barrier.v 17.3 KB
Newer Older
1
From algebra Require Export upred_big_op.
2
From program_logic Require Export sts saved_prop.
3
From program_logic Require Import hoare.
4
From heap_lang Require Export derived heap wp_tactics notation.
Ralf Jung's avatar
Ralf Jung committed
5
Import uPred.
6
7
8

Definition newchan := (λ: "", ref '0)%L.
Definition signal := (λ: "x", "x" <- '1)%L.
9
Definition wait := (rec: "wait" "x" :=if: !"x" = '1 then '() else "wait" "x")%L.
10

11
12
13
(** The STS describing the main barrier protocol. Every state has an index-set
    associated with it. These indices are actually [gname], because we use them
    with saved propositions. *)
14
Module barrier_proto.
15
16
  Inductive phase := Low | High.
  Record stateT := State { state_phase : phase; state_I : gset gname }.
17
18
  Inductive token := Change (i : gname) | Send.

19
20
21
  Global Instance stateT_inhabited: Inhabited stateT.
  Proof. split. exact (State Low ). Qed.

22
  Definition change_tokens (I : gset gname) : set token :=
Ralf Jung's avatar
Ralf Jung committed
23
    mkSet (λ t, match t with Change i => i  I | Send => False end).
24

25
26
27
  Inductive trans : relation stateT :=
  | ChangeI p I2 I1 : trans (State p I1) (State p I2)
  | ChangePhase I : trans (State Low I) (State High I).
28

29
30
31
  Definition tok (s : stateT) : set token :=
      change_tokens (state_I s)
     match state_phase s with Low =>  | High => {[ Send ]} end.
32

Robbert Krebbers's avatar
Robbert Krebbers committed
33
  Canonical Structure sts := sts.STS trans tok.
34

35
  (* The set of states containing some particular i *)
36
37
38
39
  Definition i_states (i : gname) : set stateT :=
    mkSet (λ s, i  state_I s).

  Lemma i_states_closed i :
Robbert Krebbers's avatar
Robbert Krebbers committed
40
    sts.closed (i_states i) {[ Change i ]}.
41
42
  Proof.
    split.
43
    - apply (non_empty_inhabited(State Low {[ i ]})). rewrite !mkSet_elem_of /=.
Ralf Jung's avatar
Ralf Jung committed
44
45
46
47
48
      apply lookup_singleton.
    - move=>[p I]. rewrite /= /tok !mkSet_elem_of /= =>HI.
      move=>s' /elem_of_intersection. rewrite !mkSet_elem_of /=.
      move=>[[Htok|Htok] ? ]; subst s'; first done.
      destruct p; done.
49
50
51
52
53
    - (* If we do the destruct of the states early, and then inversion
         on the proof of a transition, it doesn't work - we do not obtain
         the equalities we need. So we destruct the states late, because this
         means we can use "destruct" instead of "inversion". *)
      move=>s1 s2. rewrite !mkSet_elem_of /==> Hs1 Hstep.
Ralf Jung's avatar
Ralf Jung committed
54
55
      (* We probably want some helper lemmas for this... *)
      inversion_clear Hstep as [T1 T2 Hdisj Hstep'].
56
57
      inversion_clear Hstep' as [? ? ? ? Htrans _ _ Htok].
      destruct Htrans; last done; move:Hs1 Hdisj Htok.
Ralf Jung's avatar
Ralf Jung committed
58
59
60
      rewrite /= /tok /=.
      intros. apply dec_stable. 
      assert (Change i  change_tokens I1) as HI1
61
        by (rewrite mkSet_not_elem_of; set_solver +Hs1).
Ralf Jung's avatar
Ralf Jung committed
62
63
      assert (Change i  change_tokens I2) as HI2.
      { destruct p.
64
65
        - set_solver +Htok Hdisj HI1.
        - set_solver +Htok Hdisj HI1 / discriminate. }
Ralf Jung's avatar
Ralf Jung committed
66
67
      done.
  Qed.
68
69
70
71

  (* The set of low states *)
  Definition low_states : set stateT :=
    mkSet (λ s, if state_phase s is Low then True else False).
72
73

  Lemma low_states_closed : sts.closed low_states {[ Send ]}.
74
75
76
77
  Proof.
    split.
    - apply (non_empty_inhabited(State Low )). by rewrite !mkSet_elem_of /=.
    - move=>[p I]. rewrite /= /tok !mkSet_elem_of /= =>HI.
78
      destruct p; last done. set_solver.
79
80
81
82
83
    - move=>s1 s2. rewrite !mkSet_elem_of /==> Hs1 Hstep.
      inversion_clear Hstep as [T1 T2 Hdisj Hstep'].
      inversion_clear Hstep' as [? ? ? ? Htrans _ _ Htok].
      destruct Htrans; move:Hs1 Hdisj Htok =>/=;
                                first by destruct p.
84
      rewrite /= /tok /=. intros. set_solver +Hdisj Htok.
85
86
  Qed.

87
End barrier_proto.
88
89
90
91
92
93
(* I am too lazy to type the full module name all the time. But then
   why did we even put this into a module? Because some of the names 
   are so general.
   What we'd really like here is to import *some* of the names from
   the module into our namespaces. But Coq doesn't seem to support that...?? *)
Import barrier_proto.
94

95
96
97
(** Now we come to the Iris part of the proof. *)
Section proof.
  Context {Σ : iFunctorG} (N : namespace).
Ralf Jung's avatar
Ralf Jung committed
98
  Context `{heapG Σ} (heapN : namespace).
99
100
  Context `{stsG heap_lang Σ sts}.
  Context `{savedPropG heap_lang Σ}.
Ralf Jung's avatar
Ralf Jung committed
101

Ralf Jung's avatar
Ralf Jung committed
102
103
  Local Hint Immediate i_states_closed low_states_closed.

104
  Local Notation iProp := (iPropG heap_lang Σ).
105
106

  Definition waiting (P : iProp) (I : gset gname) : iProp :=
107
108
    ( Ψ : gname  iProp, (P - Π★{set I} (λ i, Ψ i)) 
                             Π★{set I} (λ i, saved_prop_own i (Ψ i)))%I.
109
110

  Definition ress (I : gset gname) : iProp :=
111
    (Π★{set I} (λ i,  R, saved_prop_own i R  R))%I.
112

113
114
  Local Notation state_to_val s :=
    (match s with State Low _ => 0 | State High _ => 1 end).
115
  Definition barrier_inv (l : loc) (P : iProp) (s : stateT) : iProp :=
116
    (l  '(state_to_val s) 
117
118
     match s with State Low I' => waiting P I' | State High I' => ress I' end
    )%I.
119
120

  Definition barrier_ctx (γ : gname) (l : loc) (P : iProp) : iProp :=
Ralf Jung's avatar
Ralf Jung committed
121
    (heap_ctx heapN  sts_ctx γ N (barrier_inv l P))%I.
122

123
124
125
126
127
128
129
  Global Instance barrier_ctx_ne n γ l : Proper (dist n ==> dist n) (barrier_ctx γ l).
  Proof.
    move=>? ? EQ. rewrite /barrier_ctx. apply sep_ne; first done. apply sts_ctx_ne.
    move=>[p I]. rewrite /barrier_inv. destruct p; last done.
    rewrite /waiting. by setoid_rewrite EQ.
  Qed.

130
  Definition send (l : loc) (P : iProp) : iProp :=
131
    ( γ, barrier_ctx γ l P  sts_ownS γ low_states {[ Send ]})%I.
132

133
134
135
136
137
  Global Instance send_ne n l : Proper (dist n ==> dist n) (send l).
  Proof. (* TODO: This really ought to be doable by an automatic tactic. it is just application of already regostered congruence lemmas. *)
    move=>? ? EQ. rewrite /send. apply exist_ne=>γ. by rewrite EQ.
  Qed.

138
  Definition recv (l : loc) (R : iProp) : iProp :=
139
    ( γ P Q i, barrier_ctx γ l P  sts_ownS γ (i_states i) {[ Change i ]} 
140
141
        saved_prop_own i Q  (Q - R))%I.

142
143
144
145
146
  Global Instance recv_ne n l : Proper (dist n ==> dist n) (recv l).
  Proof.
    move=>? ? EQ. rewrite /send. do 4 apply exist_ne=>?. by rewrite EQ.
  Qed.

147
148
  Lemma newchan_spec (P : iProp) (Φ : val  iProp) :
    (heap_ctx heapN   l, recv l P  send l P - Φ (LocV l))
149
     || newchan '() {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
150
  Proof.
151
    rewrite /newchan. wp_seq.
152
    rewrite -wp_pvs. wp eapply wp_alloc; eauto with I ndisj.
Ralf Jung's avatar
Ralf Jung committed
153
154
155
156
157
158
159
    apply forall_intro=>l. rewrite (forall_elim l). apply wand_intro_l.
    rewrite !assoc. apply pvs_wand_r.
    (* The core of this proof: Allocating the STS and the saved prop. *)
    eapply sep_elim_True_r.
    { by eapply (saved_prop_alloc _ P). }
    rewrite pvs_frame_l. apply pvs_strip_pvs. rewrite sep_exist_l.
    apply exist_elim=>i.
160
    trans (pvs   (heap_ctx heapN   (barrier_inv l P (State Low {[ i ]}))   saved_prop_own i P)).
Ralf Jung's avatar
Ralf Jung committed
161
162
163
164
165
166
    - rewrite -pvs_intro. rewrite [(_  heap_ctx _)%I]comm -!assoc. apply sep_mono_r.
      rewrite {1}[saved_prop_own _ _]always_sep_dup !assoc. apply sep_mono_l.
      rewrite /barrier_inv /waiting -later_intro. apply sep_mono_r.
      rewrite -(exist_intro (const P)) /=. rewrite -[saved_prop_own _ _](left_id True%I ()%I).
      apply sep_mono.
      + rewrite -later_intro. apply wand_intro_l. rewrite right_id.
Ralf Jung's avatar
Ralf Jung committed
167
168
        by rewrite big_sepS_singleton.
      + by rewrite big_sepS_singleton.
Ralf Jung's avatar
Ralf Jung committed
169
170
171
172
    - rewrite (sts_alloc (barrier_inv l P)  N); last by eauto.
      rewrite !pvs_frame_r !pvs_frame_l. 
      rewrite pvs_trans'. apply pvs_strip_pvs. rewrite sep_exist_r sep_exist_l.
      apply exist_elim=>γ.
Ralf Jung's avatar
Ralf Jung committed
173
174
175
176
      (* TODO: The record notation is rather annoying here *)
      rewrite /recv /send. rewrite -(exist_intro γ) -(exist_intro P).
      rewrite -(exist_intro P) -(exist_intro i) -(exist_intro γ).
      (* This is even more annoying than usually, since rewrite sometimes unfolds stuff... *)
Ralf Jung's avatar
Ralf Jung committed
177
      rewrite [barrier_ctx _ _ _]lock !assoc [(_ locked _)%I]comm !assoc -lock.
Ralf Jung's avatar
Ralf Jung committed
178
      rewrite -always_sep_dup.
Ralf Jung's avatar
Ralf Jung committed
179
180
      rewrite [barrier_ctx _ _ _]lock always_and_sep_l -!assoc assoc -lock.
      rewrite -pvs_frame_l. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
181
182
      rewrite [(saved_prop_own _ _  _)%I]comm !assoc. rewrite -pvs_frame_r.
      apply sep_mono_l.
Ralf Jung's avatar
Ralf Jung committed
183
184
185
      rewrite -assoc [( _  _)%I]comm assoc -pvs_frame_r.
      eapply sep_elim_True_r; last eapply sep_mono_l.
      { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
Ralf Jung's avatar
Ralf Jung committed
186
187
      rewrite (sts_own_weaken  _ _ (i_states i  low_states) _ 
                              ({[ Change i ]}  {[ Send ]})).
Ralf Jung's avatar
Ralf Jung committed
188
      + apply pvs_mono. rewrite sts_ownS_op; eauto; []. set_solver.
Ralf Jung's avatar
Ralf Jung committed
189
      (* TODO the rest of this proof is rather annoying. *)
Ralf Jung's avatar
Ralf Jung committed
190
191
      + rewrite /= /tok /=. apply elem_of_equiv=>t.
        rewrite elem_of_difference elem_of_union.
Ralf Jung's avatar
Ralf Jung committed
192
        rewrite !mkSet_elem_of /change_tokens.
193
        (* TODO: destruct t; set_solver does not work. What is the best way to do on? *)
Ralf Jung's avatar
Ralf Jung committed
194
195
        destruct t as [i'|]; last by naive_solver. split.
        * move=>[_ Hn]. left. destruct (decide (i = i')); first by subst i.
196
197
198
          exfalso. apply Hn. left. set_solver.
        * move=>[[EQ]|?]; last discriminate. set_solver. 
      + apply elem_of_intersection. rewrite !mkSet_elem_of /=. set_solver.
Ralf Jung's avatar
Ralf Jung committed
199
      + apply sts.closed_op; eauto; first set_solver; [].
Ralf Jung's avatar
Ralf Jung committed
200
201
        apply (non_empty_inhabited (State Low {[ i ]})).
        apply elem_of_intersection.
Ralf Jung's avatar
Ralf Jung committed
202
        rewrite !mkSet_elem_of /=. set_solver.
Ralf Jung's avatar
Ralf Jung committed
203
  Qed.
Ralf Jung's avatar
Ralf Jung committed
204

205
  Lemma signal_spec l P (Φ : val  iProp) :
206
    heapN  N  (send l P  P  Φ '())  || signal (LocV l) {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
207
  Proof.
208
    intros Hdisj. rewrite /signal /send /barrier_ctx. rewrite sep_exist_r.
209
    apply exist_elim=>γ. wp_let.
Ralf Jung's avatar
Ralf Jung committed
210
    (* I think some evars here are better than repeating *everything* *)
211
212
    eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl;
      eauto with I ndisj.
213
    rewrite [(_  sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
214
215
216
    apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc.
    apply const_elim_sep_l=>Hs. destruct p; last done.
    rewrite {1}/barrier_inv =>/={Hs}. rewrite later_sep.
217
218
    eapply wp_store; eauto with I ndisj. 
    rewrite -!assoc. apply sep_mono_r. u_strip_later.
Ralf Jung's avatar
Ralf Jung committed
219
220
    apply wand_intro_l. rewrite -(exist_intro (State High I)).
    rewrite -(exist_intro ). rewrite const_equiv /=; last first.
Ralf Jung's avatar
Ralf Jung committed
221
222
    { apply rtc_once. constructor; first constructor;
                        rewrite /= /tok /=; set_solver. }
Ralf Jung's avatar
Ralf Jung committed
223
224
225
226
    rewrite left_id -later_intro {2}/barrier_inv -!assoc. apply sep_mono_r.
    rewrite !assoc [(_  P)%I]comm !assoc -2!assoc.
    apply sep_mono; last first.
    { apply wand_intro_l. eauto with I. }
Ralf Jung's avatar
Ralf Jung committed
227
    (* Now we come to the core of the proof: Updating from waiting to ress. *)
228
    rewrite /waiting /ress sep_exist_l. apply exist_elim=>{Φ} Φ.
Ralf Jung's avatar
Ralf Jung committed
229
    rewrite later_wand {1}(later_intro P) !assoc wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
230
    rewrite big_sepS_later -big_sepS_sepS. apply big_sepS_mono'=>i.
231
    rewrite -(exist_intro (Φ i)) comm. done.
Ralf Jung's avatar
Ralf Jung committed
232
  Qed.
Ralf Jung's avatar
Ralf Jung committed
233

234
  Lemma wait_spec l P (Φ : val  iProp) :
235
    heapN  N  (recv l P  (P - Φ '()))  || wait (LocV l) {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
236
  Proof.
Ralf Jung's avatar
Ralf Jung committed
237
    rename P into R. intros Hdisj. wp_rec.
Ralf Jung's avatar
Ralf Jung committed
238
239
240
    rewrite {1}/recv /barrier_ctx. rewrite !sep_exist_r.
    apply exist_elim=>γ. rewrite !sep_exist_r. apply exist_elim=>P.
    rewrite !sep_exist_r. apply exist_elim=>Q. rewrite !sep_exist_r.
Ralf Jung's avatar
Ralf Jung committed
241
    apply exist_elim=>i. wp_focus (! _)%L.
Ralf Jung's avatar
Ralf Jung committed
242
243
244
    (* I think some evars here are better than repeating *everything* *)
    eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl;
      eauto with I ndisj.
245
    rewrite !assoc [(_  sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
246
    apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc.
Ralf Jung's avatar
Ralf Jung committed
247
248
249
    apply const_elim_sep_l=>Hs.
    rewrite {1}/barrier_inv =>/=. rewrite later_sep.
    eapply wp_load; eauto with I ndisj.
250
    rewrite -!assoc. apply sep_mono_r. u_strip_later.
Ralf Jung's avatar
Ralf Jung committed
251
252
253
254
255
256
    apply wand_intro_l. destruct p.
    { (* a Low state. The comparison fails, and we recurse. *)
      rewrite -(exist_intro (State Low I)) -(exist_intro {[ Change i ]}).
      rewrite const_equiv /=; last by apply rtc_refl.
      rewrite left_id -[( barrier_inv _ _ _)%I]later_intro {3}/barrier_inv.
      rewrite -!assoc. apply sep_mono_r, sep_mono_r, wand_intro_l.
257
      wp_op; first done. intros _. wp_if. rewrite !assoc.
258
      rewrite -always_wand_impl always_elim.
Ralf Jung's avatar
Ralf Jung committed
259
      rewrite -{2}pvs_wp. apply pvs_wand_r.
Ralf Jung's avatar
Ralf Jung committed
260
      rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro Q) -(exist_intro i).
261
262
      rewrite !assoc.
      do 3 (rewrite -pvs_frame_r; apply sep_mono; last (try apply later_intro; reflexivity)).
Ralf Jung's avatar
Ralf Jung committed
263
264
265
266
267
      rewrite [(_  heap_ctx _)%I]comm -!assoc -pvs_frame_l. apply sep_mono_r.
      rewrite comm -pvs_frame_l. apply sep_mono_r.
      apply sts_ownS_weaken; eauto using sts.up_subseteq. }
    (* a High state: the comparison succeeds, and we perform a transition and
       return to the client *)
268
    rewrite [(_   (_  _ ))%I]sep_elim_l.
Ralf Jung's avatar
Ralf Jung committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    rewrite -(exist_intro (State High (I  {[ i ]}))) -(exist_intro ).
    change (i  I) in Hs.
    rewrite const_equiv /=; last first.
    { apply rtc_once. constructor; first constructor; rewrite /= /tok /=; [set_solver..|].
      (* TODO this proof is rather annoying. *)
      apply elem_of_equiv=>t. rewrite !elem_of_union.
      rewrite !mkSet_elem_of /change_tokens /=.
      destruct t as [j|]; last naive_solver.
      rewrite elem_of_difference elem_of_singleton.
      destruct (decide (i = j)); naive_solver. }
    rewrite left_id -[( barrier_inv _ _ _)%I]later_intro {2}/barrier_inv.
    rewrite -!assoc. apply sep_mono_r. rewrite /ress.
    rewrite (big_sepS_delete _ I i) // [(_  Π★{set _} _)%I]comm -!assoc.
    apply sep_mono_r. rewrite !sep_exist_r. apply exist_elim=>Q'.
    apply wand_intro_l. rewrite [(heap_ctx _  _)%I]sep_elim_r.
    rewrite [(sts_own _ _ _  _)%I]sep_elim_r [(sts_ctx _ _ _  _)%I]sep_elim_r.
    rewrite !assoc [(_  saved_prop_own i Q)%I]comm !assoc saved_prop_agree.
286
    wp_op>; last done. intros _. u_strip_later.
287
    wp_if. 
Ralf Jung's avatar
Ralf Jung committed
288
289
290
291
    eapply wand_apply_r; [done..|]. eapply wand_apply_r; [done..|].
    apply: (eq_rewrite Q' Q (λ x, x)%I); last by eauto with I.
    rewrite eq_sym. eauto with I.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
292

Ralf Jung's avatar
Ralf Jung committed
293
  Lemma recv_split l P1 P2 Φ :
294
    (recv l (P1  P2)  (recv l P1  recv l P2 - Φ '()))  || Skip {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
295
  Proof.
Ralf Jung's avatar
Ralf Jung committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    rename P1 into R1. rename P2 into R2.
    rewrite {1}/recv /barrier_ctx. rewrite sep_exist_r.
    apply exist_elim=>γ. rewrite sep_exist_r.  apply exist_elim=>P. 
    rewrite sep_exist_r.  apply exist_elim=>Q. rewrite sep_exist_r.
    apply exist_elim=>i.
    (* I think some evars here are better than repeating *everything* *)
    eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl;
      eauto with I ndisj.
    rewrite [(_  sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r.
    apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc.
    apply const_elim_sep_l=>Hs. destruct p; last done.
    rewrite {1}/barrier_inv =>/={Hs}. rewrite later_sep.
    eapply wp_store; eauto with I ndisj. 
    rewrite -!assoc. apply sep_mono_r. u_strip_later.
    apply wand_intro_l. rewrite -(exist_intro (State High I)).
    rewrite -(exist_intro ). rewrite const_equiv /=; last first.
    { apply rtc_once. constructor; first constructor;
                        rewrite /= /tok /=; set_solver. }
    rewrite left_id -later_intro {2}/barrier_inv -!assoc. apply sep_mono_r.
    rewrite !assoc [(_  P)%I]comm !assoc -2!assoc.
    apply sep_mono; last first.
    { apply wand_intro_l. eauto with I. }
    (* Now we come to the core of the proof: Updating from waiting to ress. *)
    rewrite /waiting /ress sep_exist_l. apply exist_elim=>{Φ} Φ.
    rewrite later_wand {1}(later_intro P) !assoc wand_elim_r.
    rewrite big_sepS_later -big_sepS_sepS. apply big_sepS_mono'=>i.
    rewrite -(exist_intro (Φ i)) comm. done.

Ralf Jung's avatar
Ralf Jung committed
324
325
326
327
328
  Abort.

  Lemma recv_strengthen l P1 P2 :
    (P1 - P2)  (recv l P1 - recv l P2).
  Proof.
Ralf Jung's avatar
Ralf Jung committed
329
330
331
332
333
334
335
    apply wand_intro_l. rewrite /recv. rewrite sep_exist_r. apply exist_mono=>γ.
    rewrite sep_exist_r. apply exist_mono=>P. rewrite sep_exist_r.
    apply exist_mono=>Q. rewrite sep_exist_r. apply exist_mono=>i.
    rewrite -!assoc. apply sep_mono_r, sep_mono_r, sep_mono_r, sep_mono_r.
    rewrite (later_intro (P1 - _)%I) -later_sep. apply later_mono.
    apply wand_intro_l. rewrite !assoc wand_elim_r wand_elim_r. done.
  Qed.
336
337

End proof.
338
339
340
341
342
343
344
345
346
347
348
349
350

Section spec.
  Context {Σ : iFunctorG}.
  Context `{heapG Σ}.
  Context `{stsG heap_lang Σ barrier_proto.sts}.
  Context `{savedPropG heap_lang Σ}.

  Local Notation iProp := (iPropG heap_lang Σ).

  (* TODO: Maybe notation for LocV (and Loc)? *)
  Lemma barrier_spec (heapN N : namespace) :
    heapN  N 
     (recv send : loc -> iProp -n> iProp),
351
352
353
354
      ( P, heap_ctx heapN  ({{ True }} newchan '() {{ λ v,  l, v = LocV l  recv l P  send l P }})) 
      ( l P, {{ send l P  P }} signal (LocV l) {{ λ _, True }}) 
      ( l P, {{ recv l P }} wait (LocV l) {{ λ _, P }}) 
      ( l P Q, {{ recv l (P  Q) }} Skip {{ λ _, recv l P  recv l Q }}) 
355
356
357
      ( l P Q, (P - Q)  (recv l P - recv l Q)).
  Proof.
    intros HN. exists (λ l, CofeMor (recv N heapN l)). exists (λ l, CofeMor (send N heapN l)).
358
    split_and?; cbn.
359
360
361
362
    - intros. apply: always_intro. apply impl_intro_l. rewrite -newchan_spec.
      rewrite comm always_and_sep_r. apply sep_mono_r. apply forall_intro=>l.
      apply wand_intro_l. rewrite right_id -(exist_intro l) const_equiv // left_id.
      done.
Ralf Jung's avatar
Ralf Jung committed
363
364
365
366
    - intros. apply ht_alt. rewrite -signal_spec; last done.
        by rewrite right_id.
    - intros. apply ht_alt. rewrite -wait_spec; last done.
      apply sep_intro_True_r; first done. apply wand_intro_l. eauto with I.
367
368
369
370
371
    - admit.
    - intros. apply recv_strengthen.
  Abort.

End spec.