barrier.v 24.4 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
From prelude Require Export functions.
2
From algebra Require Export upred_big_op upred_tactics.
3
From program_logic Require Export sts saved_prop.
4
From program_logic Require Import hoare.
5
From heap_lang Require Export derived heap wp_tactics notation.
Ralf Jung's avatar
Ralf Jung committed
6
Import uPred.
7
8
9

Definition newchan := (λ: "", ref '0)%L.
Definition signal := (λ: "x", "x" <- '1)%L.
10
Definition wait := (rec: "wait" "x" :=if: !"x" = '1 then '() else "wait" "x")%L.
11

12
13
14
(** The STS describing the main barrier protocol. Every state has an index-set
    associated with it. These indices are actually [gname], because we use them
    with saved propositions. *)
15
Module barrier_proto.
16
17
  Inductive phase := Low | High.
  Record stateT := State { state_phase : phase; state_I : gset gname }.
18
19
  Inductive token := Change (i : gname) | Send.

20
21
22
  Global Instance stateT_inhabited: Inhabited stateT.
  Proof. split. exact (State Low ). Qed.

23
  Definition change_tokens (I : gset gname) : set token :=
Ralf Jung's avatar
Ralf Jung committed
24
    mkSet (λ t, match t with Change i => i  I | Send => False end).
25

26
27
28
  Inductive trans : relation stateT :=
  | ChangeI p I2 I1 : trans (State p I1) (State p I2)
  | ChangePhase I : trans (State Low I) (State High I).
29

30
31
32
  Definition tok (s : stateT) : set token :=
      change_tokens (state_I s)
     match state_phase s with Low =>  | High => {[ Send ]} end.
33

Robbert Krebbers's avatar
Robbert Krebbers committed
34
  Canonical Structure sts := sts.STS trans tok.
35

36
  (* The set of states containing some particular i *)
37
38
39
40
  Definition i_states (i : gname) : set stateT :=
    mkSet (λ s, i  state_I s).

  Lemma i_states_closed i :
Robbert Krebbers's avatar
Robbert Krebbers committed
41
    sts.closed (i_states i) {[ Change i ]}.
42
43
  Proof.
    split.
Ralf Jung's avatar
Ralf Jung committed
44
    - move=>[p I]. rewrite /= /tok !mkSet_elem_of /= =>HI.
45
      destruct p; set_solver eauto.
46
47
48
49
50
    - (* If we do the destruct of the states early, and then inversion
         on the proof of a transition, it doesn't work - we do not obtain
         the equalities we need. So we destruct the states late, because this
         means we can use "destruct" instead of "inversion". *)
      move=>s1 s2. rewrite !mkSet_elem_of /==> Hs1 Hstep.
Ralf Jung's avatar
Ralf Jung committed
51
      inversion_clear Hstep as [T1 T2 Hdisj Hstep'].
52
53
      inversion_clear Hstep' as [? ? ? ? Htrans _ _ Htok].
      destruct Htrans; last done; move:Hs1 Hdisj Htok.
54
55
      rewrite /= /tok /=. 
      (* TODO: Can this be done better? *)
Ralf Jung's avatar
Ralf Jung committed
56
57
      intros. apply dec_stable. 
      assert (Change i  change_tokens I1) as HI1
58
        by (rewrite mkSet_not_elem_of; set_solver +Hs1).
Ralf Jung's avatar
Ralf Jung committed
59
      assert (Change i  change_tokens I2) as HI2.
60
      { destruct p; set_solver +Htok Hdisj HI1. }
Ralf Jung's avatar
Ralf Jung committed
61
62
      done.
  Qed.
63
64
65
66

  (* The set of low states *)
  Definition low_states : set stateT :=
    mkSet (λ s, if state_phase s is Low then True else False).
67
68

  Lemma low_states_closed : sts.closed low_states {[ Send ]}.
69
70
71
  Proof.
    split.
    - move=>[p I]. rewrite /= /tok !mkSet_elem_of /= =>HI.
72
      destruct p; set_solver.
73
74
75
76
77
    - move=>s1 s2. rewrite !mkSet_elem_of /==> Hs1 Hstep.
      inversion_clear Hstep as [T1 T2 Hdisj Hstep'].
      inversion_clear Hstep' as [? ? ? ? Htrans _ _ Htok].
      destruct Htrans; move:Hs1 Hdisj Htok =>/=;
                                first by destruct p.
78
      rewrite /= /tok /=. intros. set_solver +Hdisj Htok.
79
80
  Qed.

81
82
83
84
85
86
87
88
89
90
91
92
  (* Proof that we can take the steps we need. *)
  Lemma signal_step I:
    sts.steps (State Low I, {[Send]}) (State High I, ).
  Proof.
    apply rtc_once. constructor; first constructor;
                        rewrite /= /tok /=; set_solver.
  Qed.

  Lemma wait_step i I :
    i  I  sts.steps (State High I, {[ Change i ]}) (State High (I  {[ i ]}), ).
  Proof.
    intros. apply rtc_once.
93
    constructor; first constructor; rewrite /= /tok /=; [set_solver eauto..|].
94
95
96
    (* TODO this proof is rather annoying. *)
    apply elem_of_equiv=>t. rewrite !elem_of_union.
    rewrite !mkSet_elem_of /change_tokens /=.
97
    destruct t as [j|]; last set_solver.
98
    rewrite elem_of_difference elem_of_singleton.
99
    destruct (decide (i = j)); set_solver.
100
  Qed.
101

102
103
104
105
106
107
108
109
110
  Lemma split_step p i i1 i2 I :
    i  I  i1  I  i2  I  i1  i2 
    sts.steps (State p I, {[ Change i ]})
        (State p ({[i1]}  ({[i2]}  (I  {[i]}))), {[ Change i1; Change i2 ]}).
  Proof.
    intros. apply rtc_once.
    constructor; first constructor; rewrite /= /tok /=; first (destruct p; set_solver).
    (* This gets annoying... and I think I can see a pattern with all these proofs. Automatable? *)
    - apply elem_of_equiv=>t. destruct t; last set_solver.
111
      rewrite !mkSet_elem_of. destruct p; set_solver.
112
    - apply elem_of_equiv=>t. destruct t as [j|]; last set_solver.
113
114
115
116
      rewrite !mkSet_elem_of.
      destruct (decide (i1 = j)); first set_solver. 
      destruct (decide (i2 = j)); first set_solver.
      destruct (decide (i = j)); set_solver.
117
118
  Qed.

119
End barrier_proto.
120
121
122
123
124
125
(* I am too lazy to type the full module name all the time. But then
   why did we even put this into a module? Because some of the names 
   are so general.
   What we'd really like here is to import *some* of the names from
   the module into our namespaces. But Coq doesn't seem to support that...?? *)
Import barrier_proto.
126

127
128
(** The monoids we need. *)
(* Not bundling heapG, as it may be shared with other users. *)
129
Class barrierG Σ := BarrierG {
130
131
132
133
  barrier_stsG :> stsG heap_lang Σ sts;
  barrier_savedPropG :> savedPropG heap_lang Σ;
}.

134
Definition barrierGF : iFunctors := [stsGF sts; agreeF].
135

136
Instance inGF_barrierG `{inGF heap_lang Σ (stsGF sts)}
137
138
139
         `{inGF heap_lang Σ agreeF} : barrierG Σ.
Proof. split; apply _. Qed.

140
141
(** Now we come to the Iris part of the proof. *)
Section proof.
142
  Context {Σ : iFunctorG} `{!heapG Σ} `{!barrierG Σ}.
143
  Context (N : namespace) (heapN : namespace).
Ralf Jung's avatar
Ralf Jung committed
144

145
146
147
148
  Local Hint Immediate i_states_closed low_states_closed : sts.
  Local Hint Resolve signal_step wait_step split_step : sts.
  Local Hint Resolve sts.closed_op : sts.

149
150
151
  Hint Extern 50 (_  _) => try rewrite !mkSet_elem_of; set_solver : sts.
  Hint Extern 50 (_  _) => try rewrite !mkSet_elem_of; set_solver : sts.
  Hint Extern 50 (_  _) => try rewrite !mkSet_elem_of; set_solver : sts.
Ralf Jung's avatar
Ralf Jung committed
152

153
  Local Notation iProp := (iPropG heap_lang Σ).
154
155

  Definition waiting (P : iProp) (I : gset gname) : iProp :=
156
157
    ( Ψ : gname  iProp, (P - Π★{set I} (λ i, Ψ i)) 
                             Π★{set I} (λ i, saved_prop_own i (Ψ i)))%I.
158
159

  Definition ress (I : gset gname) : iProp :=
160
    (Π★{set I} (λ i,  R, saved_prop_own i R  R))%I.
161

162
163
  Local Notation state_to_val s :=
    (match s with State Low _ => 0 | State High _ => 1 end).
164
  Definition barrier_inv (l : loc) (P : iProp) (s : stateT) : iProp :=
165
    (l  '(state_to_val s) 
166
167
     match s with State Low I' => waiting P I' | State High I' => ress I' end
    )%I.
168
169

  Definition barrier_ctx (γ : gname) (l : loc) (P : iProp) : iProp :=
170
    ( (heapN  N)  heap_ctx heapN  sts_ctx γ N (barrier_inv l P))%I.
171

172
173
  Global Instance barrier_ctx_ne n γ l : Proper (dist n ==> dist n) (barrier_ctx γ l).
  Proof.
174
175
    move=>? ? EQ. rewrite /barrier_ctx. apply sep_ne; first done.
    apply sep_ne; first done. apply sts_ctx_ne.
176
177
178
179
    move=>[p I]. rewrite /barrier_inv. destruct p; last done.
    rewrite /waiting. by setoid_rewrite EQ.
  Qed.

180
  Definition send (l : loc) (P : iProp) : iProp :=
181
    ( γ, barrier_ctx γ l P  sts_ownS γ low_states {[ Send ]})%I.
182

183
184
185
186
187
  Global Instance send_ne n l : Proper (dist n ==> dist n) (send l).
  Proof. (* TODO: This really ought to be doable by an automatic tactic. it is just application of already regostered congruence lemmas. *)
    move=>? ? EQ. rewrite /send. apply exist_ne=>γ. by rewrite EQ.
  Qed.

188
  Definition recv (l : loc) (R : iProp) : iProp :=
189
    ( γ P Q i, barrier_ctx γ l P  sts_ownS γ (i_states i) {[ Change i ]} 
190
191
        saved_prop_own i Q  (Q - R))%I.

192
193
194
195
196
  Global Instance recv_ne n l : Proper (dist n ==> dist n) (recv l).
  Proof.
    move=>? ? EQ. rewrite /send. do 4 apply exist_ne=>?. by rewrite EQ.
  Qed.

Ralf Jung's avatar
Ralf Jung committed
197
198
199
200
201
202
203
204
205
206
  Lemma waiting_split i i1 i2 Q R1 R2 P I :
    i  I  i1  I  i2  I  i1  i2 
    (saved_prop_own i2 R2  saved_prop_own i1 R1  saved_prop_own i Q 
     (Q - R1  R2)  waiting P I)
     waiting P ({[i1]}  ({[i2]}  (I  {[i]}))).
  Proof.
    intros. rewrite /waiting !sep_exist_l. apply exist_elim=>Ψ.
    rewrite -(exist_intro (<[i1:=R1]> (<[i2:=R2]> Ψ))).
    rewrite [(Π★{set _} (λ _, saved_prop_own _ _))%I](big_sepS_delete _ I i) //.
    rewrite !assoc [(_  (_ - _))%I]comm !assoc [(_   _)%I]comm.
Ralf Jung's avatar
Ralf Jung committed
207
    rewrite !assoc [(_  _ i _)%I]comm !assoc [(_  _ i _)%I]comm -!assoc.
208
209
    do 4 (rewrite big_sepS_insert; last set_solver).
    rewrite !fn_lookup_insert fn_lookup_insert_ne // !fn_lookup_insert.
Ralf Jung's avatar
Ralf Jung committed
210
211
212
213
    rewrite 3!assoc. apply sep_mono.
    - rewrite saved_prop_agree. u_strip_later.
      apply wand_intro_l. rewrite [(_  (_ - Π★{set _} _))%I]comm !assoc wand_elim_r.
      rewrite (big_sepS_delete _ I i) //.
214
      rewrite [(_  Π★{set _} _)%I]comm [(_  Π★{set _} _)%I]comm -!assoc.
Ralf Jung's avatar
Ralf Jung committed
215
216
217
218
219
220
      apply sep_mono.
      + apply big_sepS_mono; first done. intros j.
        rewrite elem_of_difference not_elem_of_singleton. intros.
        rewrite fn_lookup_insert_ne; last naive_solver.
        rewrite fn_lookup_insert_ne; last naive_solver.
        done.
221
      + rewrite !assoc.
Ralf Jung's avatar
Ralf Jung committed
222
223
224
        eapply wand_apply_r'; first done.
        apply: (eq_rewrite (Ψ i) Q (λ x, x)%I); last by eauto with I.
        rewrite eq_sym. eauto with I.
225
226
    - rewrite !assoc. apply sep_mono.
      + by rewrite comm.
Ralf Jung's avatar
Ralf Jung committed
227
228
229
230
231
      + apply big_sepS_mono; first done. intros j.
        rewrite elem_of_difference not_elem_of_singleton. intros.
        rewrite fn_lookup_insert_ne; last naive_solver.
        rewrite fn_lookup_insert_ne; last naive_solver.
        done.
Ralf Jung's avatar
Ralf Jung committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
  Qed. 

  Lemma ress_split i i1 i2 Q R1 R2 I :
    i  I  i1  I  i2  I  i1  i2 
    (saved_prop_own i2 R2  saved_prop_own i1 R1  saved_prop_own i Q 
     (Q - R1  R2)  ress I)
     ress ({[i1]}  ({[i2]}  (I  {[i]}))).
  Proof.
    intros. rewrite /ress.
    rewrite [(Π★{set _} _)%I](big_sepS_delete _ I i) // !assoc !sep_exist_l !sep_exist_r.
    apply exist_elim=>R.
    rewrite big_sepS_insert; last set_solver.
    rewrite big_sepS_insert; last set_solver.
    rewrite -(exist_intro R1) -(exist_intro R2) [(_ i2 _  _)%I]comm -!assoc.
    apply sep_mono_r. rewrite !assoc. apply sep_mono_l.
    rewrite [( _  _ i2 _)%I]comm -!assoc. apply sep_mono_r.
    rewrite !assoc [(_  _ i R)%I]comm !assoc saved_prop_agree.
    rewrite [( _  _)%I]comm -!assoc. eapply wand_apply_l.
    { rewrite <-later_wand, <-later_intro. done. }
    { by rewrite later_sep. }
    u_strip_later.
    apply: (eq_rewrite R Q (λ x, x)%I); eauto with I.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
255

256
  Lemma newchan_spec (P : iProp) (Φ : val  iProp) :
257
    heapN  N 
258
    (heap_ctx heapN   l, recv l P  send l P - Φ (LocV l))
259
     || newchan '() {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
260
  Proof.
261
    intros HN. rewrite /newchan. wp_seq.
262
    rewrite -wp_pvs. wp eapply wp_alloc; eauto with I ndisj.
Ralf Jung's avatar
Ralf Jung committed
263
264
265
266
267
268
269
    apply forall_intro=>l. rewrite (forall_elim l). apply wand_intro_l.
    rewrite !assoc. apply pvs_wand_r.
    (* The core of this proof: Allocating the STS and the saved prop. *)
    eapply sep_elim_True_r.
    { by eapply (saved_prop_alloc _ P). }
    rewrite pvs_frame_l. apply pvs_strip_pvs. rewrite sep_exist_l.
    apply exist_elim=>i.
270
    trans (pvs   (heap_ctx heapN   (barrier_inv l P (State Low {[ i ]}))   saved_prop_own i P)).
Ralf Jung's avatar
Ralf Jung committed
271
272
273
    - rewrite -pvs_intro. cancel (heap_ctx heapN).
      rewrite {1}[saved_prop_own _ _]always_sep_dup. cancel (saved_prop_own i P).
      rewrite /barrier_inv /waiting -later_intro. cancel (l  '0)%I.
Ralf Jung's avatar
Ralf Jung committed
274
275
276
      rewrite -(exist_intro (const P)) /=. rewrite -[saved_prop_own _ _](left_id True%I ()%I).
      apply sep_mono.
      + rewrite -later_intro. apply wand_intro_l. rewrite right_id.
Ralf Jung's avatar
Ralf Jung committed
277
278
        by rewrite big_sepS_singleton.
      + by rewrite big_sepS_singleton.
Ralf Jung's avatar
Ralf Jung committed
279
280
281
282
    - rewrite (sts_alloc (barrier_inv l P)  N); last by eauto.
      rewrite !pvs_frame_r !pvs_frame_l. 
      rewrite pvs_trans'. apply pvs_strip_pvs. rewrite sep_exist_r sep_exist_l.
      apply exist_elim=>γ.
Ralf Jung's avatar
Ralf Jung committed
283
284
285
286
      (* TODO: The record notation is rather annoying here *)
      rewrite /recv /send. rewrite -(exist_intro γ) -(exist_intro P).
      rewrite -(exist_intro P) -(exist_intro i) -(exist_intro γ).
      (* This is even more annoying than usually, since rewrite sometimes unfolds stuff... *)
Ralf Jung's avatar
Ralf Jung committed
287
      rewrite [barrier_ctx _ _ _]lock !assoc [(_ locked _)%I]comm !assoc -lock.
Ralf Jung's avatar
Ralf Jung committed
288
      rewrite -always_sep_dup.
Ralf Jung's avatar
Ralf Jung committed
289
      (* TODO: This is cancelling below a pvs. *)
Ralf Jung's avatar
Ralf Jung committed
290
      rewrite [barrier_ctx _ _ _]lock always_and_sep_l -!assoc assoc -lock.
291
      rewrite -pvs_frame_l. rewrite /barrier_ctx const_equiv // left_id. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
292
293
      rewrite [(saved_prop_own _ _  _)%I]comm !assoc. rewrite -pvs_frame_r.
      apply sep_mono_l.
Ralf Jung's avatar
Ralf Jung committed
294
295
296
      rewrite -assoc [( _  _)%I]comm assoc -pvs_frame_r.
      eapply sep_elim_True_r; last eapply sep_mono_l.
      { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
Ralf Jung's avatar
Ralf Jung committed
297
298
      rewrite (sts_own_weaken  _ _ (i_states i  low_states) _ 
                              ({[ Change i ]}  {[ Send ]})).
299
      + apply pvs_mono. rewrite sts_ownS_op; eauto with sts.
300
301
302
303
      + rewrite /= /tok /=  =>t. rewrite !mkSet_elem_of.
        move=>[[?]|?]; set_solver. 
      + eauto with sts.
      + eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
304
  Qed.
Ralf Jung's avatar
Ralf Jung committed
305

306
  Lemma signal_spec l P (Φ : val  iProp) :
307
    (send l P  P  Φ '())  || signal (LocV l) {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
308
  Proof.
309
310
    rewrite /signal /send /barrier_ctx. rewrite sep_exist_r.
    apply exist_elim=>γ. rewrite -!assoc. apply const_elim_sep_l=>?. wp_let.
Ralf Jung's avatar
Ralf Jung committed
311
    (* I think some evars here are better than repeating *everything* *)
312
313
    eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl;
      eauto with I ndisj.
314
    rewrite !assoc [(_  sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
315
316
317
    apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc.
    apply const_elim_sep_l=>Hs. destruct p; last done.
    rewrite {1}/barrier_inv =>/={Hs}. rewrite later_sep.
Ralf Jung's avatar
Ralf Jung committed
318
319
    eapply wp_store with (v' := '0); eauto with I ndisj. 
    u_strip_later. cancel (l  '0)%I.
Ralf Jung's avatar
Ralf Jung committed
320
    apply wand_intro_l. rewrite -(exist_intro (State High I)).
321
    rewrite -(exist_intro ). rewrite const_equiv /=; last by eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
322
323
324
325
    rewrite left_id -later_intro {2}/barrier_inv -!assoc. apply sep_mono_r.
    rewrite !assoc [(_  P)%I]comm !assoc -2!assoc.
    apply sep_mono; last first.
    { apply wand_intro_l. eauto with I. }
Ralf Jung's avatar
Ralf Jung committed
326
    (* Now we come to the core of the proof: Updating from waiting to ress. *)
327
    rewrite /waiting /ress sep_exist_l. apply exist_elim=>{Φ} Φ.
Ralf Jung's avatar
Ralf Jung committed
328
    rewrite later_wand {1}(later_intro P) !assoc wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
329
    rewrite big_sepS_later -big_sepS_sepS. apply big_sepS_mono'=>i.
330
    rewrite -(exist_intro (Φ i)) comm. done.
Ralf Jung's avatar
Ralf Jung committed
331
  Qed.
Ralf Jung's avatar
Ralf Jung committed
332

333
  Lemma wait_spec l P (Φ : val  iProp) :
334
    (recv l P  (P - Φ '()))  || wait (LocV l) {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
335
  Proof.
336
    rename P into R. wp_rec.
Ralf Jung's avatar
Ralf Jung committed
337
338
339
    rewrite {1}/recv /barrier_ctx. rewrite !sep_exist_r.
    apply exist_elim=>γ. rewrite !sep_exist_r. apply exist_elim=>P.
    rewrite !sep_exist_r. apply exist_elim=>Q. rewrite !sep_exist_r.
340
341
    apply exist_elim=>i. rewrite -!assoc. apply const_elim_sep_l=>?.
    wp_focus (! _)%L.
Ralf Jung's avatar
Ralf Jung committed
342
343
344
    (* I think some evars here are better than repeating *everything* *)
    eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl;
      eauto with I ndisj.
345
    rewrite !assoc [(_  sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
346
    apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc.
Ralf Jung's avatar
Ralf Jung committed
347
348
349
    apply const_elim_sep_l=>Hs.
    rewrite {1}/barrier_inv =>/=. rewrite later_sep.
    eapply wp_load; eauto with I ndisj.
350
    rewrite -!assoc. apply sep_mono_r. u_strip_later.
Ralf Jung's avatar
Ralf Jung committed
351
352
353
    apply wand_intro_l. destruct p.
    { (* a Low state. The comparison fails, and we recurse. *)
      rewrite -(exist_intro (State Low I)) -(exist_intro {[ Change i ]}).
354
      rewrite [( sts.steps _ _ )%I]const_equiv /=; last by apply rtc_refl.
Ralf Jung's avatar
Ralf Jung committed
355
356
      rewrite left_id -[( barrier_inv _ _ _)%I]later_intro {3}/barrier_inv.
      rewrite -!assoc. apply sep_mono_r, sep_mono_r, wand_intro_l.
357
      wp_op; first done. intros _. wp_if. rewrite !assoc.
358
      rewrite -always_wand_impl always_elim.
Ralf Jung's avatar
Ralf Jung committed
359
      rewrite -{2}pvs_wp. apply pvs_wand_r.
Ralf Jung's avatar
Ralf Jung committed
360
      rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro Q) -(exist_intro i).
361
362
      rewrite !assoc.
      do 3 (rewrite -pvs_frame_r; apply sep_mono; last (try apply later_intro; reflexivity)).
363
364
      rewrite [(_  heap_ctx _)%I]comm -!assoc.
      rewrite const_equiv // left_id -pvs_frame_l. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
365
      rewrite comm -pvs_frame_l. apply sep_mono_r.
366
      apply sts_ownS_weaken; eauto using sts.up_subseteq with sts. }
Ralf Jung's avatar
Ralf Jung committed
367
368
    (* a High state: the comparison succeeds, and we perform a transition and
       return to the client *)
369
    rewrite [(_   (_  _ ))%I]sep_elim_l.
Ralf Jung's avatar
Ralf Jung committed
370
371
    rewrite -(exist_intro (State High (I  {[ i ]}))) -(exist_intro ).
    change (i  I) in Hs.
372
    rewrite const_equiv /=; last by eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
373
374
375
376
377
378
379
    rewrite left_id -[( barrier_inv _ _ _)%I]later_intro {2}/barrier_inv.
    rewrite -!assoc. apply sep_mono_r. rewrite /ress.
    rewrite (big_sepS_delete _ I i) // [(_  Π★{set _} _)%I]comm -!assoc.
    apply sep_mono_r. rewrite !sep_exist_r. apply exist_elim=>Q'.
    apply wand_intro_l. rewrite [(heap_ctx _  _)%I]sep_elim_r.
    rewrite [(sts_own _ _ _  _)%I]sep_elim_r [(sts_ctx _ _ _  _)%I]sep_elim_r.
    rewrite !assoc [(_  saved_prop_own i Q)%I]comm !assoc saved_prop_agree.
380
    wp_op>; last done. intros _. u_strip_later.
381
    wp_if. 
Ralf Jung's avatar
Ralf Jung committed
382
383
384
385
    eapply wand_apply_r; [done..|]. eapply wand_apply_r; [done..|].
    apply: (eq_rewrite Q' Q (λ x, x)%I); last by eauto with I.
    rewrite eq_sym. eauto with I.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
386

Ralf Jung's avatar
Ralf Jung committed
387
  Lemma recv_split l P1 P2 Φ :
388
    (recv l (P1  P2)  (recv l P1  recv l P2 - Φ '()))  || Skip {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
389
  Proof.
Ralf Jung's avatar
Ralf Jung committed
390
391
392
393
    rename P1 into R1. rename P2 into R2.
    rewrite {1}/recv /barrier_ctx. rewrite sep_exist_r.
    apply exist_elim=>γ. rewrite sep_exist_r.  apply exist_elim=>P. 
    rewrite sep_exist_r.  apply exist_elim=>Q. rewrite sep_exist_r.
394
    apply exist_elim=>i. rewrite -!assoc. apply const_elim_sep_l=>?. rewrite -wp_pvs.
Ralf Jung's avatar
Ralf Jung committed
395
396
397
    (* I think some evars here are better than repeating *everything* *)
    eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl;
      eauto with I ndisj.
Ralf Jung's avatar
Ralf Jung committed
398
    rewrite !assoc [(_  sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
399
    apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc.
Ralf Jung's avatar
Ralf Jung committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    apply const_elim_sep_l=>Hs. rewrite -wp_pvs. wp_seq.
    eapply sep_elim_True_l.
    { eapply saved_prop_alloc_strong with (P0 := R1) (G := I). }
    rewrite pvs_frame_r. apply pvs_strip_pvs. rewrite sep_exist_r.
    apply exist_elim=>i1. rewrite always_and_sep_l. rewrite -assoc.
    apply const_elim_sep_l=>Hi1. eapply sep_elim_True_l.
    { eapply saved_prop_alloc_strong with (P0 := R2) (G := I  {[ i1 ]}). }
    rewrite pvs_frame_r. apply pvs_mono. rewrite sep_exist_r.
    apply exist_elim=>i2. rewrite always_and_sep_l. rewrite -assoc.
    apply const_elim_sep_l=>Hi2.
    rewrite ->not_elem_of_union, elem_of_singleton in Hi2.
    destruct Hi2 as [Hi2 Hi12]. change (i  I) in Hs. destruct p.
    (* Case I: Low state. *)
    - rewrite -(exist_intro (State Low ({[i1]}  ({[i2]}  (I  {[i]}))))).
      rewrite -(exist_intro ({[Change i1 ]}  {[ Change i2 ]})).
415
      rewrite [( sts.steps _ _)%I]const_equiv; last by eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
416
417
418
419
420
      rewrite left_id -later_intro {1 3}/barrier_inv.
      (* FIXME ssreflect rewrite fails if there are evars around. Also, this is very slow because we don't have a proof mode. *)
      rewrite -(waiting_split _ _ _ Q R1 R2); [|done..].
      rewrite {1}[saved_prop_own i1 _]always_sep_dup.
      rewrite {1}[saved_prop_own i2 _]always_sep_dup.
421
422
423
424
425
426
427
428
429
430
431
432
433
434
      cancel (saved_prop_own i1 R1).
      cancel (saved_prop_own i2 R2).
      cancel (l  '0)%I.
      cancel (waiting P I).
      cancel (Q - R1  R2)%I.
      cancel (saved_prop_own i Q).
      apply wand_intro_l. rewrite !assoc. eapply pvs_wand_r. rewrite /recv.
      rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R1) -(exist_intro i1).
      rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R2) -(exist_intro i2).
      do 2 rewrite !(assoc ()%I) [(_  sts_ownS _ _ _)%I]comm.
      rewrite -!assoc. rewrite [(sts_ownS _ _ _  _  _)%I]assoc -pvs_frame_r.
      apply sep_mono.
      * rewrite -sts_ownS_op; by eauto using sts_own_weaken with sts.
      * rewrite const_equiv // !left_id.
Ralf Jung's avatar
Ralf Jung committed
435
436
437
438
        rewrite {1}[heap_ctx _]always_sep_dup {1}[sts_ctx _ _ _]always_sep_dup.
        do 2 cancel (heap_ctx heapN). do 2 cancel (sts_ctx γ N (barrier_inv l P)).
        cancel (saved_prop_own i1 R1). cancel (saved_prop_own i2 R2).
        apply sep_intro_True_l.
439
        { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
Ralf Jung's avatar
Ralf Jung committed
440
        rewrite -later_intro. apply wand_intro_l. by rewrite right_id.
Ralf Jung's avatar
Ralf Jung committed
441
(* Case II: High state. TODO: Lots of this script is just copy-n-paste of the previous one.
442
443
   Most of that is because the goals are fairly similar in structure, and the proof scripts
   are mostly concerned with manually managaing the structure (assoc, comm, dup) of
Ralf Jung's avatar
Ralf Jung committed
444
445
446
   the context. *)
    - rewrite -(exist_intro (State High ({[i1]}  ({[i2]}  (I  {[i]}))))).
      rewrite -(exist_intro ({[Change i1 ]}  {[ Change i2 ]})).
447
      rewrite const_equiv; last by eauto with sts.
Ralf Jung's avatar
Ralf Jung committed
448
449
450
451
      rewrite left_id -later_intro {1 3}/barrier_inv.
      rewrite -(ress_split _ _ _ Q R1 R2); [|done..].
      rewrite {1}[saved_prop_own i1 _]always_sep_dup.
      rewrite {1}[saved_prop_own i2 _]always_sep_dup.
452
453
454
455
456
457
458
459
460
461
462
463
464
465
      cancel (saved_prop_own i1 R1).
      cancel (saved_prop_own i2 R2).
      cancel (l  '1)%I.
      cancel (Q - R1  R2)%I.
      cancel (saved_prop_own i Q).
      cancel (ress I).
      apply wand_intro_l. rewrite !assoc. eapply pvs_wand_r. rewrite /recv.
      rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R1) -(exist_intro i1).
      rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R2) -(exist_intro i2).
      do 2 rewrite !(assoc ()%I) [(_  sts_ownS _ _ _)%I]comm.
      rewrite -!assoc. rewrite [(sts_ownS _ _ _  _  _)%I]assoc -pvs_frame_r.
      apply sep_mono.
      * rewrite -sts_ownS_op; by eauto using sts_own_weaken with sts.
      * rewrite const_equiv // !left_id.
Ralf Jung's avatar
Ralf Jung committed
466
467
468
469
        rewrite {1}[heap_ctx _]always_sep_dup {1}[sts_ctx _ _ _]always_sep_dup.
        do 2 cancel (heap_ctx heapN). do 2 cancel (sts_ctx γ N (barrier_inv l P)).
        cancel (saved_prop_own i1 R1). cancel (saved_prop_own i2 R2).
        apply sep_intro_True_l.
470
        { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
Ralf Jung's avatar
Ralf Jung committed
471
        rewrite -later_intro. apply wand_intro_l. by rewrite right_id.
Ralf Jung's avatar
Ralf Jung committed
472
  Qed.
Ralf Jung's avatar
Ralf Jung committed
473
474
475
476

  Lemma recv_strengthen l P1 P2 :
    (P1 - P2)  (recv l P1 - recv l P2).
  Proof.
Ralf Jung's avatar
Ralf Jung committed
477
478
479
    apply wand_intro_l. rewrite /recv. rewrite sep_exist_r. apply exist_mono=>γ.
    rewrite sep_exist_r. apply exist_mono=>P. rewrite sep_exist_r.
    apply exist_mono=>Q. rewrite sep_exist_r. apply exist_mono=>i.
480
    rewrite -!assoc. apply sep_mono_r, sep_mono_r, sep_mono_r, sep_mono_r, sep_mono_r.
Ralf Jung's avatar
Ralf Jung committed
481
482
483
    rewrite (later_intro (P1 - _)%I) -later_sep. apply later_mono.
    apply wand_intro_l. rewrite !assoc wand_elim_r wand_elim_r. done.
  Qed.
484
485

End proof.
486
487

Section spec.
488
  Context {Σ : iFunctorG} `{!heapG Σ} `{!barrierG Σ}. 
489
490
491
492
493
494
495

  Local Notation iProp := (iPropG heap_lang Σ).

  (* TODO: Maybe notation for LocV (and Loc)? *)
  Lemma barrier_spec (heapN N : namespace) :
    heapN  N 
     (recv send : loc -> iProp -n> iProp),
496
497
498
499
      ( P, heap_ctx heapN  ({{ True }} newchan '() {{ λ v,  l, v = LocV l  recv l P  send l P }})) 
      ( l P, {{ send l P  P }} signal (LocV l) {{ λ _, True }}) 
      ( l P, {{ recv l P }} wait (LocV l) {{ λ _, P }}) 
      ( l P Q, {{ recv l (P  Q) }} Skip {{ λ _, recv l P  recv l Q }}) 
500
501
502
      ( l P Q, (P - Q)  (recv l P - recv l Q)).
  Proof.
    intros HN. exists (λ l, CofeMor (recv N heapN l)). exists (λ l, CofeMor (send N heapN l)).
503
    split_and?; cbn.
504
    - intros. apply: always_intro. apply impl_intro_l. rewrite -newchan_spec //.
505
      rewrite comm always_and_sep_r. apply sep_mono_r. apply forall_intro=>l.
506
      apply wand_intro_l. rewrite right_id -(exist_intro l) const_equiv // left_id;
507
      done.
508
509
    - intros. apply ht_alt. rewrite -signal_spec. by rewrite right_id.
    - intros. apply ht_alt. rewrite -wait_spec.
Ralf Jung's avatar
Ralf Jung committed
510
      apply sep_intro_True_r; first done. apply wand_intro_l. eauto with I.
Ralf Jung's avatar
Ralf Jung committed
511
512
    - intros. apply ht_alt. rewrite -recv_split.
      apply sep_intro_True_r; first done. apply wand_intro_l. eauto with I.
513
    - intros. apply recv_strengthen.
Ralf Jung's avatar
Ralf Jung committed
514
  Qed.
515
516

End spec.