sts.v 6.81 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
2
3
4
From algebra Require Export sts.
From program_logic Require Export invariants ghost_ownership.
Import uPred.

5
6
Class stsG Λ Σ (sts : stsT) := StsG {
  sts_inG :> inG Λ Σ (stsRA sts);
Robbert Krebbers's avatar
Robbert Krebbers committed
7
  sts_inhabited :> Inhabited (sts.state sts);
Ralf Jung's avatar
Ralf Jung committed
8
}.
9
Coercion sts_inG : stsG >-> inG.
Ralf Jung's avatar
Ralf Jung committed
10
11

Section definitions.
12
  Context `{i : stsG Λ Σ sts} (γ : gname).
Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
  Import sts.
  Definition sts_inv (φ : state sts  iPropG Λ Σ) : iPropG Λ Σ :=
15
    ( s, own γ (sts_auth s )  φ s)%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
16
  Definition sts_ownS (S : states sts) (T : tokens sts) : iPropG Λ Σ:=
17
    own γ (sts_frag S T).
Robbert Krebbers's avatar
Robbert Krebbers committed
18
  Definition sts_own (s : state sts) (T : tokens sts) : iPropG Λ Σ :=
19
    own γ (sts_frag_up s T).
Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
  Definition sts_ctx (N : namespace) (φ: state sts  iPropG Λ Σ) : iPropG Λ Σ :=
    inv N (sts_inv φ).
Ralf Jung's avatar
Ralf Jung committed
22
End definitions.
23
24
25
26
Instance: Params (@sts_inv) 5.
Instance: Params (@sts_ownS) 5.
Instance: Params (@sts_own) 6.
Instance: Params (@sts_ctx) 6.
Ralf Jung's avatar
Ralf Jung committed
27
28

Section sts.
29
  Context `{stsG Λ Σ sts} (φ : sts.state sts  iPropG Λ Σ).
Ralf Jung's avatar
Ralf Jung committed
30
31
32
  Implicit Types N : namespace.
  Implicit Types P Q R : iPropG Λ Σ.
  Implicit Types γ : gname.
Robbert Krebbers's avatar
Robbert Krebbers committed
33
34
35
36
37
  Implicit Types S : sts.states sts.
  Implicit Types T : sts.tokens sts.

  (** Setoids *)
  Global Instance sts_inv_ne n γ :
38
    Proper (pointwise_relation _ (dist n) ==> dist n) (sts_inv γ).
Robbert Krebbers's avatar
Robbert Krebbers committed
39
40
  Proof. by intros φ1 φ2 Hφ; rewrite /sts_inv; setoid_rewrite Hφ. Qed.
  Global Instance sts_inv_proper γ :
41
    Proper (pointwise_relation _ () ==> ()) (sts_inv γ).
Robbert Krebbers's avatar
Robbert Krebbers committed
42
  Proof. by intros φ1 φ2 Hφ; rewrite /sts_inv; setoid_rewrite Hφ. Qed.
43
  Global Instance sts_ownS_proper γ : Proper (() ==> () ==> ()) (sts_ownS γ).
Robbert Krebbers's avatar
Robbert Krebbers committed
44
  Proof. intros S1 S2 HS T1 T2 HT. by rewrite /sts_ownS HS HT. Qed.
45
  Global Instance sts_own_proper γ s : Proper (() ==> ()) (sts_ownS γ s).
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
  Proof. intros T1 T2 HT. by rewrite /sts_ownS HT. Qed.
  Global Instance sts_ctx_ne n γ N :
48
    Proper (pointwise_relation _ (dist n) ==> dist n) (sts_ctx γ N).
Robbert Krebbers's avatar
Robbert Krebbers committed
49
50
  Proof. by intros φ1 φ2 Hφ; rewrite /sts_ctx Hφ. Qed.
  Global Instance sts_ctx_proper γ N :
51
    Proper (pointwise_relation _ () ==> ()) (sts_ctx γ N).
Robbert Krebbers's avatar
Robbert Krebbers committed
52
  Proof. by intros φ1 φ2 Hφ; rewrite /sts_ctx Hφ. Qed.
Ralf Jung's avatar
Ralf Jung committed
53

54
55
  (* The same rule as implication does *not* hold, as could be shown using
     sts_frag_included. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
56
57
  Lemma sts_ownS_weaken E γ S1 S2 T :
    S1  S2  sts.closed S2 T 
58
    sts_ownS γ S1 T  pvs E E (sts_ownS γ S2 T).
Robbert Krebbers's avatar
Robbert Krebbers committed
59
  Proof. intros. by apply own_update, sts_update_frag. Qed.
60

Robbert Krebbers's avatar
Robbert Krebbers committed
61
62
  Lemma sts_own_weaken E γ s S T :
    s  S  sts.closed S T 
63
    sts_own γ s T  pvs E E (sts_ownS γ S T).
Robbert Krebbers's avatar
Robbert Krebbers committed
64
  Proof. intros. by apply own_update, sts_update_frag_up. Qed.
65

Ralf Jung's avatar
Ralf Jung committed
66
67
68
69
70
71
72
73
  Lemma sts_ownS_op γ S1 S2 T1 T2 :
    T1  T2    sts.closed S1 T1  sts.closed S2 T2 
    sts_ownS γ (S1  S2) (T1  T2)  (sts_ownS γ S1 T1  sts_ownS γ S2 T2)%I.
  Proof.
    intros HT HS1 HS2. rewrite /sts_ownS -own_op.
      by apply own_proper, sts_op_frag.
  Qed.

74
75
76
  Lemma sts_alloc E N s :
    nclose N  E 
     φ s  pvs E E ( γ, sts_ctx γ N φ  sts_own γ s (  sts.tok s)).
77
  Proof.
78
    intros HN. eapply sep_elim_True_r.
79
    { apply (own_alloc (sts_auth s (  sts.tok s)) N).
Robbert Krebbers's avatar
Robbert Krebbers committed
80
      apply sts_auth_valid; solve_elem_of. }
81
82
    rewrite pvs_frame_l. rewrite -(pvs_mask_weaken N E) //.
    apply pvs_strip_pvs.
83
    rewrite sep_exist_l. apply exist_elim=>γ. rewrite -(exist_intro γ).
84
    transitivity ( sts_inv γ φ  sts_own γ s (  sts.tok s))%I.
85
86
87
    { rewrite /sts_inv -(exist_intro s) later_sep.
      rewrite [(_   φ _)%I]comm -assoc. apply sep_mono_r.
      by rewrite -later_intro -own_op sts_op_auth_frag_up; last solve_elem_of. }
Robbert Krebbers's avatar
Robbert Krebbers committed
88
    rewrite (inv_alloc N) /sts_ctx pvs_frame_r.
89
90
91
    by rewrite always_and_sep_l.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
92
  Lemma sts_opened E γ S T :
93
94
    ( sts_inv γ φ  sts_ownS γ S T)
     pvs E E ( s,  (s  S)   φ s  own γ (sts_auth s T)).
95
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
96
    rewrite /sts_inv /sts_ownS later_exist sep_exist_r. apply exist_elim=>s.
97
98
99
100
    rewrite later_sep pvs_timeless !pvs_frame_r. apply pvs_mono.
    rewrite -(exist_intro s).
    rewrite [(_  ▷φ _)%I]comm -!assoc -own_op -[(▷φ _  _)%I]comm.
    rewrite own_valid_l discrete_validI.
Robbert Krebbers's avatar
Robbert Krebbers committed
101
102
103
104
105
    rewrite -!assoc. apply const_elim_sep_l=> Hvalid.
    assert (s  S) by (by eapply sts_auth_frag_valid_inv, discrete_valid).
    rewrite const_equiv // left_id comm sts_op_auth_frag //.
    (* this is horrible, but will be fixed whenever we have RAs back *)
    by rewrite -sts_frag_valid; eapply cmra_valid_op_r, discrete_valid.
106
107
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
108
109
  Lemma sts_closing E γ s T s' T' :
    sts.step (s, T) (s', T') 
110
    ( φ s'  own γ (sts_auth s T))  pvs E E ( sts_inv γ φ  sts_own γ s' T').
111
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
112
    intros Hstep. rewrite /sts_inv /sts_own -(exist_intro s').
Ralf Jung's avatar
Ralf Jung committed
113
    rewrite later_sep [(_  ▷φ _)%I]comm -assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
114
    rewrite -pvs_frame_l. apply sep_mono_r. rewrite -later_intro.
Ralf Jung's avatar
Ralf Jung committed
115
    rewrite own_valid_l discrete_validI. apply const_elim_sep_l=>Hval.
116
    transitivity (pvs E E (own γ (sts_auth s' T'))).
Robbert Krebbers's avatar
Robbert Krebbers committed
117
118
    { by apply own_update, sts_update_auth. }
    by rewrite -own_op sts_op_auth_frag_up; last by inversion_clear Hstep.
Ralf Jung's avatar
Ralf Jung committed
119
  Qed.
120

121
122
  Context {V} (fsa : FSA Λ (globalF Σ) V) `{!FrameShiftAssertion fsaV fsa}.

Robbert Krebbers's avatar
Robbert Krebbers committed
123
  Lemma sts_fsaS E N P (Q : V  iPropG Λ Σ) γ S T :
Ralf Jung's avatar
Ralf Jung committed
124
    fsaV  nclose N  E 
125
126
    P  sts_ctx γ N φ 
    P  (sts_ownS γ S T   s,
127
           (s  S)   φ s -
Ralf Jung's avatar
Ralf Jung committed
128
          fsa (E  nclose N) (λ x,  s' T',
Robbert Krebbers's avatar
Robbert Krebbers committed
129
             sts.step (s, T) (s', T')   φ s' 
130
            (sts_own γ s' T' - Q x))) 
131
132
    P  fsa E Q.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
133
    rewrite /sts_ctx=>? HN Hinv Hinner.
134
135
    eapply (inv_fsa fsa); eauto. rewrite Hinner=>{Hinner Hinv P HN}.
    apply wand_intro_l. rewrite assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
136
    rewrite (sts_opened (E  N)) !pvs_frame_r !sep_exist_r.
137
138
139
140
141
    apply (fsa_strip_pvs fsa). apply exist_elim=>s.
    rewrite (forall_elim s). rewrite [(_  _)%I]comm.
    (* Getting this wand eliminated is really annoying. *)
    rewrite [(_  _)%I]comm -!assoc [(▷φ _  _  _)%I]assoc [(▷φ _  _)%I]comm.
    rewrite wand_elim_r fsa_frame_l.
Ralf Jung's avatar
Ralf Jung committed
142
    apply (fsa_mono_pvs fsa)=> x.
143
    rewrite sep_exist_l; apply exist_elim=> s'.
Ralf Jung's avatar
Ralf Jung committed
144
145
    rewrite sep_exist_l; apply exist_elim=>T'.
    rewrite comm -!assoc. apply const_elim_sep_l=>-Hstep.
146
    rewrite assoc [(_  (_ - _))%I]comm -assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
147
    rewrite (sts_closing (E  N)) //; [].
148
149
150
151
    rewrite pvs_frame_l. apply pvs_mono.
    by rewrite assoc [(_  _)%I]comm -assoc wand_elim_l.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
152
  Lemma sts_fsa E N P (Q : V  iPropG Λ Σ) γ s0 T :
Ralf Jung's avatar
Ralf Jung committed
153
    fsaV  nclose N  E 
154
155
    P  sts_ctx γ N φ 
    P  (sts_own γ s0 T   s,
Robbert Krebbers's avatar
Robbert Krebbers committed
156
           (s  sts.up s0 T)   φ s -
Ralf Jung's avatar
Ralf Jung committed
157
          fsa (E  nclose N) (λ x,  s' T',
Robbert Krebbers's avatar
Robbert Krebbers committed
158
             (sts.step (s, T) (s', T'))   φ s' 
159
            (sts_own γ s' T' - Q x))) 
Ralf Jung's avatar
Ralf Jung committed
160
    P  fsa E Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
161
  Proof. apply sts_fsaS. Qed.
Ralf Jung's avatar
Ralf Jung committed
162
End sts.