cmra_big_op.v 23.6 KB
Newer Older
1
From iris.algebra Require Export cmra list.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
From iris.prelude Require Import functions gmap gmultiset.
3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
(** The operator [ [⋅] Ps ] folds [⋅] over the list [Ps]. This operator is not a
quantifier, so it binds strongly.

Apart from that, we define the following big operators with binders build in:

- The operator [ [⋅ list] k ↦ x ∈ l, P ] folds over a list [l]. The binder [x]
  refers to each element at index [k].
- The operator [ [⋅ map] k ↦ x ∈ m, P ] folds over a map [m]. The binder [x]
  refers to each element at index [k].
- The operator [ [⋅ set] x ∈ X, P ] folds over a set [m]. The binder [x] refers
  to each element.

Since these big operators are like quantifiers, they have the same precedence as
[∀] and [∃]. *)

(** * Big ops over lists *)
(* This is the basic building block for other big ops *)
Fixpoint big_op {M : ucmraT} (xs : list M) : M :=
22
  match xs with [] =>  | x :: xs => x  big_op xs end.
23
24
Arguments big_op _ !_ /.
Instance: Params (@big_op) 1.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
Notation "'[⋅]' xs" := (big_op xs) (at level 20) : C_scope.

(** * Other big ops *)
Definition big_opL {M : ucmraT} {A} (l : list A) (f : nat  A  M) : M :=
  [] (imap f l).
Instance: Params (@big_opL) 2.
Typeclasses Opaque big_opL.
Notation "'[⋅' 'list' ] k ↦ x ∈ l , P" := (big_opL l (λ k x, P))
  (at level 200, l at level 10, k, x at level 1, right associativity,
   format "[⋅  list ]  k ↦ x  ∈  l ,  P") : C_scope.
Notation "'[⋅' 'list' ] x ∈ l , P" := (big_opL l (λ _ x, P))
  (at level 200, l at level 10, x at level 1, right associativity,
   format "[⋅  list ]  x  ∈  l ,  P") : C_scope.

Definition big_opM {M : ucmraT} `{Countable K} {A}
    (m : gmap K A) (f : K  A  M) : M :=
  [] (curry f <$> map_to_list m).
Instance: Params (@big_opM) 6.
Typeclasses Opaque big_opM.
Notation "'[⋅' 'map' ] k ↦ x ∈ m , P" := (big_opM m (λ k x, P))
  (at level 200, m at level 10, k, x at level 1, right associativity,
   format "[⋅  map ]  k ↦ x  ∈  m ,  P") : C_scope.
47
48
49
Notation "'[⋅' 'map' ] x ∈ m , P" := (big_opM m (λ _ x, P))
  (at level 200, m at level 10, x at level 1, right associativity,
   format "[⋅  map ]  x  ∈  m ,  P") : C_scope.
50
51
52
53
54
55
56
57

Definition big_opS {M : ucmraT} `{Countable A}
  (X : gset A) (f : A  M) : M := [] (f <$> elements X).
Instance: Params (@big_opS) 5.
Typeclasses Opaque big_opS.
Notation "'[⋅' 'set' ] x ∈ X , P" := (big_opS X (λ x, P))
  (at level 200, X at level 10, x at level 1, right associativity,
   format "[⋅  set ]  x  ∈  X ,  P") : C_scope.
58

Robbert Krebbers's avatar
Robbert Krebbers committed
59
60
61
62
63
64
65
66
Definition big_opMS {M : ucmraT} `{Countable A}
  (X : gmultiset A) (f : A  M) : M := [] (f <$> elements X).
Instance: Params (@big_opMS) 5.
Typeclasses Opaque big_opMS.
Notation "'[⋅' 'mset' ] x ∈ X , P" := (big_opMS X (λ x, P))
  (at level 200, X at level 10, x at level 1, right associativity,
   format "[⋅  'mset' ]  x  ∈  X ,  P") : C_scope.

67
68
(** * Properties about big ops *)
Section big_op.
69
70
Context {M : ucmraT}.
Implicit Types xs : list M.
71
72

(** * Big ops *)
73
74
75
76
77
Lemma big_op_Forall2 R :
  Reflexive R  Proper (R ==> R ==> R) (@op M _) 
  Proper (Forall2 R ==> R) (@big_op M).
Proof. rewrite /Proper /respectful. induction 3; eauto. Qed.

78
Global Instance big_op_ne n : Proper (dist n ==> dist n) (@big_op M).
79
Proof. apply big_op_Forall2; apply _. Qed.
80
81
82
Global Instance big_op_proper : Proper (() ==> ()) (@big_op M) := ne_proper _.

Lemma big_op_nil : [] (@nil M) = .
83
Proof. done. Qed.
84
Lemma big_op_cons x xs : [] (x :: xs) = x  [] xs.
85
Proof. done. Qed.
86
87
88
89
90
91
92
93
94
95
Lemma big_op_app xs ys : [] (xs ++ ys)  [] xs  [] ys.
Proof.
  induction xs as [|x xs IH]; simpl; first by rewrite ?left_id.
  by rewrite IH assoc.
Qed.

Lemma big_op_mono xs ys : Forall2 () xs ys  [] xs  [] ys.
Proof. induction 1 as [|x y xs ys Hxy ? IH]; simpl; eauto using cmra_mono. Qed.

Global Instance big_op_permutation : Proper (() ==> ()) (@big_op M).
96
97
Proof.
  induction 1 as [|x xs1 xs2 ? IH|x y xs|xs1 xs2 xs3]; simpl; auto.
98
99
  - by rewrite IH.
  - by rewrite !assoc (comm _ x).
100
  - by trans (big_op xs2).
101
Qed.
102
103

Lemma big_op_contains xs ys : xs `contains` ys  [] xs  [] ys.
104
Proof.
105
106
  intros [xs' ->]%contains_Permutation.
  rewrite big_op_app; apply cmra_included_l.
107
Qed.
108
109

Lemma big_op_delete xs i x : xs !! i = Some x  x  [] delete i xs  [] xs.
110
111
Proof. by intros; rewrite {2}(delete_Permutation xs i x). Qed.

112
Lemma big_sep_elem_of xs x : x  xs  x  [] xs.
113
Proof.
114
115
  intros [i ?]%elem_of_list_lookup. rewrite -big_op_delete //.
  apply cmra_included_l.
116
Qed.
117
118
119
120
121
122
123

(** ** Big ops over lists *)
Section list.
  Context {A : Type}.
  Implicit Types l : list A.
  Implicit Types f g : nat  A  M.

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
  Lemma big_opL_nil f : ([ list] ky  nil, f k y) = .
  Proof. done. Qed.
  Lemma big_opL_cons f x l :
    ([ list] ky  x :: l, f k y) = f 0 x  [ list] ky  l, f (S k) y.
  Proof. by rewrite /big_opL imap_cons. Qed.
  Lemma big_opL_singleton f x : ([ list] ky  [x], f k y)  f 0 x.
  Proof. by rewrite big_opL_cons big_opL_nil right_id. Qed.
  Lemma big_opL_app f l1 l2 :
    ([ list] ky  l1 ++ l2, f k y)
     ([ list] ky  l1, f k y)  ([ list] ky  l2, f (length l1 + k) y).
  Proof. by rewrite /big_opL imap_app big_op_app. Qed.

  Lemma big_opL_forall R f g l :
    Reflexive R  Proper (R ==> R ==> R) (@op M _) 
    ( k y, l !! k = Some y  R (f k y) (g k y)) 
    R ([ list] k  y  l, f k y) ([ list] k  y  l, g k y).
  Proof.
    intros ? Hop. revert f g. induction l as [|x l IH]=> f g Hf; [done|].
    rewrite !big_opL_cons. apply Hop; eauto.
  Qed.

145
146
147
  Lemma big_opL_mono f g l :
    ( k y, l !! k = Some y  f k y  g k y) 
    ([ list] k  y  l, f k y)  [ list] k  y  l, g k y.
148
  Proof. apply big_opL_forall; apply _. Qed.
149
150
151
152
  Lemma big_opL_ext f g l :
    ( k y, l !! k = Some y  f k y = g k y) 
    ([ list] k  y  l, f k y) = [ list] k  y  l, g k y.
  Proof. apply big_opL_forall; apply _. Qed.
153
154
155
  Lemma big_opL_proper f g l :
    ( k y, l !! k = Some y  f k y  g k y) 
    ([ list] k  y  l, f k y)  ([ list] k  y  l, g k y).
156
  Proof. apply big_opL_forall; apply _. Qed.
157
158
159
160

  Global Instance big_opL_ne l n :
    Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> (dist n))
           (big_opL (M:=M) l).
161
  Proof. intros f g Hf. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
162
163
164
  Global Instance big_opL_proper' l :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
           (big_opL (M:=M) l).
165
  Proof. intros f g Hf. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
166
167
168
  Global Instance big_opL_mono' l :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
           (big_opL (M:=M) l).
169
  Proof. intros f g Hf. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
170

171
172
173
174
175
176
177
  Lemma big_opL_consZ_l (f : Z  A  M) x l :
    ([ list] ky  x :: l, f k y) = f 0 x  [ list] ky  l, f (1 + k)%Z y.
  Proof. rewrite big_opL_cons. auto using big_opL_ext with f_equal lia. Qed.
  Lemma big_opL_consZ_r (f : Z  A  M) x l :
    ([ list] ky  x :: l, f k y) = f 0 x  [ list] ky  l, f (k + 1)%Z y.
  Proof. rewrite big_opL_cons. auto using big_opL_ext with f_equal lia. Qed.

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
  Lemma big_opL_lookup f l i x :
    l !! i = Some x  f i x  [ list] ky  l, f k y.
  Proof.
    intros. rewrite -(take_drop_middle l i x) // big_opL_app big_opL_cons.
    rewrite Nat.add_0_r take_length_le; eauto using lookup_lt_Some, Nat.lt_le_incl.
    eapply transitivity, cmra_included_r; eauto using cmra_included_l.
  Qed.

  Lemma big_opL_elem_of (f : A  M) l x : x  l  f x  [ list] y  l, f y.
  Proof.
    intros [i ?]%elem_of_list_lookup; eauto using (big_opL_lookup (λ _, f)).
  Qed.

  Lemma big_opL_fmap {B} (h : A  B) (f : nat  B  M) l :
    ([ list] ky  h <$> l, f k y)  ([ list] ky  l, f k (h y)).
  Proof. by rewrite /big_opL imap_fmap. Qed.

  Lemma big_opL_opL f g l :
    ([ list] kx  l, f k x  g k x)
     ([ list] kx  l, f k x)  ([ list] kx  l, g k x).
  Proof.
    revert f g; induction l as [|x l IH]=> f g.
    { by rewrite !big_opL_nil left_id. }
    rewrite !big_opL_cons IH.
    by rewrite -!assoc (assoc _ (g _ _)) [(g _ _  _)]comm -!assoc.
  Qed.
End list.

(** ** Big ops over finite maps *)
Section gmap.
  Context `{Countable K} {A : Type}.
  Implicit Types m : gmap K A.
  Implicit Types f g : K  A  M.

212
213
214
215
216
217
218
219
220
  Lemma big_opM_forall R f g m :
    Reflexive R  Proper (R ==> R ==> R) (@op M _) 
    ( k x, m !! k = Some x  R (f k x) (g k x)) 
    R ([ map] k  x  m, f k x) ([ map] k  x  m, g k x).
  Proof.
    intros ?? Hf. apply (big_op_Forall2 R _ _), Forall2_fmap, Forall_Forall2.
    apply Forall_forall=> -[i x] ? /=. by apply Hf, elem_of_map_to_list.
  Qed.

221
222
223
224
  Lemma big_opM_mono f g m1 m2 :
    m1  m2  ( k x, m2 !! k = Some x  f k x  g k x) 
    ([ map] k  x  m1, f k x)  [ map] k  x  m2, g k x.
  Proof.
225
    intros Hm Hf. trans ([ map] kx  m2, f k x).
226
    - by apply big_op_contains, fmap_contains, map_to_list_contains.
227
    - apply big_opM_forall; apply _ || auto.
228
  Qed.
229
230
231
232
  Lemma big_opM_ext f g m :
    ( k x, m !! k = Some x  f k x = g k x) 
    ([ map] k  x  m, f k x) = ([ map] k  x  m, g k x).
  Proof. apply big_opM_forall; apply _. Qed.
233
234
235
  Lemma big_opM_proper f g m :
    ( k x, m !! k = Some x  f k x  g k x) 
    ([ map] k  x  m, f k x)  ([ map] k  x  m, g k x).
236
  Proof. apply big_opM_forall; apply _. Qed.
237
238
239
240

  Global Instance big_opM_ne m n :
    Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> (dist n))
           (big_opM (M:=M) m).
241
  Proof. intros f g Hf. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
242
243
244
  Global Instance big_opM_proper' m :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
           (big_opM (M:=M) m).
245
  Proof. intros f g Hf. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
246
247
248
  Global Instance big_opM_mono' m :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
           (big_opM (M:=M) m).
249
  Proof. intros f g Hf. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

  Lemma big_opM_empty f : ([ map] kx  , f k x) = .
  Proof. by rewrite /big_opM map_to_list_empty. Qed.

  Lemma big_opM_insert f m i x :
    m !! i = None 
    ([ map] ky  <[i:=x]> m, f k y)  f i x  [ map] ky  m, f k y.
  Proof. intros ?. by rewrite /big_opM map_to_list_insert. Qed.

  Lemma big_opM_delete f m i x :
    m !! i = Some x 
    ([ map] ky  m, f k y)  f i x  [ map] ky  delete i m, f k y.
  Proof.
    intros. rewrite -big_opM_insert ?lookup_delete //.
    by rewrite insert_delete insert_id.
  Qed.

  Lemma big_opM_lookup f m i x :
    m !! i = Some x  f i x  [ map] ky  m, f k y.
  Proof. intros. rewrite big_opM_delete //. apply cmra_included_l. Qed.

  Lemma big_opM_singleton f i x : ([ map] ky  {[i:=x]}, f k y)  f i x.
  Proof.
    rewrite -insert_empty big_opM_insert/=; last auto using lookup_empty.
    by rewrite big_opM_empty right_id.
  Qed.

  Lemma big_opM_fmap {B} (h : A  B) (f : K  B  M) m :
    ([ map] ky  h <$> m, f k y)  ([ map] ky  m, f k (h y)).
  Proof.
    rewrite /big_opM map_to_list_fmap -list_fmap_compose.
    f_equiv; apply reflexive_eq, list_fmap_ext. by intros []. done.
  Qed.

  Lemma big_opM_insert_override (f : K  M) m i x y :
    m !! i = Some x 
    ([ map] k_  <[i:=y]> m, f k)  ([ map] k_  m, f k).
  Proof.
    intros. rewrite -insert_delete big_opM_insert ?lookup_delete //.
    by rewrite -big_opM_delete.
  Qed.

  Lemma big_opM_fn_insert {B} (g : K  A  B  M) (f : K  B) m i (x : A) b :
    m !! i = None 
      ([ map] ky  <[i:=x]> m, g k y (<[i:=b]> f k))
     (g i x b  [ map] ky  m, g k y (f k)).
  Proof.
    intros. rewrite big_opM_insert // fn_lookup_insert.
    apply cmra_op_proper', big_opM_proper; auto=> k y ?.
    by rewrite fn_lookup_insert_ne; last set_solver.
  Qed.
  Lemma big_opM_fn_insert' (f : K  M) m i x P :
    m !! i = None 
    ([ map] ky  <[i:=x]> m, <[i:=P]> f k)  (P  [ map] ky  m, f k).
  Proof. apply (big_opM_fn_insert (λ _ _, id)). Qed.

  Lemma big_opM_opM f g m :
       ([ map] kx  m, f k x  g k x)
     ([ map] kx  m, f k x)  ([ map] kx  m, g k x).
  Proof.
    rewrite /big_opM.
    induction (map_to_list m) as [|[i x] l IH]; csimpl; rewrite ?right_id //.
    by rewrite IH -!assoc (assoc _ (g _ _)) [(g _ _  _)]comm -!assoc.
  Qed.
End gmap.


(** ** Big ops over finite sets *)
Section gset.
  Context `{Countable A}.
  Implicit Types X : gset A.
  Implicit Types f : A  M.

323
324
325
326
327
328
329
330
331
  Lemma big_opS_forall R f g X :
    Reflexive R  Proper (R ==> R ==> R) (@op M _) 
    ( x, x  X  R (f x) (g x)) 
    R ([ set] x  X, f x) ([ set] x  X, g x).
  Proof.
    intros ?? Hf. apply (big_op_Forall2 R _ _), Forall2_fmap, Forall_Forall2.
    apply Forall_forall=> x ? /=. by apply Hf, elem_of_elements.
  Qed.

332
333
334
335
336
337
  Lemma big_opS_mono f g X Y :
    X  Y  ( x, x  Y  f x  g x) 
    ([ set] x  X, f x)  [ set] x  Y, g x.
  Proof.
    intros HX Hf. trans ([ set] x  Y, f x).
    - by apply big_op_contains, fmap_contains, elements_contains.
338
    - apply big_opS_forall; apply _ || auto.
339
  Qed.
340
341
342
343
344
345
346
347
  Lemma big_opS_ext f g X :
    ( x, x  X  f x = g x) 
    ([ set] x  X, f x) = ([ set] x  X, g x).
  Proof. apply big_opS_forall; apply _. Qed.
  Lemma big_opS_proper f g X :
    ( x, x  X  f x  g x) 
    ([ set] x  X, f x)  ([ set] x  X, g x).
  Proof. apply big_opS_forall; apply _. Qed.
348
349
350

  Lemma big_opS_ne X n :
    Proper (pointwise_relation _ (dist n) ==> dist n) (big_opS (M:=M) X).
351
  Proof. intros f g Hf. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
352
353
  Lemma big_opS_proper' X :
    Proper (pointwise_relation _ () ==> ()) (big_opS (M:=M) X).
354
  Proof. intros f g Hf. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
355
356
  Lemma big_opS_mono' X :
    Proper (pointwise_relation _ () ==> ()) (big_opS (M:=M) X).
357
  Proof. intros f g Hf. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
358
359
360
361
362
363
364
365
366
367
368
369
370

  Lemma big_opS_empty f : ([ set] x  , f x) = .
  Proof. by rewrite /big_opS elements_empty. Qed.

  Lemma big_opS_insert f X x :
    x  X  ([ set] y  {[ x ]}  X, f y)  (f x  [ set] y  X, f y).
  Proof. intros. by rewrite /big_opS elements_union_singleton. Qed.
  Lemma big_opS_fn_insert {B} (f : A  B  M) h X x b :
    x  X 
       ([ set] y  {[ x ]}  X, f y (<[x:=b]> h y))
     (f x b  [ set] y  X, f y (h y)).
  Proof.
    intros. rewrite big_opS_insert // fn_lookup_insert.
371
    apply cmra_op_proper', big_opS_proper; auto=> y ?.
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    by rewrite fn_lookup_insert_ne; last set_solver.
  Qed.
  Lemma big_opS_fn_insert' f X x P :
    x  X  ([ set] y  {[ x ]}  X, <[x:=P]> f y)  (P  [ set] y  X, f y).
  Proof. apply (big_opS_fn_insert (λ y, id)). Qed.

  Lemma big_opS_delete f X x :
    x  X  ([ set] y  X, f y)  f x  [ set] y  X  {[ x ]}, f y.
  Proof.
    intros. rewrite -big_opS_insert; last set_solver.
    by rewrite -union_difference_L; last set_solver.
  Qed.

  Lemma big_opS_elem_of f X x : x  X  f x  [ set] y  X, f y.
  Proof. intros. rewrite big_opS_delete //. apply cmra_included_l. Qed.

  Lemma big_opS_singleton f x : ([ set] y  {[ x ]}, f y)  f x.
  Proof. intros. by rewrite /big_opS elements_singleton /= right_id. Qed.

  Lemma big_opS_opS f g X :
    ([ set] y  X, f y  g y)  ([ set] y  X, f y)  ([ set] y  X, g y).
  Proof.
    rewrite /big_opS.
    induction (elements X) as [|x l IH]; csimpl; first by rewrite ?right_id.
    by rewrite IH -!assoc (assoc _ (g _)) [(g _  _)]comm -!assoc.
  Qed.
End gset.
Robbert Krebbers's avatar
Robbert Krebbers committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462


(** ** Big ops over finite msets *)
Section gmultiset.
  Context `{Countable A}.
  Implicit Types X : gmultiset A.
  Implicit Types f : A  M.

  Lemma big_opMS_forall R f g X :
    Reflexive R  Proper (R ==> R ==> R) (@op M _) 
    ( x, x  X  R (f x) (g x)) 
    R ([ mset] x  X, f x) ([ mset] x  X, g x).
  Proof.
    intros ?? Hf. apply (big_op_Forall2 R _ _), Forall2_fmap, Forall_Forall2.
    apply Forall_forall=> x ? /=. by apply Hf, gmultiset_elem_of_elements.
  Qed.

  Lemma big_opMS_mono f g X Y :
    X  Y  ( x, x  Y  f x  g x) 
    ([ mset] x  X, f x)  [ mset] x  Y, g x.
  Proof.
    intros HX Hf. trans ([ mset] x  Y, f x).
    - by apply big_op_contains, fmap_contains, gmultiset_elements_contains.
    - apply big_opMS_forall; apply _ || auto.
  Qed.
  Lemma big_opMS_ext f g X :
    ( x, x  X  f x = g x) 
    ([ mset] x  X, f x) = ([ mset] x  X, g x).
  Proof. apply big_opMS_forall; apply _. Qed.
  Lemma big_opMS_proper f g X :
    ( x, x  X  f x  g x) 
    ([ mset] x  X, f x)  ([ mset] x  X, g x).
  Proof. apply big_opMS_forall; apply _. Qed.

  Lemma big_opMS_ne X n :
    Proper (pointwise_relation _ (dist n) ==> dist n) (big_opMS (M:=M) X).
  Proof. intros f g Hf. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.
  Lemma big_opMS_proper' X :
    Proper (pointwise_relation _ () ==> ()) (big_opMS (M:=M) X).
  Proof. intros f g Hf. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.
  Lemma big_opMS_mono' X :
    Proper (pointwise_relation _ () ==> ()) (big_opMS (M:=M) X).
  Proof. intros f g Hf. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.

  Lemma big_opMS_empty f : ([ mset] x  , f x) = .
  Proof. by rewrite /big_opMS gmultiset_elements_empty. Qed.

  Lemma big_opMS_union f X Y :
    ([ mset] y  X  Y, f y)  ([ mset] y  X, f y)  [ mset] y  Y, f y.
  Proof. by rewrite /big_opMS gmultiset_elements_union fmap_app big_op_app. Qed.

  Lemma big_opMS_singleton f x : ([ mset] y  {[ x ]}, f y)  f x.
  Proof.
    intros. by rewrite /big_opMS gmultiset_elements_singleton /= right_id.
  Qed.

  Lemma big_opMS_opS f g X :
    ([ mset] y  X, f y  g y)  ([ mset] y  X, f y)  ([ mset] y  X, g y).
  Proof.
    rewrite /big_opMS.
    induction (elements X) as [|x l IH]; csimpl; first by rewrite ?right_id.
    by rewrite IH -!assoc (assoc _ (g _)) [(g _  _)]comm -!assoc.
  Qed.
End gmultiset.
463
End big_op.
464

Robbert Krebbers's avatar
Robbert Krebbers committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
(** Option *)
Lemma big_opL_None {M : cmraT} {A} (f : nat  A  option M) l :
  ([ list] kx  l, f k x) = None   k x, l !! k = Some x  f k x = None.
Proof.
  revert f. induction l as [|x l IH]=> f //=.
  rewrite big_opL_cons op_None IH. split.
  - intros [??] [|k] y ?; naive_solver.
  - intros Hl. split. by apply (Hl 0). intros k. apply (Hl (S k)).
Qed.
Lemma big_opM_None {M : cmraT} `{Countable K} {A} (f : K  A  option M) m :
  ([ map] kx  m, f k x) = None   k x, m !! k = Some x  f k x = None.
Proof.
  induction m as [|i x m ? IH] using map_ind=> //=.
  rewrite -equiv_None big_opM_insert // equiv_None op_None IH. split.
  { intros [??] k y. rewrite lookup_insert_Some; naive_solver. }
  intros Hm; split.
  - apply (Hm i). by simplify_map_eq.
  - intros k y ?. apply (Hm k). by simplify_map_eq.
Qed.
Lemma big_opS_None {M : cmraT} `{Countable A} (f : A  option M) X :
  ([ set] x  X, f x) = None   x, x  X  f x = None.
Proof.
  induction X as [|x X ? IH] using collection_ind_L; [done|].
  rewrite -equiv_None big_opS_insert // equiv_None op_None IH. set_solver.
Qed.

(** Commuting with respect to homomorphisms *)
492
Lemma big_opL_commute {M1 M2 : ucmraT} {A} (h : M1  M2)
493
    `{!UCMRAHomomorphism h} (f : nat  A  M1) l :
494
495
  h ([ list] kx  l, f k x)  ([ list] kx  l, h (f k x)).
Proof.
496
497
498
  revert f. induction l as [|x l IH]=> f.
  - by rewrite !big_opL_nil ucmra_homomorphism_unit.
  - by rewrite !big_opL_cons cmra_homomorphism -IH.
499
500
Qed.
Lemma big_opL_commute1 {M1 M2 : ucmraT} {A} (h : M1  M2)
501
502
    `{!CMRAHomomorphism h} (f : nat  A  M1) l :
  l  []  h ([ list] kx  l, f k x)  ([ list] kx  l, h (f k x)).
503
Proof.
504
  intros ?. revert f. induction l as [|x [|x' l'] IH]=> f //.
505
  - by rewrite !big_opL_singleton.
506
  - by rewrite !(big_opL_cons _ x) cmra_homomorphism -IH.
507
508
509
Qed.

Lemma big_opM_commute {M1 M2 : ucmraT} `{Countable K} {A} (h : M1  M2)
510
    `{!UCMRAHomomorphism h} (f : K  A  M1) m :
511
512
  h ([ map] kx  m, f k x)  ([ map] kx  m, h (f k x)).
Proof.
513
514
515
  intros. induction m as [|i x m ? IH] using map_ind.
  - by rewrite !big_opM_empty ucmra_homomorphism_unit.
  - by rewrite !big_opM_insert // cmra_homomorphism -IH.
516
517
Qed.
Lemma big_opM_commute1 {M1 M2 : ucmraT} `{Countable K} {A} (h : M1  M2)
518
519
    `{!CMRAHomomorphism h} (f : K  A  M1) m :
  m    h ([ map] kx  m, f k x)  ([ map] kx  m, h (f k x)).
520
Proof.
521
522
523
524
  intros. induction m as [|i x m ? IH] using map_ind; [done|].
  destruct (decide (m = )) as [->|].
  - by rewrite !big_opM_insert // !big_opM_empty !right_id.
  - by rewrite !big_opM_insert // cmra_homomorphism -IH //.
525
526
Qed.

527
528
Lemma big_opS_commute {M1 M2 : ucmraT} `{Countable A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : A  M1) X :
529
530
  h ([ set] x  X, f x)  ([ set] x  X, h (f x)).
Proof.
531
532
533
  intros. induction X as [|x X ? IH] using collection_ind_L.
  - by rewrite !big_opS_empty ucmra_homomorphism_unit.
  - by rewrite !big_opS_insert // cmra_homomorphism -IH.
534
Qed.
535
536
537
Lemma big_opS_commute1 {M1 M2 : ucmraT} `{Countable A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : A  M1) X :
  X    h ([ set] x  X, f x)  ([ set] x  X, h (f x)).
538
Proof.
539
540
541
542
  intros. induction X as [|x X ? IH] using collection_ind_L; [done|].
  destruct (decide (X = )) as [->|].
  - by rewrite !big_opS_insert // !big_opS_empty !right_id.
  - by rewrite !big_opS_insert // cmra_homomorphism -IH //.
543
Qed.
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

Lemma big_opL_commute_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2} {A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : nat  A  M1) l :
  h ([ list] kx  l, f k x) = ([ list] kx  l, h (f k x)).
Proof. unfold_leibniz. by apply big_opL_commute. Qed.
Lemma big_opL_commute1_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2} {A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : nat  A  M1) l :
  l  []  h ([ list] kx  l, f k x) = ([ list] kx  l, h (f k x)).
Proof. unfold_leibniz. by apply big_opL_commute1. Qed.

Lemma big_opM_commute_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable K} {A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : K  A  M1) m :
  h ([ map] kx  m, f k x) = ([ map] kx  m, h (f k x)).
Proof. unfold_leibniz. by apply big_opM_commute. Qed.
Lemma big_opM_commute1_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable K} {A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : K  A  M1) m :
  m    h ([ map] kx  m, f k x) = ([ map] kx  m, h (f k x)).
Proof. unfold_leibniz. by apply big_opM_commute1. Qed.

Lemma big_opS_commute_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : A  M1) X :
  h ([ set] x  X, f x) = ([ set] x  X, h (f x)).
Proof. unfold_leibniz. by apply big_opS_commute. Qed.
Lemma big_opS_commute1_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : A  M1) X :
  X    h ([ set] x  X, f x) = ([ set] x  X, h (f x)).
Proof. intros. rewrite <-leibniz_equiv_iff. by apply big_opS_commute1. Qed.