Commit 121fce4c authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan
Browse files

Simplifying thread local invariants

By using the global ghost maps instead of our own ones.
parent df6f1918
......@@ -127,8 +127,7 @@ Section sts.
around accessors". *)
iVs (sts_accS with "[Hinv Hγf]") as (s) "(?&?& HclSts)"; first by iFrame.
iVsIntro. iExists s. iFrame. iIntros (s' T') "H".
iVs ("HclSts" $! s' T' with "H") as "(Hinv & ?)". iFrame.
iVs ("Hclose" with "Hinv"). done.
iVs ("HclSts" $! s' T' with "H") as "(Hinv & ?)". by iVs ("Hclose" with "Hinv").
Lemma sts_open E N γ s0 T :
......@@ -2,14 +2,10 @@ From iris.algebra Require Export gmap gset coPset.
From iris.proofmode Require Import invariants tactics.
Import uPred.
Definition thread_id := positive.
Definition thread_id := gname.
Class thread_localG Σ := {
tl_enabled_inG :> inG Σ (gmapUR thread_id coPset_disjR);
tl_disabled_inG :> inG Σ (gmapUR thread_id (gset_disjR positive));
tl_enabled_name : gname;
tl_disabled_name : gname
Class thread_localG Σ :=
tl_inG :> inG Σ (prodUR coPset_disjUR (gset_disjUR positive)).
Definition tlN : namespace := nroot .@ "tl".
......@@ -17,12 +13,11 @@ Section defs.
Context `{irisG Λ Σ, thread_localG Σ}.
Definition tl_tokens (tid : thread_id) (E : coPset) : iProp Σ :=
own tl_enabled_name {[ tid := CoPset E ]}.
own tid (CoPset E, ).
Definition tl_inv (tid : thread_id) (N : namespace) (P : iProp Σ) : iProp Σ :=
( i, (i nclose N)
inv tlN (P own tl_disabled_name {[ tid := GSet {[i]} ]}
tl_tokens tid {[i]}))%I.
inv tlN (P own tid (, GSet {[i]}) tl_tokens tid {[i]}))%I.
End defs.
Instance: Params (@tl_tokens) 2.
......@@ -33,41 +28,35 @@ Section proofs.
Lemma tid_alloc :
True =r=> tid, tl_tokens tid .
iVs (own_empty (A:=gmapUR thread_id coPset_disjR) tl_enabled_name) as "Hempty".
iVs (own_updateP with "Hempty") as (m) "[Hm Hown]".
by apply alloc_updateP' with (x:=CoPset ).
iDestruct "Hm" as %(tid & -> & _). eauto.
Proof. by apply own_alloc. Qed.
Lemma tl_tokens_disj tid E1 E2 :
tl_tokens tid E1 tl_tokens tid E2 (E1 E2).
by rewrite /tl_tokens -own_op op_singleton own_valid -coPset_disj_valid_op
discrete_valid singleton_valid.
rewrite /tl_tokens -own_op own_valid -coPset_disj_valid_op discrete_valid.
by iIntros ([? _])"!%".
Lemma tl_tokens_union tid E1 E2 :
E1 E2 tl_tokens tid (E1 E2) tl_tokens tid E1 tl_tokens tid E2.
intros ?. by rewrite /tl_tokens -own_op op_singleton coPset_disj_union.
intros ?. by rewrite /tl_tokens -own_op pair_op left_id coPset_disj_union.
Lemma tl_inv_alloc tid E N P : P ={E}=> tl_inv tid N P.
Lemma tl_inv_alloc tid E N P :
P ={E}=> tl_inv tid N P.
iIntros "HP".
iVs (own_empty (A:=gmapUR thread_id (gset_disjR positive)) tl_disabled_name)
as "Hempty".
iVs (own_updateP with "Hempty") as (m) "[Hm Hown]".
{ eapply alloc_unit_singleton_updateP' with (u:=) (i:=tid). done. apply _.
iVs (own_empty tid) as "Hempty".
iVs (own_updateP with "Hempty") as ([m1 m2]) "[Hm Hown]".
{ apply prod_updateP'. apply cmra_updateP_id, (reflexivity (R:=eq)).
apply (gset_alloc_empty_updateP_strong' (λ i, i nclose N)).
intros Ef. exists (coPpick (nclose N coPset.of_gset Ef)).
rewrite -coPset.elem_of_of_gset comm -elem_of_difference.
apply coPpick_elem_of=> Hfin.
eapply nclose_infinite, (difference_finite_inv _ _), Hfin.
apply of_gset_finite. }
iDestruct "Hm" as %(? & -> & i & -> & ?).
simpl. iDestruct "Hm" as %(<- & i & -> & ?).
iVs (inv_alloc tlN with "[-]"). 2:iVsIntro; iExists i; eauto.
iNext. iLeft. by iFrame.
......@@ -87,9 +76,8 @@ Section proofs.
iIntros "!==>[HP ?]". iFrame.
iInv tlN as "[[_ >Hdis2]|>Hitok]" "Hclose".
+ iCombine "Hdis" "Hdis2" as "Hdis".
iDestruct (own_valid with "Hdis") as %Hval.
revert Hval. rewrite op_singleton singleton_valid gset_disj_valid_op.
iDestruct (own_valid with "Hdis") as %[_ Hval]. revert Hval.
rewrite gset_disj_valid_op. set_solver.
+ iFrame. iApply "Hclose". iNext. iLeft. by iFrame.
- iDestruct (tl_tokens_disj tid {[i]} {[i]} with "[-]") as %?. by iFrame.
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment