prop :=
to_val
e2
=
Some
v2
→
head_step
(
App
(
Rec
f
x
e1
)
e2
)
σ
(
subst
(
subst
e1
f
(
RecV
f
x
e1
))
x
v2
)
σ
None
|
DeltaS
x
e1
e2
v1
σ
:
to_val
e1
=
Some
v1
→
head_step
(
Let
x
e1
e2
)
σ
(
subst
e2
x
v1
)
σ
None
|
UnOpS
op
l
l'
σ
:
un_op_eval
op
l
=
Some
l'
→
head_step
(
UnOp
op
(
Lit
l
))
σ
(
Lit
l'
)
σ
None
...
...
heap_lang/lifting.v
View file @
3a86d2ff
...
...
@@ -90,14 +90,6 @@ Proof.
last
by
intros
;
inv_step
;
eauto
.
Qed
.
Lemma
wp_let
E
x
e1
e2
v
Q
:
to_val
e1
=
Some
v
→
▷
wp
E
(
subst
e2
x
v
)
Q
⊑
wp
E
(
Let
x
e1
e2
)
Q
.
Proof
.
intros
.
rewrite
-(
wp_lift_pure_det_step
(
Let
_
_
_
)
(
subst
e2
x
v
)
None
)
?right_id
//=
;
intros
;
inv_step
;
eauto
.
Qed
.
Lemma
wp_un_op
E
op
l
l'
Q
:
un_op_eval
op
l
=
Some
l'
→
▷
Q
(
LitV
l'
)
⊑
wp
E
(
UnOp
op
(
Lit
l
))
Q
.
...
...
heap_lang/sugar.v
View file @
3a86d2ff
...
...
@@ -3,8 +3,10 @@ Import uPred heap_lang.
(** Define some syntactic sugar. LitTrue and LitFalse are defined in heap_lang.v. *)
Notation
Lam
x
e
:
=
(
Rec
""
x
e
).
Notation
Let
x
e1
e2
:
=
(
App
(
Lam
x
e2
)
e1
).
Notation
Seq
e1
e2
:
=
(
Let
""
e1
e2
).
Notation
LamV
x
e
:
=
(
RecV
""
x
e
).
Notation
LetCtx
x
e2
:
=
(
AppRCtx
(
LamV
x
e2
)).
Notation
SeqCtx
e2
:
=
(
LetCtx
""
e2
).
Module
notations
.
...
...
@@ -14,7 +16,7 @@ Module notations.
Coercion
LitNat
:
nat
>->
base_lit
.
Coercion
LitBool
:
bool
>->
base_lit
.
(* No coercion from base_lit to expr. This makes is slightly easier to tell
(*
*
No coercion from base_lit to expr. This makes is slightly easier to tell
apart language and Coq expressions. *)
Coercion
Var
:
string
>->
expr
.
Coercion
App
:
expr
>->
Funclass
.
...
...
@@ -22,6 +24,7 @@ Module notations.
(** Syntax inspired by Coq/Ocaml. Constructions with higher precedence come
first. *)
(* What about Arguments for hoare triples?. *)
Notation
"' l"
:
=
(
Lit
l
)
(
at
level
8
,
format
"' l"
)
:
lang_scope
.
Notation
"! e"
:
=
(
Load
e
%
L
)
(
at
level
10
,
format
"! e"
)
:
lang_scope
.
Notation
"'ref' e"
:
=
(
Alloc
e
%
L
)
(
at
level
30
)
:
lang_scope
.
Notation
"e1 + e2"
:
=
(
BinOp
PlusOp
e1
%
L
e2
%
L
)
...
...
@@ -33,18 +36,21 @@ Module notations.
Notation
"e1 = e2"
:
=
(
BinOp
EqOp
e1
%
L
e2
%
L
)
(
at
level
70
)
:
lang_scope
.
(* The unicode ← is already part of the notation "_ ← _; _" for bind. *)
Notation
"e1 <- e2"
:
=
(
Store
e1
%
L
e2
%
L
)
(
at
level
80
)
:
lang_scope
.
Notation
"'let:' x := e1 'in' e2"
:
=
(
Let
x
e1
%
L
e2
%
L
)
(
at
level
102
,
x
at
level
1
,
e1
at
level
1
,
e2
at
level
200
)
:
lang_scope
.
Notation
"e1 ; e2"
:
=
(
Seq
e1
%
L
e2
%
L
)
(
at
level
100
,
e2
at
level
200
)
:
lang_scope
.
Notation
"'rec:' f x := e"
:
=
(
Rec
f
x
e
%
L
)
(
at
level
102
,
f
at
level
1
,
x
at
level
1
,
e
at
level
200
)
:
lang_scope
.
Notation
"'if' e1 'then' e2 'else' e3"
:
=
(
If
e1
%
L
e2
%
L
e3
%
L
)
(
at
level
200
,
e1
,
e2
,
e3
at
level
200
)
:
lang_scope
.
(* derived notions, in order of declaration *)
(** Derived notions, in order of declaration. The notations for let and seq
are stated explicitly instead of relying on the Notations Let and Seq as
defined above. This is needed because App is now a coercion, and these
notations are otherwise not pretty printed back accordingly. *)
Notation
"λ: x , e"
:
=
(
Lam
x
e
%
L
)
(
at
level
102
,
x
at
level
1
,
e
at
level
200
)
:
lang_scope
.
Notation
"'let:' x := e1 'in' e2"
:
=
(
Lam
x
e2
%
L
e1
%
L
)
(
at
level
102
,
x
at
level
1
,
e1
,
e2
at
level
200
)
:
lang_scope
.
Notation
"e1 ; e2"
:
=
(
Lam
""
e2
%
L
e1
%
L
)
(
at
level
100
,
e2
at
level
200
)
:
lang_scope
.
End
notations
.
Section
suger
.
...
...
@@ -57,6 +63,10 @@ Lemma wp_lam E x ef e v Q :
to_val
e
=
Some
v
→
▷
wp
E
(
subst
ef
x
v
)
Q
⊑
wp
E
(
App
(
Lam
x
ef
)
e
)
Q
.
Proof
.
intros
.
by
rewrite
-
wp_rec
?subst_empty
;
eauto
.
Qed
.
Lemma
wp_let
E
x
e1
e2
v
Q
:
to_val
e1
=
Some
v
→
▷
wp
E
(
subst
e2
x
v
)
Q
⊑
wp
E
(
Let
x
e1
e2
)
Q
.
Proof
.
apply
wp_lam
.
Qed
.
Lemma
wp_seq
E
e1
e2
Q
:
wp
E
e1
(
λ
_
,
▷
wp
E
e2
Q
)
⊑
wp
E
(
Seq
e1
e2
)
Q
.
Proof
.
rewrite
-(
wp_bind
[
LetCtx
""
e2
]).
apply
wp_mono
=>
v
.
...
...
heap_lang/tests.v
View file @
3a86d2ff
...
...
@@ -4,20 +4,20 @@ Require Import heap_lang.lifting heap_lang.sugar.
Import
heap_lang
uPred
notations
.
Module
LangTests
.
Definition
add
:
=
(
Lit
21
+
Lit
21
)%
L
.
Goal
∀
σ
,
prim_step
add
σ
(
Lit
42
)
σ
None
.
Definition
add
:
=
(
'
21
+
'
21
)%
L
.
Goal
∀
σ
,
prim_step
add
σ
(
'
42
)
σ
None
.
Proof
.
intros
;
do_step
done
.
Qed
.
Definition
rec_app
:
expr
:
=
(
rec
:
"f"
"x"
:
=
"f"
"x"
)
(
Lit
0
)
.
Definition
rec_app
:
expr
:
=
(
(
rec
:
"f"
"x"
:
=
"f"
"x"
)
'
0
)%
L
.
Goal
∀
σ
,
prim_step
rec_app
σ
rec_app
σ
None
.
Proof
.
intros
.
rewrite
/
rec_app
.
(* FIXME: do_step does not work here *)
by
eapply
(
Ectx_step
_
_
_
_
_
[]),
(
BetaS
_
_
_
_
(
LitV
(
LitNat
0
))).
Qed
.
Definition
lam
:
expr
:
=
λ
:
"x"
,
"x"
+
Lit
21
.
Goal
∀
σ
,
prim_step
(
lam
(
Lit
21
)
)
σ
add
σ
None
.
Definition
lam
:
expr
:
=
λ
:
"x"
,
"x"
+
'
21
.
Goal
∀
σ
,
prim_step
(
lam
'
21
)
%
L
σ
add
σ
None
.
Proof
.
intros
.
rewrite
/
lam
.
(* FIXME: do_step does not work here *)
by
eapply
(
Ectx_step
_
_
_
_
_
[]),
(
BetaS
""
"x"
(
"x"
+
Lit
21
)
_
(
LitV
21
)).
by
eapply
(
Ectx_step
_
_
_
_
_
[]),
(
BetaS
""
"x"
(
"x"
+
'
21
)
_
(
LitV
21
)).
Qed
.
End
LangTests
.
...
...
@@ -27,7 +27,7 @@ Module LiftingTests.
Implicit
Types
Q
:
val
→
iProp
heap_lang
Σ
.
Definition
e
:
expr
:
=
let
:
"x"
:
=
ref
(
Lit
1
)
in
"x"
<-
!
"x"
+
Lit
1
;
!
"x"
.
let
:
"x"
:
=
ref
'
1
in
"x"
<-
!
"x"
+
'
1
;
!
"x"
.
Goal
∀
σ
E
,
ownP
(
Σ
:
=
Σ
)
σ
⊑
wp
E
e
(
λ
v
,
v
=
LitV
2
).
Proof
.
move
=>
σ
E
.
rewrite
/
e
.
...
...
@@ -56,13 +56,13 @@ Module LiftingTests.
Definition
FindPred
(
n2
:
expr
)
:
expr
:
=
rec
:
"pred"
"y"
:
=
let
:
"yp"
:
=
"y"
+
Lit
1
in
let
:
"yp"
:
=
"y"
+
'
1
in
if
"yp"
<
n2
then
"pred"
"yp"
else
"y"
.
Definition
Pred
:
expr
:
=
λ
:
"x"
,
if
"x"
≤
Lit
0
then
Lit
0
else
FindPred
"x"
(
Lit
0
)
.
λ
:
"x"
,
if
"x"
≤
'
0
then
'
0
else
FindPred
"x"
'
0
.
Lemma
FindPred_spec
n1
n2
E
Q
:
(
■
(
n1
<
n2
)
∧
Q
(
LitV
(
pred
n2
)))
⊑
wp
E
(
FindPred
(
Lit
n2
)
(
Lit
n1
)
)
Q
.
(
■
(
n1
<
n2
)
∧
Q
(
LitV
(
pred
n2
)))
⊑
wp
E
(
FindPred
'
n2
'
n1
)
%
L
Q
.
Proof
.
revert
n1
.
apply
l
ö
b_all_1
=>
n1
.
rewrite
(
commutative
uPred_and
(
■
_
)%
I
)
associative
;
apply
const_elim_r
=>?.
...
...
@@ -82,7 +82,7 @@ Module LiftingTests.
by
rewrite
-!
later_intro
-
wp_value'
//
and_elim_r
.
Qed
.
Lemma
Pred_spec
n
E
Q
:
▷
Q
(
LitV
(
pred
n
))
⊑
wp
E
(
Pred
(
Lit
n
))
Q
.
Lemma
Pred_spec
n
E
Q
:
▷
Q
(
LitV
(
pred
n
))
⊑
wp
E
(
Pred
'
n
)%
L
Q
.
Proof
.
rewrite
-
wp_lam
//=.
rewrite
-(
wp_bindi
(
IfCtx
_
_
)).
...
...
@@ -96,7 +96,7 @@ Module LiftingTests.
Qed
.
Goal
∀
E
,
True
⊑
wp
(
Σ
:
=
Σ
)
E
(
let
:
"x"
:
=
Pred
(
Lit
42
)
in
Pred
"x"
)
True
⊑
wp
(
Σ
:
=
Σ
)
E
(
let
:
"x"
:
=
Pred
'
42
in
Pred
"x"
)
(
λ
v
,
v
=
LitV
40
).
Proof
.
intros
E
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment