list.v 16.7 KB
Newer Older
1
From iris.algebra Require Export cmra.
2
From iris.prelude Require Export list.
3
From iris.algebra Require Import upred updates local_updates.
Robbert Krebbers's avatar
Robbert Krebbers committed
4
5
6
7
8
9

Section cofe.
Context {A : cofeT}.

Instance list_dist : Dist (list A) := λ n, Forall2 (dist n).

10
11
12
Lemma list_dist_lookup n l1 l2 : l1 {n} l2   i, l1 !! i {n} l2 !! i.
Proof. setoid_rewrite dist_option_Forall2. apply Forall2_lookup. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
15
16
17
18
19
Global Instance cons_ne n : Proper (dist n ==> dist n ==> dist n) (@cons A) := _.
Global Instance app_ne n : Proper (dist n ==> dist n ==> dist n) (@app A) := _.
Global Instance length_ne n : Proper (dist n ==> (=)) (@length A) := _.
Global Instance tail_ne n : Proper (dist n ==> dist n) (@tail A) := _.
Global Instance take_ne n : Proper (dist n ==> dist n) (@take A n) := _.
Global Instance drop_ne n : Proper (dist n ==> dist n) (@drop A n) := _.
Global Instance list_lookup_ne n i :
20
  Proper (dist n ==> dist n) (lookup (M:=list A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
21
22
23
Proof. intros ???. by apply dist_option_Forall2, Forall2_lookup. Qed.
Global Instance list_alter_ne n f i :
  Proper (dist n ==> dist n) f 
24
  Proper (dist n ==> dist n) (alter (M:=list A) f i) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
25
Global Instance list_insert_ne n i :
26
  Proper (dist n ==> dist n ==> dist n) (insert (M:=list A) i) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
28
29
Global Instance list_inserts_ne n i :
  Proper (dist n ==> dist n ==> dist n) (@list_inserts A i) := _.
Global Instance list_delete_ne n i :
30
  Proper (dist n ==> dist n) (delete (M:=list A) i) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Global Instance option_list_ne n : Proper (dist n ==> dist n) (@option_list A).
Proof. intros ???; by apply Forall2_option_list, dist_option_Forall2. Qed.
Global Instance list_filter_ne n P `{ x, Decision (P x)} :
  Proper (dist n ==> iff) P 
  Proper (dist n ==> dist n) (filter (B:=list A) P) := _.
Global Instance replicate_ne n :
  Proper (dist n ==> dist n) (@replicate A n) := _.
Global Instance reverse_ne n : Proper (dist n ==> dist n) (@reverse A) := _.
Global Instance last_ne n : Proper (dist n ==> dist n) (@last A).
Proof. intros ???; by apply dist_option_Forall2, Forall2_last. Qed.
Global Instance resize_ne n :
  Proper (dist n ==> dist n ==> dist n) (@resize A n) := _.

Program Definition list_chain
    (c : chain (list A)) (x : A) (k : nat) : chain A :=
46
  {| chain_car n := from_option id x (c n !! k) |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
Next Obligation. intros c x k n i ?. by rewrite /= (chain_cauchy c n i). Qed.
Instance list_compl : Compl (list A) := λ c,
  match c 0 with
  | [] => []
  | x :: _ => compl  list_chain c x <$> seq 0 (length (c 0))
  end.

Definition list_cofe_mixin : CofeMixin (list A).
Proof.
  split.
  - intros l k. rewrite equiv_Forall2 -Forall2_forall.
    split; induction 1; constructor; intros; try apply equiv_dist; auto.
  - apply _.
  - rewrite /dist /list_dist. eauto using Forall2_impl, dist_S.
  - intros n c; rewrite /compl /list_compl.
    destruct (c 0) as [|x l] eqn:Hc0 at 1.
    { by destruct (chain_cauchy c 0 n); auto with omega. }
    rewrite -(λ H, length_ne _ _ _ (chain_cauchy c 0 n H)); last omega.
65
66
    apply Forall2_lookup=> i. rewrite -dist_option_Forall2 list_lookup_fmap.
    destruct (decide (i < length (c n))); last first.
Robbert Krebbers's avatar
Robbert Krebbers committed
67
68
69
70
    { rewrite lookup_seq_ge ?lookup_ge_None_2; auto with omega. }
    rewrite lookup_seq //= (conv_compl n (list_chain c _ _)) /=.
    by destruct (lookup_lt_is_Some_2 (c n) i) as [? ->].
Qed.
71
Canonical Structure listC := CofeT (list A) list_cofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
73
74
75
76
77
78
79
80
81
82
83
Global Instance list_discrete : Discrete A  Discrete listC.
Proof. induction 2; constructor; try apply (timeless _); auto. Qed.

Global Instance nil_timeless : Timeless (@nil A).
Proof. inversion_clear 1; constructor. Qed.
Global Instance cons_timeless x l : Timeless x  Timeless l  Timeless (x :: l).
Proof. intros ??; inversion_clear 1; constructor; by apply timeless. Qed.
End cofe.

Arguments listC : clear implicits.

(** Functor *)
84
85
86
Lemma list_fmap_ext_ne {A} {B : cofeT} (f g : A  B) (l : list A) n :
  ( x, f x {n} g x)  f <$> l {n} g <$> l.
Proof. intros Hf. by apply Forall2_fmap, Forall_Forall2, Forall_true. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
87
88
Instance list_fmap_ne {A B : cofeT} (f : A  B) n:
  Proper (dist n ==> dist n) f  Proper (dist n ==> dist n) (fmap (M:=list) f).
89
Proof. intros Hf l k ?; by eapply Forall2_fmap, Forall2_impl; eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
90
91
92
Definition listC_map {A B} (f : A -n> B) : listC A -n> listC B :=
  CofeMor (fmap f : listC A  listC B).
Instance listC_map_ne A B n : Proper (dist n ==> dist n) (@listC_map A B).
93
Proof. intros f g ? l. by apply list_fmap_ext_ne. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

Program Definition listCF (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := listC (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := listC_map (cFunctor_map F fg)
|}.
Next Obligation.
  by intros F A1 A2 B1 B2 n f g Hfg; apply listC_map_ne, cFunctor_ne.
Qed.
Next Obligation.
  intros F A B x. rewrite /= -{2}(list_fmap_id x).
  apply list_fmap_setoid_ext=>y. apply cFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -list_fmap_compose.
  apply list_fmap_setoid_ext=>y; apply cFunctor_compose.
Qed.

Instance listCF_contractive F :
  cFunctorContractive F  cFunctorContractive (listCF F).
Proof.
  by intros ? A1 A2 B1 B2 n f g Hfg; apply listC_map_ne, cFunctor_contractive.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
116
117
118

(* CMRA *)
Section cmra.
119
  Context {A : ucmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
120
121
122
123
124
125
126
127
128
129
  Implicit Types l : list A.
  Local Arguments op _ _ !_ !_ / : simpl nomatch.

  Instance list_op : Op (list A) :=
    fix go l1 l2 := let _ : Op _ := @go in
    match l1, l2 with
    | [], _ => l2
    | _, [] => l1
    | x :: l1, y :: l2 => x  y :: l1  l2
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
  Instance list_pcore : PCore (list A) := λ l, Some (core <$> l).
Robbert Krebbers's avatar
Robbert Krebbers committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

  Instance list_valid : Valid (list A) := Forall (λ x,  x).
  Instance list_validN : ValidN (list A) := λ n, Forall (λ x, {n} x).

  Lemma list_lookup_valid l :  l   i,  (l !! i).
  Proof.
    rewrite {1}/valid /list_valid Forall_lookup; split.
    - intros Hl i. by destruct (l !! i) as [x|] eqn:?; [apply (Hl i)|].
    - intros Hl i x Hi. move: (Hl i); by rewrite Hi.
  Qed.
  Lemma list_lookup_validN n l : {n} l   i, {n} (l !! i).
  Proof.
    rewrite {1}/validN /list_validN Forall_lookup; split.
    - intros Hl i. by destruct (l !! i) as [x|] eqn:?; [apply (Hl i)|].
    - intros Hl i x Hi. move: (Hl i); by rewrite Hi.
  Qed.
  Lemma list_lookup_op l1 l2 i : (l1  l2) !! i = l1 !! i  l2 !! i.
  Proof.
    revert i l2. induction l1 as [|x l1]; intros [|i] [|y l2];
      by rewrite /= ?left_id_L ?right_id_L.
  Qed.
  Lemma list_lookup_core l i : core l !! i = core (l !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
153
154
155
156
  Proof.
    rewrite /core /= list_lookup_fmap.
    destruct (l !! i); by rewrite /= ?Some_core.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

  Lemma list_lookup_included l1 l2 : l1  l2   i, l1 !! i  l2 !! i.
  Proof.
    split.
    { intros [l Hl] i. exists (l !! i). by rewrite Hl list_lookup_op. }
    revert l1. induction l2 as [|y l2 IH]=>-[|x l1] Hl.
    - by exists [].
    - destruct (Hl 0) as [[z|] Hz]; inversion Hz.
    - by exists (y :: l2).
    - destruct (IH l1) as [l3 ?]; first (intros i; apply (Hl (S i))).
      destruct (Hl 0) as [[z|] Hz]; inversion_clear Hz; simplify_eq/=.
      + exists (z :: l3); by constructor.
      + exists (core x :: l3); constructor; by rewrite ?cmra_core_r.
  Qed.

  Definition list_cmra_mixin : CMRAMixin (list A).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
174
175
    apply cmra_total_mixin.
    - eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
176
177
    - intros n l l1 l2; rewrite !list_dist_lookup=> Hl i.
      by rewrite !list_lookup_op Hl.
Robbert Krebbers's avatar
Robbert Krebbers committed
178
    - intros n l1 l2 Hl; by rewrite /core /= Hl.
Robbert Krebbers's avatar
Robbert Krebbers committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    - intros n l1 l2; rewrite !list_dist_lookup !list_lookup_validN=> Hl ? i.
      by rewrite -Hl.
    - intros l. rewrite list_lookup_valid. setoid_rewrite list_lookup_validN.
      setoid_rewrite cmra_valid_validN. naive_solver.
    - intros n x. rewrite !list_lookup_validN. auto using cmra_validN_S.
    - intros l1 l2 l3; rewrite list_equiv_lookup=> i.
      by rewrite !list_lookup_op assoc.
    - intros l1 l2; rewrite list_equiv_lookup=> i.
      by rewrite !list_lookup_op comm.
    - intros l; rewrite list_equiv_lookup=> i.
      by rewrite list_lookup_op list_lookup_core cmra_core_l.
    - intros l; rewrite list_equiv_lookup=> i.
      by rewrite !list_lookup_core cmra_core_idemp.
    - intros l1 l2; rewrite !list_lookup_included=> Hl i.
193
      rewrite !list_lookup_core. by apply cmra_core_mono.
Robbert Krebbers's avatar
Robbert Krebbers committed
194
195
196
197
198
199
200
201
202
203
204
205
    - intros n l1 l2. rewrite !list_lookup_validN.
      setoid_rewrite list_lookup_op. eauto using cmra_validN_op_l.
    - intros n l. induction l as [|x l IH]=> -[|y1 l1] [|y2 l2] Hl Hl';
        try (by exfalso; inversion_clear Hl').
      + by exists ([], []).
      + by exists ([], x :: l).
      + by exists (x :: l, []).
      + destruct (IH l1 l2) as ([l1' l2']&?&?&?),
          (cmra_extend n x y1 y2) as ([y1' y2']&?&?&?);
          [inversion_clear Hl; inversion_clear Hl'; auto ..|]; simplify_eq/=.
        exists (y1' :: l1', y2' :: l2'); repeat constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
206
  Canonical Structure listR := CMRAT (list A) list_cofe_mixin list_cmra_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
207
208

  Global Instance empty_list : Empty (list A) := [].
209
  Definition list_ucmra_mixin : UCMRAMixin (list A).
Robbert Krebbers's avatar
Robbert Krebbers committed
210
211
212
213
214
  Proof.
    split.
    - constructor.
    - by intros l.
    - by inversion_clear 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
215
    - by constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
216
  Qed.
217
218
  Canonical Structure listUR :=
    UCMRAT (list A) list_cofe_mixin list_cmra_mixin list_ucmra_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
219
220
221
222
223
224
225
226
227

  Global Instance list_cmra_discrete : CMRADiscrete A  CMRADiscrete listR.
  Proof.
    split; [apply _|]=> l; rewrite list_lookup_valid list_lookup_validN=> Hl i.
    by apply cmra_discrete_valid.
  Qed.

  Global Instance list_persistent l : ( x : A, Persistent x)  Persistent l.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
228
229
    intros ?; constructor; apply list_equiv_lookup=> i.
    by rewrite list_lookup_core (persistent_core (l !! i)).
Robbert Krebbers's avatar
Robbert Krebbers committed
230
231
232
  Qed.

  (** Internalized properties *)
233
  Lemma list_equivI {M} l1 l2 : l1  l2  ( i, l1 !! i  l2 !! i : uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
234
  Proof. uPred.unseal; constructor=> n x ?. apply list_dist_lookup. Qed.
235
  Lemma list_validI {M} l :  l  ( i,  (l !! i) : uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
236
237
238
239
  Proof. uPred.unseal; constructor=> n x ?. apply list_lookup_validN. Qed.
End cmra.

Arguments listR : clear implicits.
240
Arguments listUR : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
241

242
Instance list_singletonM {A : ucmraT} : SingletonM nat A (list A) := λ n x,
Robbert Krebbers's avatar
Robbert Krebbers committed
243
244
245
  replicate n  ++ [x].

Section properties.
246
  Context {A : ucmraT}.
247
  Implicit Types l : list A.
248
  Implicit Types x y z : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
249
250
251
  Local Arguments op _ _ !_ !_ / : simpl nomatch.
  Local Arguments cmra_op _ !_ !_ / : simpl nomatch.

252
  Lemma list_lookup_opM l mk i : (l ? mk) !! i = l !! i  (mk = (!! i)).
253
254
  Proof. destruct mk; by rewrite /= ?list_lookup_op ?right_id_L. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
  Lemma list_op_app l1 l2 l3 :
    length l2  length l1  (l1 ++ l3)  l2 = (l1  l2) ++ l3.
  Proof.
    revert l2 l3.
    induction l1 as [|x1 l1]=> -[|x2 l2] [|x3 l3] ?; f_equal/=; auto with lia.
  Qed.

  Lemma list_lookup_validN_Some n l i x : {n} l  l !! i {n} Some x  {n} x.
  Proof. move=> /list_lookup_validN /(_ i)=> Hl Hi; move: Hl. by rewrite Hi. Qed.
  Lemma list_lookup_valid_Some l i x :  l  l !! i  Some x   x.
  Proof. move=> /list_lookup_valid /(_ i)=> Hl Hi; move: Hl. by rewrite Hi. Qed.

  Lemma list_op_length l1 l2 : length (l1  l2) = max (length l1) (length l2).
  Proof. revert l2. induction l1; intros [|??]; f_equal/=; auto. Qed.

  Lemma replicate_valid n (x : A) :  x   replicate n x.
  Proof. apply Forall_replicate. Qed.
272
273
  Global Instance list_singletonM_ne n i :
    Proper (dist n ==> dist n) (@list_singletonM A i).
274
  Proof. intros l1 l2 ?. apply Forall2_app; by repeat constructor. Qed.
275
276
  Global Instance list_singletonM_proper i :
    Proper (() ==> ()) (list_singletonM i) := ne_proper _.
Robbert Krebbers's avatar
Robbert Krebbers committed
277

278
  Lemma elem_of_list_singletonM i z x : z  {[i := x]}  z =   z = x.
279
280
281
  Proof.
    rewrite elem_of_app elem_of_list_singleton elem_of_replicate. naive_solver.
  Qed.
282
  Lemma list_lookup_singletonM i x : {[ i := x ]} !! i = Some x.
283
  Proof. induction i; by f_equal/=. Qed.
284
285
  Lemma list_lookup_singletonM_ne i j x :
    i  j  {[ i := x ]} !! j = None  {[ i := x ]} !! j = Some .
286
  Proof. revert j; induction i; intros [|j]; naive_solver auto with omega. Qed.
287
  Lemma list_singletonM_validN n i x : {n} {[ i := x ]}  {n} x.
288
289
  Proof.
    rewrite list_lookup_validN. split.
290
    { move=> /(_ i). by rewrite list_lookup_singletonM. }
291
    intros Hx j; destruct (decide (i = j)); subst.
292
293
    - by rewrite list_lookup_singletonM.
    - destruct (list_lookup_singletonM_ne i j x) as [Hi|Hi]; first done;
294
295
        rewrite Hi; by try apply (ucmra_unit_validN (A:=A)).
  Qed.
296
297
298
299
300
  Lemma list_singleton_valid  i x :  {[ i := x ]}   x.
  Proof.
    rewrite !cmra_valid_validN. by setoid_rewrite list_singletonM_validN.
  Qed.
  Lemma list_singletonM_length i x : length {[ i := x ]} = S i.
301
  Proof.
302
    rewrite /singletonM /list_singletonM app_length replicate_length /=; lia.
303
304
  Qed.

305
  Lemma list_core_singletonM i (x : A) : core {[ i := x ]}  {[ i := core x ]}.
306
  Proof.
307
    rewrite /singletonM /list_singletonM.
Robbert Krebbers's avatar
Robbert Krebbers committed
308
    by rewrite {1}/core /= fmap_app fmap_replicate (persistent_core ).
309
  Qed.
310
311
312
313
314
315
316
317
318
319
320
321
322
  Lemma list_op_singletonM i (x y : A) :
    {[ i := x ]}  {[ i := y ]}  {[ i := x  y ]}.
  Proof.
    rewrite /singletonM /list_singletonM /=.
    induction i; constructor; rewrite ?left_id; auto.
  Qed.
  Lemma list_alter_singletonM f i x : alter f i {[i := x]} = {[i := f x]}.
  Proof.
    rewrite /singletonM /list_singletonM /=. induction i; f_equal/=; auto.
  Qed.
  Global Instance list_singleton_persistent i (x : A) :
    Persistent x  Persistent {[ i := x ]}.
  Proof. by rewrite !persistent_total list_core_singletonM=> ->. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
323
324

  (* Update *)
325
  Lemma list_middle_updateP (P : A  Prop) (Q : list A  Prop) l1 x l2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
326
327
    x ~~>: P  ( y, P y  Q (l1 ++ y :: l2))  l1 ++ x :: l2 ~~>: Q.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
328
329
330
    intros Hx%option_updateP' HP.
    apply cmra_total_updateP=> n mf; rewrite list_lookup_validN=> Hm.
    destruct (Hx n (Some (mf !! length l1))) as ([y|]&H1&H2); simpl in *; try done.
Robbert Krebbers's avatar
Robbert Krebbers committed
331
332
333
334
335
336
337
338
339
340
    { move: (Hm (length l1)). by rewrite list_lookup_op list_lookup_middle. }
    exists (l1 ++ y :: l2); split; auto.
    apply list_lookup_validN=> i.
    destruct (lt_eq_lt_dec i (length l1)) as [[?|?]|?]; subst.
    - move: (Hm i); by rewrite !list_lookup_op !lookup_app_l.
    - by rewrite list_lookup_op list_lookup_middle.
    - move: (Hm i). rewrite !(cons_middle _ l1 l2) !assoc.
      rewrite !list_lookup_op !lookup_app_r !app_length //=; lia.
  Qed.

341
  Lemma list_middle_update l1 l2 x y : x ~~> y  l1 ++ x :: l2 ~~> l1 ++ y :: l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
342
  Proof.
343
    rewrite !cmra_update_updateP => H; eauto using list_middle_updateP with subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
344
345
  Qed.

346
347
348
  Lemma list_middle_local_update l1 l2 x y ml :
    x ~l~> y @ ml = (!! length l1) 
    l1 ++ x :: l2 ~l~> l1 ++ y :: l2 @ ml.
Robbert Krebbers's avatar
Robbert Krebbers committed
349
  Proof.
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    intros [Hxy Hxy']; split.
    - intros n; rewrite !list_lookup_validN=> Hl i; move: (Hl i).
      destruct (lt_eq_lt_dec i (length l1)) as [[?|?]|?]; subst.
      + by rewrite !list_lookup_opM !lookup_app_l.
      + rewrite !list_lookup_opM !list_lookup_middle // !Some_op_opM; apply (Hxy n).
      + rewrite !(cons_middle _ l1 l2) !assoc.
        rewrite !list_lookup_opM !lookup_app_r !app_length //=; lia.
    - intros n mk; rewrite !list_lookup_validN !list_dist_lookup => Hl Hl' i.
      move: (Hl i) (Hl' i).
      destruct (lt_eq_lt_dec i (length l1)) as [[?|?]|?]; subst.
      + by rewrite !list_lookup_opM !lookup_app_l.
      + rewrite !list_lookup_opM !list_lookup_middle // !Some_op_opM !inj_iff.
        apply (Hxy' n).
      + rewrite !(cons_middle _ l1 l2) !assoc.
        rewrite !list_lookup_opM !lookup_app_r !app_length //=; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
365
  Qed.
366
367

  Lemma list_singleton_local_update i x y ml :
368
    x ~l~> y @ ml = (!! i)  {[ i := x ]} ~l~> {[ i := y ]} @ ml.
369
  Proof. intros; apply list_middle_local_update. by rewrite replicate_length. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
370
371
372
End properties.

(** Functor *)
373
Instance list_fmap_cmra_monotone {A B : ucmraT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
374
375
376
377
378
379
  `{!CMRAMonotone f} : CMRAMonotone (fmap f : list A  list B).
Proof.
  split; try apply _.
  - intros n l. rewrite !list_lookup_validN=> Hl i. rewrite list_lookup_fmap.
    by apply (validN_preserving (fmap f : option A  option B)).
  - intros l1 l2. rewrite !list_lookup_included=> Hl i. rewrite !list_lookup_fmap.
380
    by apply (cmra_monotone (fmap f : option A  option B)).
Robbert Krebbers's avatar
Robbert Krebbers committed
381
382
Qed.

383
384
385
Program Definition listURF (F : urFunctor) : urFunctor := {|
  urFunctor_car A B := listUR (urFunctor_car F A B);
  urFunctor_map A1 A2 B1 B2 fg := listC_map (urFunctor_map F fg)
Robbert Krebbers's avatar
Robbert Krebbers committed
386
387
|}.
Next Obligation.
388
  by intros F ???? n f g Hfg; apply listC_map_ne, urFunctor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
389
390
391
Qed.
Next Obligation.
  intros F A B x. rewrite /= -{2}(list_fmap_id x).
392
  apply list_fmap_setoid_ext=>y. apply urFunctor_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
393
394
395
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -list_fmap_compose.
396
  apply list_fmap_setoid_ext=>y; apply urFunctor_compose.
Robbert Krebbers's avatar
Robbert Krebbers committed
397
398
Qed.

399
400
Instance listURF_contractive F :
  urFunctorContractive F  urFunctorContractive (listURF F).
Robbert Krebbers's avatar
Robbert Krebbers committed
401
Proof.
402
  by intros ? A1 A2 B1 B2 n f g Hfg; apply listC_map_ne, urFunctor_contractive.
Robbert Krebbers's avatar
Robbert Krebbers committed
403
Qed.