primitive.v 27.7 KB
Newer Older
1 2
From iris.base_logic Require Export upred.
From iris.algebra Require Export updates.
3
Set Default Proof Using "Type".
4 5 6 7 8 9 10 11
Local Hint Extern 1 (_  _) => etrans; [eassumption|].
Local Hint Extern 1 (_  _) => etrans; [|eassumption].
Local Hint Extern 10 (_  _) => omega.

(** logical connectives *)
Program Definition uPred_pure_def {M} (φ : Prop) : uPred M :=
  {| uPred_holds n x := φ |}.
Solve Obligations with done.
12 13
Definition uPred_pure_aux : seal (@uPred_pure_def). by eexists. Qed.
Definition uPred_pure {M} := unseal uPred_pure_aux M.
14
Definition uPred_pure_eq :
15
  @uPred_pure = @uPred_pure_def := seal_eq uPred_pure_aux.
16 17 18 19 20 21

Instance uPred_inhabited M : Inhabited (uPred M) := populate (uPred_pure True).

Program Definition uPred_and_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
22 23 24
Definition uPred_and_aux : seal (@uPred_and_def). by eexists. Qed.
Definition uPred_and {M} := unseal uPred_and_aux M.
Definition uPred_and_eq: @uPred_and = @uPred_and_def := seal_eq uPred_and_aux.
25 26 27 28

Program Definition uPred_or_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
29 30 31
Definition uPred_or_aux : seal (@uPred_or_def). by eexists. Qed.
Definition uPred_or {M} := unseal uPred_or_aux M.
Definition uPred_or_eq: @uPred_or = @uPred_or_def := seal_eq uPred_or_aux.
32 33 34 35 36 37 38 39 40 41

Program Definition uPred_impl_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  n' x',
       x  x'  n'  n  {n'} x'  P n' x'  Q n' x' |}.
Next Obligation.
  intros M P Q n1 x1 x1' HPQ [x2 Hx1'] n2 x3 [x4 Hx3] ?; simpl in *.
  rewrite Hx3 (dist_le _ _ _ _ Hx1'); auto. intros ??.
  eapply HPQ; auto. exists (x2  x4); by rewrite assoc.
Qed.
Next Obligation. intros M P Q [|n1] [|n2] x; auto with lia. Qed.
42 43
Definition uPred_impl_aux : seal (@uPred_impl_def). by eexists. Qed.
Definition uPred_impl {M} := unseal uPred_impl_aux M.
44
Definition uPred_impl_eq :
45
  @uPred_impl = @uPred_impl_def := seal_eq uPred_impl_aux.
46 47 48 49

Program Definition uPred_forall_def {M A} (Ψ : A  uPred M) : uPred M :=
  {| uPred_holds n x :=  a, Ψ a n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
50 51
Definition uPred_forall_aux : seal (@uPred_forall_def). by eexists. Qed.
Definition uPred_forall {M A} := unseal uPred_forall_aux M A.
52
Definition uPred_forall_eq :
53
  @uPred_forall = @uPred_forall_def := seal_eq uPred_forall_aux.
54 55 56 57

Program Definition uPred_exist_def {M A} (Ψ : A  uPred M) : uPred M :=
  {| uPred_holds n x :=  a, Ψ a n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
58 59 60
Definition uPred_exist_aux : seal (@uPred_exist_def). by eexists. Qed.
Definition uPred_exist {M A} := unseal uPred_exist_aux M A.
Definition uPred_exist_eq: @uPred_exist = @uPred_exist_def := seal_eq uPred_exist_aux.
61

62
Program Definition uPred_internal_eq_def {M} {A : ofeT} (a1 a2 : A) : uPred M :=
63 64
  {| uPred_holds n x := a1 {n} a2 |}.
Solve Obligations with naive_solver eauto 2 using (dist_le (A:=A)).
65 66
Definition uPred_internal_eq_aux : seal (@uPred_internal_eq_def). by eexists. Qed.
Definition uPred_internal_eq {M A} := unseal uPred_internal_eq_aux M A.
67
Definition uPred_internal_eq_eq:
68
  @uPred_internal_eq = @uPred_internal_eq_def := seal_eq uPred_internal_eq_aux.
69 70 71 72 73 74 75 76 77 78

Program Definition uPred_sep_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  x1 x2, x {n} x1  x2  P n x1  Q n x2 |}.
Next Obligation.
  intros M P Q n x y (x1&x2&Hx&?&?) [z Hy].
  exists x1, (x2  z); split_and?; eauto using uPred_mono, cmra_includedN_l.
  by rewrite Hy Hx assoc.
Qed.
Next Obligation.
  intros M P Q n1 n2 x (x1&x2&Hx&?&?) ?; rewrite {1}(dist_le _ _ _ _ Hx) // =>?.
79
  exists x1, x2; ofe_subst; split_and!;
80 81
    eauto using dist_le, uPred_closed, cmra_validN_op_l, cmra_validN_op_r.
Qed.
82 83 84
Definition uPred_sep_aux : seal (@uPred_sep_def). by eexists. Qed.
Definition uPred_sep {M} := unseal uPred_sep_aux M.
Definition uPred_sep_eq: @uPred_sep = @uPred_sep_def := seal_eq uPred_sep_aux.
85 86 87 88 89 90 91 92 93 94

Program Definition uPred_wand_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  n' x',
       n'  n  {n'} (x  x')  P n' x'  Q n' (x  x') |}.
Next Obligation.
  intros M P Q n x1 x1' HPQ ? n3 x3 ???; simpl in *.
  apply uPred_mono with (x1  x3);
    eauto using cmra_validN_includedN, cmra_monoN_r, cmra_includedN_le.
Qed.
Next Obligation. naive_solver. Qed.
95 96
Definition uPred_wand_aux : seal (@uPred_wand_def). by eexists. Qed.
Definition uPred_wand {M} := unseal uPred_wand_aux M.
97
Definition uPred_wand_eq :
98
  @uPred_wand = @uPred_wand_def := seal_eq uPred_wand_aux.
99

Ralf Jung's avatar
Ralf Jung committed
100 101 102
(* Equivalently, this could be `∀ y, P n y`.  That's closer to the intuition
   of "embedding the step-indexed logic in Iris", but the two are equivalent
   because Iris is afine.  The following is easier to work with. *)
103 104 105 106 107 108 109 110
Program Definition uPred_plainly_def {M} (P : uPred M) : uPred M :=
  {| uPred_holds n x := P n ε |}.
Solve Obligations with naive_solver eauto using uPred_closed, ucmra_unit_validN.
Definition uPred_plainly_aux : seal (@uPred_plainly_def). by eexists. Qed.
Definition uPred_plainly {M} := unseal uPred_plainly_aux M.
Definition uPred_plainly_eq :
  @uPred_plainly = @uPred_plainly_def := seal_eq uPred_plainly_aux.

111
Program Definition uPred_persistently_def {M} (P : uPred M) : uPred M :=
112 113 114 115 116
  {| uPred_holds n x := P n (core x) |}.
Next Obligation.
  intros M; naive_solver eauto using uPred_mono, @cmra_core_monoN.
Qed.
Next Obligation. naive_solver eauto using uPred_closed, @cmra_core_validN. Qed.
117 118 119 120
Definition uPred_persistently_aux : seal (@uPred_persistently_def). by eexists. Qed.
Definition uPred_persistently {M} := unseal uPred_persistently_aux M.
Definition uPred_persistently_eq :
  @uPred_persistently = @uPred_persistently_def := seal_eq uPred_persistently_aux.
121 122 123 124 125 126 127 128 129

Program Definition uPred_later_def {M} (P : uPred M) : uPred M :=
  {| uPred_holds n x := match n return _ with 0 => True | S n' => P n' x end |}.
Next Obligation.
  intros M P [|n] x1 x2; eauto using uPred_mono, cmra_includedN_S.
Qed.
Next Obligation.
  intros M P [|n1] [|n2] x; eauto using uPred_closed, cmra_validN_S with lia.
Qed.
130 131
Definition uPred_later_aux : seal (@uPred_later_def). by eexists. Qed.
Definition uPred_later {M} := unseal uPred_later_aux M.
132
Definition uPred_later_eq :
133
  @uPred_later = @uPred_later_def := seal_eq uPred_later_aux.
134 135 136 137 138 139 140 141

Program Definition uPred_ownM_def {M : ucmraT} (a : M) : uPred M :=
  {| uPred_holds n x := a {n} x |}.
Next Obligation.
  intros M a n x1 x [a' Hx1] [x2 ->].
  exists (a'  x2). by rewrite (assoc op) Hx1.
Qed.
Next Obligation. naive_solver eauto using cmra_includedN_le. Qed.
142 143
Definition uPred_ownM_aux : seal (@uPred_ownM_def). by eexists. Qed.
Definition uPred_ownM {M} := unseal uPred_ownM_aux M.
144
Definition uPred_ownM_eq :
145
  @uPred_ownM = @uPred_ownM_def := seal_eq uPred_ownM_aux.
146 147 148 149

Program Definition uPred_cmra_valid_def {M} {A : cmraT} (a : A) : uPred M :=
  {| uPred_holds n x := {n} a |}.
Solve Obligations with naive_solver eauto 2 using cmra_validN_le.
150 151
Definition uPred_cmra_valid_aux : seal (@uPred_cmra_valid_def). by eexists. Qed.
Definition uPred_cmra_valid {M A} := unseal uPred_cmra_valid_aux M A.
152
Definition uPred_cmra_valid_eq :
153
  @uPred_cmra_valid = @uPred_cmra_valid_def := seal_eq uPred_cmra_valid_aux.
154 155 156 157 158 159 160 161 162 163 164 165

Program Definition uPred_bupd_def {M} (Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  k yf,
      k  n  {k} (x  yf)   x', {k} (x'  yf)  Q k x' |}.
Next Obligation.
  intros M Q n x1 x2 HQ [x3 Hx] k yf Hk.
  rewrite (dist_le _ _ _ _ Hx); last lia. intros Hxy.
  destruct (HQ k (x3  yf)) as (x'&?&?); [auto|by rewrite assoc|].
  exists (x'  x3); split; first by rewrite -assoc.
  apply uPred_mono with x'; eauto using cmra_includedN_l.
Qed.
Next Obligation. naive_solver. Qed.
166 167 168
Definition uPred_bupd_aux : seal (@uPred_bupd_def). by eexists. Qed.
Definition uPred_bupd {M} := unseal uPred_bupd_aux M.
Definition uPred_bupd_eq : @uPred_bupd = @uPred_bupd_def := seal_eq uPred_bupd_aux.
169

Ralf Jung's avatar
Ralf Jung committed
170 171 172
(* Latest notation *)
Notation "'⌜' φ '⌝'" := (uPred_pure φ%C%type)
  (at level 1, φ at level 200, format "⌜ φ ⌝") : uPred_scope.
173 174 175 176 177 178 179
Notation "'False'" := (uPred_pure False) : uPred_scope.
Notation "'True'" := (uPred_pure True) : uPred_scope.
Infix "∧" := uPred_and : uPred_scope.
Notation "(∧)" := uPred_and (only parsing) : uPred_scope.
Infix "∨" := uPred_or : uPred_scope.
Notation "(∨)" := uPred_or (only parsing) : uPred_scope.
Infix "→" := uPred_impl : uPred_scope.
180 181 182
Infix "∗" := uPred_sep (at level 80, right associativity) : uPred_scope.
Notation "(∗)" := uPred_sep (only parsing) : uPred_scope.
Notation "P -∗ Q" := (uPred_wand P Q)
183 184
  (at level 99, Q at level 200, right associativity) : uPred_scope.
Notation "∀ x .. y , P" :=
185 186
  (uPred_forall (λ x, .. (uPred_forall (λ y, P)) ..)%I)
  (at level 200, x binder, y binder, right associativity) : uPred_scope.
187
Notation "∃ x .. y , P" :=
188 189
  (uPred_exist (λ x, .. (uPred_exist (λ y, P)) ..)%I)
  (at level 200, x binder, y binder, right associativity) : uPred_scope.
190 191
Notation "■ P" := (uPred_plainly P)
  (at level 20, right associativity) : uPred_scope.
192
Notation "□ P" := (uPred_persistently P)
193 194 195
  (at level 20, right associativity) : uPred_scope.
Notation "▷ P" := (uPred_later P)
  (at level 20, right associativity) : uPred_scope.
196
Infix "≡" := uPred_internal_eq : uPred_scope.
197 198 199
Notation "✓ x" := (uPred_cmra_valid x) (at level 20) : uPred_scope.
Notation "|==> Q" := (uPred_bupd Q)
  (at level 99, Q at level 200, format "|==>  Q") : uPred_scope.
200
Notation "P ==∗ Q" := (P  |==> Q)
201
  (at level 99, Q at level 200, only parsing) : C_scope.
202 203
Notation "P ==∗ Q" := (P - |==> Q)%I
  (at level 99, Q at level 200, format "P  ==∗  Q") : uPred_scope.
204

205
Coercion uPred_valid {M} (P : uPred M) : Prop := True%I  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
206 207
Typeclasses Opaque uPred_valid.

208
Notation "P -∗ Q" := (P  Q)
209
  (at level 99, Q at level 200, right associativity) : C_scope.
210

211
Module uPred.
212
Definition unseal_eqs :=
213
  (uPred_pure_eq, uPred_and_eq, uPred_or_eq, uPred_impl_eq, uPred_forall_eq,
214 215
  uPred_exist_eq, uPred_internal_eq_eq, uPred_sep_eq, uPred_wand_eq,
  uPred_persistently_eq, uPred_plainly_eq, uPred_persistently_eq,
216
  uPred_later_eq, uPred_ownM_eq, uPred_cmra_valid_eq, uPred_bupd_eq).
217
Ltac unseal := rewrite !unseal_eqs /=.
218 219 220 221 222 223 224 225 226 227 228 229

Section primitive.
Context {M : ucmraT}.
Implicit Types φ : Prop.
Implicit Types P Q : uPred M.
Implicit Types A : Type.
Notation "P ⊢ Q" := (@uPred_entails M P%I Q%I). (* Force implicit argument M *)
Notation "P ⊣⊢ Q" := (equiv (A:=uPred M) P%I Q%I). (* Force implicit argument M *)
Arguments uPred_holds {_} !_ _ _ /.
Hint Immediate uPred_in_entails.

(** Non-expansiveness and setoid morphisms *)
230
Global Instance pure_proper : Proper (iff ==> ()) (@uPred_pure M) | 0.
231
Proof. intros φ1 φ2 Hφ. by unseal; split=> -[|n] ?; try apply Hφ. Qed.
232 233 234
Global Instance pure_ne n : Proper (iff ==> dist n) (@uPred_pure M) | 1.
Proof. by intros φ1 φ2 ->. Qed.

235
Global Instance and_ne : NonExpansive2 (@uPred_and M).
236
Proof.
237
  intros n P P' HP Q Q' HQ; unseal; split=> x n' ??.
238 239 240 241
  split; (intros [??]; split; [by apply HP|by apply HQ]).
Qed.
Global Instance and_proper :
  Proper (() ==> () ==> ()) (@uPred_and M) := ne_proper_2 _.
242
Global Instance or_ne : NonExpansive2 (@uPred_or M).
243
Proof.
244
  intros n P P' HP Q Q' HQ; split=> x n' ??.
245 246 247 248
  unseal; split; (intros [?|?]; [left; by apply HP|right; by apply HQ]).
Qed.
Global Instance or_proper :
  Proper (() ==> () ==> ()) (@uPred_or M) := ne_proper_2 _.
249 250
Global Instance impl_ne :
  NonExpansive2 (@uPred_impl M).
251
Proof.
252
  intros n P P' HP Q Q' HQ; split=> x n' ??.
253 254 255 256
  unseal; split; intros HPQ x' n'' ????; apply HQ, HPQ, HP; auto.
Qed.
Global Instance impl_proper :
  Proper (() ==> () ==> ()) (@uPred_impl M) := ne_proper_2 _.
257
Global Instance sep_ne : NonExpansive2 (@uPred_sep M).
258
Proof.
259
  intros n P P' HP Q Q' HQ; split=> n' x ??.
260
  unseal; split; intros (x1&x2&?&?&?); ofe_subst x;
261 262 263 264 265
    exists x1, x2; split_and!; try (apply HP || apply HQ);
    eauto using cmra_validN_op_l, cmra_validN_op_r.
Qed.
Global Instance sep_proper :
  Proper (() ==> () ==> ()) (@uPred_sep M) := ne_proper_2 _.
266 267
Global Instance wand_ne :
  NonExpansive2 (@uPred_wand M).
268
Proof.
269
  intros n P P' HP Q Q' HQ; split=> n' x ??; unseal; split; intros HPQ x' n'' ???;
270 271 272 273
    apply HQ, HPQ, HP; eauto using cmra_validN_op_r.
Qed.
Global Instance wand_proper :
  Proper (() ==> () ==> ()) (@uPred_wand M) := ne_proper_2 _.
274 275
Global Instance internal_eq_ne (A : ofeT) :
  NonExpansive2 (@uPred_internal_eq M A).
276
Proof.
277
  intros n x x' Hx y y' Hy; split=> n' z; unseal; split; intros; simpl in *.
278 279 280
  - by rewrite -(dist_le _ _ _ _ Hx) -?(dist_le _ _ _ _ Hy); auto.
  - by rewrite (dist_le _ _ _ _ Hx) ?(dist_le _ _ _ _ Hy); auto.
Qed.
281
Global Instance internal_eq_proper (A : ofeT) :
282
  Proper (() ==> () ==> ()) (@uPred_internal_eq M A) := ne_proper_2 _.
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
Global Instance forall_ne A n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_forall M A).
Proof.
  by intros Ψ1 Ψ2 HΨ; unseal; split=> n' x; split; intros HP a; apply HΨ.
Qed.
Global Instance forall_proper A :
  Proper (pointwise_relation _ () ==> ()) (@uPred_forall M A).
Proof.
  by intros Ψ1 Ψ2 HΨ; unseal; split=> n' x; split; intros HP a; apply HΨ.
Qed.
Global Instance exist_ne A n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_exist M A).
Proof.
  intros Ψ1 Ψ2 HΨ.
  unseal; split=> n' x ??; split; intros [a ?]; exists a; by apply HΨ.
Qed.
Global Instance exist_proper A :
  Proper (pointwise_relation _ () ==> ()) (@uPred_exist M A).
Proof.
  intros Ψ1 Ψ2 HΨ.
  unseal; split=> n' x ?; split; intros [a ?]; exists a; by apply HΨ.
Qed.
Global Instance later_contractive : Contractive (@uPred_later M).
Proof.
307 308
  unseal; intros [|n] P Q HPQ; split=> -[|n'] x ?? //=; try omega.
  apply HPQ; eauto using cmra_validN_S.
309 310 311
Qed.
Global Instance later_proper' :
  Proper (() ==> ()) (@uPred_later M) := ne_proper _.
312 313 314 315 316 317 318
Global Instance plainly_ne : NonExpansive (@uPred_plainly M).
Proof.
  intros n P1 P2 HP.
  unseal; split=> n' x; split; apply HP; eauto using @ucmra_unit_validN.
Qed.
Global Instance plainly_proper :
  Proper (() ==> ()) (@uPred_plainly M) := ne_proper _.
319
Global Instance persistently_ne : NonExpansive (@uPred_persistently M).
320
Proof.
321
  intros n P1 P2 HP.
322 323
  unseal; split=> n' x; split; apply HP; eauto using @cmra_core_validN.
Qed.
324 325
Global Instance persistently_proper :
  Proper (() ==> ()) (@uPred_persistently M) := ne_proper _.
326
Global Instance ownM_ne : NonExpansive (@uPred_ownM M).
327
Proof.
328
  intros n a b Ha.
329 330 331
  unseal; split=> n' x ? /=. by rewrite (dist_le _ _ _ _ Ha); last lia.
Qed.
Global Instance ownM_proper: Proper (() ==> ()) (@uPred_ownM M) := ne_proper _.
332 333
Global Instance cmra_valid_ne {A : cmraT} :
  NonExpansive (@uPred_cmra_valid M A).
334
Proof.
335
  intros n a b Ha; unseal; split=> n' x ? /=.
336 337 338 339
  by rewrite (dist_le _ _ _ _ Ha); last lia.
Qed.
Global Instance cmra_valid_proper {A : cmraT} :
  Proper (() ==> ()) (@uPred_cmra_valid M A) := ne_proper _.
340
Global Instance bupd_ne : NonExpansive (@uPred_bupd M).
341
Proof.
342
  intros n P Q HPQ.
343 344 345 346 347
  unseal; split=> n' x; split; intros HP k yf ??;
    destruct (HP k yf) as (x'&?&?); auto;
    exists x'; split; auto; apply HPQ; eauto using cmra_validN_op_l.
Qed.
Global Instance bupd_proper : Proper (() ==> ()) (@uPred_bupd M) := ne_proper _.
348 349 350 351
Global Instance uPred_valid_proper : Proper (() ==> iff) (@uPred_valid M).
Proof. solve_proper. Qed.
Global Instance uPred_valid_mono : Proper (() ==> impl) (@uPred_valid M).
Proof. solve_proper. Qed.
352 353 354
Global Instance uPred_valid_flip_mono :
  Proper (flip () ==> flip impl) (@uPred_valid M).
Proof. solve_proper. Qed.
355 356

(** Introduction and elimination rules *)
Ralf Jung's avatar
Ralf Jung committed
357
Lemma pure_intro φ P : φ  P  ⌜φ⌝.
358
Proof. by intros ?; unseal; split. Qed.
359
Lemma pure_elim' φ P : (φ  True  P)  ⌜φ⌝  P.
360
Proof. unseal; intros HP; split=> n x ??. by apply HP. Qed.
Ralf Jung's avatar
Ralf Jung committed
361
Lemma pure_forall_2 {A} (φ : A  Prop) : ( x : A, ⌜φ x)   x : A, φ x.
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
Proof. by unseal. Qed.

Lemma and_elim_l P Q : P  Q  P.
Proof. by unseal; split=> n x ? [??]. Qed.
Lemma and_elim_r P Q : P  Q  Q.
Proof. by unseal; split=> n x ? [??]. Qed.
Lemma and_intro P Q R : (P  Q)  (P  R)  P  Q  R.
Proof. intros HQ HR; unseal; split=> n x ??; by split; [apply HQ|apply HR]. Qed.

Lemma or_intro_l P Q : P  P  Q.
Proof. unseal; split=> n x ??; left; auto. Qed.
Lemma or_intro_r P Q : Q  P  Q.
Proof. unseal; split=> n x ??; right; auto. Qed.
Lemma or_elim P Q R : (P  R)  (Q  R)  P  Q  R.
Proof. intros HP HQ; unseal; split=> n x ? [?|?]. by apply HP. by apply HQ. Qed.

Lemma impl_intro_r P Q R : (P  Q  R)  P  Q  R.
Proof.
  unseal; intros HQ; split=> n x ?? n' x' ????. apply HQ;
    naive_solver eauto using uPred_mono, uPred_closed, cmra_included_includedN.
Qed.
Lemma impl_elim P Q R : (P  Q  R)  (P  Q)  P  R.
Proof. by unseal; intros HP HP'; split=> n x ??; apply HP with n x, HP'. Qed.

Lemma forall_intro {A} P (Ψ : A  uPred M): ( a, P  Ψ a)  P   a, Ψ a.
Proof. unseal; intros HPΨ; split=> n x ?? a; by apply HPΨ. Qed.
Lemma forall_elim {A} {Ψ : A  uPred M} a : ( a, Ψ a)  Ψ a.
Proof. unseal; split=> n x ? HP; apply HP. Qed.

Lemma exist_intro {A} {Ψ : A  uPred M} a : Ψ a   a, Ψ a.
Proof. unseal; split=> n x ??; by exists a. Qed.
Lemma exist_elim {A} (Φ : A  uPred M) Q : ( a, Φ a  Q)  ( a, Φ a)  Q.
Proof. unseal; intros HΦΨ; split=> n x ? [a ?]; by apply HΦΨ with a. Qed.

396
Lemma internal_eq_refl {A : ofeT} (a : A) : uPred_valid (M:=M) (a  a).
397
Proof. unseal; by split=> n x ??; simpl. Qed.
398 399 400
Lemma internal_eq_rewrite {A : ofeT} a b (Ψ : A  uPred M) :
  NonExpansive Ψ  a  b  Ψ a  Ψ b.
Proof. intros HΨ. unseal; split=> n x ?? n' x' ??? Ha. by apply HΨ with n a. Qed.
401 402

(* BI connectives *)
403
Lemma sep_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
404 405
Proof.
  intros HQ HQ'; unseal.
406
  split; intros n' x ? (x1&x2&?&?&?); exists x1,x2; ofe_subst x;
407 408
    eauto 7 using cmra_validN_op_l, cmra_validN_op_r, uPred_in_entails.
Qed.
409
Lemma True_sep_1 P : P  True  P.
410 411 412
Proof.
  unseal; split; intros n x ??. exists (core x), x. by rewrite cmra_core_l.
Qed.
413
Lemma True_sep_2 P : True  P  P.
414
Proof.
415
  unseal; split; intros n x ? (x1&x2&?&_&?); ofe_subst;
416 417
    eauto using uPred_mono, cmra_includedN_r.
Qed.
418
Lemma sep_comm' P Q : P  Q  Q  P.
419 420 421
Proof.
  unseal; split; intros n x ? (x1&x2&?&?&?); exists x2, x1; by rewrite (comm op).
Qed.
422
Lemma sep_assoc' P Q R : (P  Q)  R  P  (Q  R).
423 424 425 426 427 428
Proof.
  unseal; split; intros n x ? (x1&x2&Hx&(y1&y2&Hy&?&?)&?).
  exists y1, (y2  x2); split_and?; auto.
  + by rewrite (assoc op) -Hy -Hx.
  + by exists y2, x2.
Qed.
429
Lemma wand_intro_r P Q R : (P  Q  R)  P  Q - R.
430 431 432 433 434
Proof.
  unseal=> HPQR; split=> n x ?? n' x' ???; apply HPQR; auto.
  exists x, x'; split_and?; auto.
  eapply uPred_closed with n; eauto using cmra_validN_op_l.
Qed.
435
Lemma wand_elim_l' P Q R : (P  Q - R)  P  Q  R.
436
Proof.
437
  unseal =>HPQR. split; intros n x ? (?&?&?&?&?). ofe_subst.
438 439 440
  eapply HPQR; eauto using cmra_validN_op_l.
Qed.

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
(* The plainness modality *)
Lemma plainly_mono P Q : (P  Q)   P   Q.
Proof. intros HP; unseal; split=> n x ? /=. apply HP, ucmra_unit_validN. Qed.
Lemma plainly_elim' P :  P   P.
Proof. unseal; split; simpl; eauto using uPred_mono, @ucmra_unit_leastN. Qed.
Lemma plainly_idemp P :  P    P.
Proof. unseal; split=> n x ?? //. Qed.

Lemma plainly_forall_2 {A} (Ψ : A  uPred M) : ( a,  Ψ a)  (  a, Ψ a).
Proof. by unseal. Qed.
Lemma plainly_exist_1 {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof. by unseal. Qed.

Lemma prop_ext P Q :  ((P  Q)  (Q  P))  P  Q.
Proof.
  unseal; split=> n x ? /= HPQ; split=> n' x' ? HP;
    split; eapply HPQ; eauto using @ucmra_unit_least.
Qed.

460
(* Always *)
461
Lemma persistently_mono P Q : (P  Q)   P   Q.
462
Proof. intros HP; unseal; split=> n x ? /=. by apply HP, cmra_core_validN. Qed.
463
Lemma persistently_elim P :  P  P.
464 465 466 467
Proof.
  unseal; split=> n x ? /=.
  eauto using uPred_mono, @cmra_included_core, cmra_included_includedN.
Qed.
468
Lemma persistently_idemp_2 P :  P    P.
469 470
Proof. unseal; split=> n x ?? /=. by rewrite cmra_core_idemp. Qed.

471
Lemma persistently_forall_2 {A} (Ψ : A  uPred M) : ( a,  Ψ a)  (  a, Ψ a).
472
Proof. by unseal. Qed.
473
Lemma persistently_exist_1 {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
474 475
Proof. by unseal. Qed.

476
Lemma persistently_and_sep_l_1 P Q :  P  Q   P  Q.
477 478 479 480 481
Proof.
  unseal; split=> n x ? [??]; exists (core x), x; simpl in *.
  by rewrite cmra_core_l cmra_core_idemp.
Qed.

Ralf Jung's avatar
Ralf Jung committed
482 483
(* The following two laws are very similar, and indeed they hold not just for □
   and ■, but for any modality defined as `M P n x := ∀ y, R x y → P n y`. *)
484 485 486 487 488 489 490 491 492 493 494 495 496 497
Lemma persistently_impl_plainly P Q : ( P   Q)   ( P  Q).
Proof.
  unseal; split=> /= n x ? HPQ n' x' ????.
  eapply uPred_mono with (core x), cmra_included_includedN; auto.
  apply (HPQ n' x); eauto using cmra_validN_le.
Qed.

Lemma plainly_impl_plainly P Q : ( P   Q)   ( P  Q).
Proof.
  unseal; split=> /= n x ? HPQ n' x' ????.
  eapply uPred_mono with ε, cmra_included_includedN; auto.
  apply (HPQ n' x); eauto using cmra_validN_le.
Qed.

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
(* Later *)
Lemma later_mono P Q : (P  Q)   P   Q.
Proof.
  unseal=> HP; split=>-[|n] x ??; [done|apply HP; eauto using cmra_validN_S].
Qed.
Lemma löb P : ( P  P)  P.
Proof.
  unseal; split=> n x ? HP; induction n as [|n IH]; [by apply HP|].
  apply HP, IH, uPred_closed with (S n); eauto using cmra_validN_S.
Qed.
Lemma later_forall_2 {A} (Φ : A  uPred M) : ( a,  Φ a)    a, Φ a.
Proof. unseal; by split=> -[|n] x. Qed.
Lemma later_exist_false {A} (Φ : A  uPred M) :
  (  a, Φ a)   False  ( a,  Φ a).
Proof. unseal; split=> -[|[|n]] x /=; eauto. Qed.
513
Lemma later_sep P Q :  (P  Q)   P   Q.
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
Proof.
  unseal; split=> n x ?; split.
  - destruct n as [|n]; simpl.
    { by exists x, (core x); rewrite cmra_core_r. }
    intros (x1&x2&Hx&?&?); destruct (cmra_extend n x x1 x2)
      as (y1&y2&Hx'&Hy1&Hy2); eauto using cmra_validN_S; simpl in *.
    exists y1, y2; split; [by rewrite Hx'|by rewrite Hy1 Hy2].
  - destruct n as [|n]; simpl; [done|intros (x1&x2&Hx&?&?)].
    exists x1, x2; eauto using dist_S.
Qed.
Lemma later_false_excluded_middle P :  P   False  ( False  P).
Proof.
  unseal; split=> -[|n] x ? /= HP; [by left|right].
  intros [|n'] x' ????; [|done].
  eauto using uPred_closed, uPred_mono, cmra_included_includedN.
Qed.
530
Lemma persistently_later P :   P    P.
531
Proof. by unseal. Qed.
532 533
Lemma plainly_later P :   P    P.
Proof. by unseal. Qed.
534 535 536

(* Own *)
Lemma ownM_op (a1 a2 : M) :
537
  uPred_ownM (a1  a2)  uPred_ownM a1  uPred_ownM a2.
538 539 540 541 542 543 544 545
Proof.
  unseal; split=> n x ?; split.
  - intros [z ?]; exists a1, (a2  z); split; [by rewrite (assoc op)|].
    split. by exists (core a1); rewrite cmra_core_r. by exists z.
  - intros (y1&y2&Hx&[z1 Hy1]&[z2 Hy2]); exists (z1  z2).
    by rewrite (assoc op _ z1) -(comm op z1) (assoc op z1)
      -(assoc op _ a2) (comm op z1) -Hy1 -Hy2.
Qed.
546
Lemma persistently_ownM_core (a : M) : uPred_ownM a   uPred_ownM (core a).
547 548 549
Proof.
  split=> n x /=; unseal; intros Hx. simpl. by apply cmra_core_monoN.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
550
Lemma ownM_unit : uPred_valid (M:=M) (uPred_ownM ε).
551 552 553 554 555 556 557 558 559 560 561 562
Proof. unseal; split=> n x ??; by  exists x; rewrite left_id. Qed.
Lemma later_ownM a :  uPred_ownM a   b, uPred_ownM b   (a  b).
Proof.
  unseal; split=> -[|n] x /= ? Hax; first by eauto using ucmra_unit_leastN.
  destruct Hax as [y ?].
  destruct (cmra_extend n x a y) as (a'&y'&Hx&?&?); auto using cmra_validN_S.
  exists a'. rewrite Hx. eauto using cmra_includedN_l.
Qed.

(* Valid *)
Lemma ownM_valid (a : M) : uPred_ownM a   a.
Proof.
563
  unseal; split=> n x Hv [a' ?]; ofe_subst; eauto using cmra_validN_op_l.
564
Qed.
565
Lemma cmra_valid_intro {A : cmraT} (a : A) :  a  uPred_valid (M:=M) ( a).
566 567 568
Proof. unseal=> ?; split=> n x ? _ /=; by apply cmra_valid_validN. Qed.
Lemma cmra_valid_elim {A : cmraT} (a : A) : ¬ {0} a   a  False.
Proof. unseal=> Ha; split=> n x ??; apply Ha, cmra_validN_le with n; auto. Qed.
569
Lemma plainly_cmra_valid_1 {A : cmraT} (a : A) :  a    a.
570 571 572 573 574
Proof. by unseal. Qed.
Lemma cmra_valid_weaken {A : cmraT} (a b : A) :  (a  b)   a.
Proof. unseal; split=> n x _; apply cmra_validN_op_l. Qed.

(* Basic update modality *)
575
Lemma bupd_intro P : P == P.
576 577 578 579
Proof.
  unseal. split=> n x ? HP k yf ?; exists x; split; first done.
  apply uPred_closed with n; eauto using cmra_validN_op_l.
Qed.
580
Lemma bupd_mono P Q : (P  Q)  (|==> P) == Q.
581 582 583 584 585
Proof.
  unseal. intros HPQ; split=> n x ? HP k yf ??.
  destruct (HP k yf) as (x'&?&?); eauto.
  exists x'; split; eauto using uPred_in_entails, cmra_validN_op_l.
Qed.
586
Lemma bupd_trans P : (|==> |==> P) == P.
587
Proof. unseal; split; naive_solver. Qed.
588
Lemma bupd_frame_r P R : (|==> P)  R == P  R.
589 590 591 592 593 594 595 596 597
Proof.
  unseal; split; intros n x ? (x1&x2&Hx&HP&?) k yf ??.
  destruct (HP k (x2  yf)) as (x'&?&?); eauto.
  { by rewrite assoc -(dist_le _ _ _ _ Hx); last lia. }
  exists (x'  x2); split; first by rewrite -assoc.
  exists x', x2; split_and?; auto.
  apply uPred_closed with n; eauto 3 using cmra_validN_op_l, cmra_validN_op_r.
Qed.
Lemma bupd_ownM_updateP x (Φ : M  Prop) :
Ralf Jung's avatar
Ralf Jung committed
598
  x ~~>: Φ  uPred_ownM x ==  y, ⌜Φ y  uPred_ownM y.
599 600 601 602 603 604 605
Proof.
  unseal=> Hup; split=> n x2 ? [x3 Hx] k yf ??.
  destruct (Hup k (Some (x3  yf))) as (y&?&?); simpl in *.
  { rewrite /= assoc -(dist_le _ _ _ _ Hx); auto. }
  exists (y  x3); split; first by rewrite -assoc.
  exists y; eauto using cmra_includedN_l.
Qed.
606 607 608 609 610 611
Lemma bupd_plainly P : (|==>  P)  P.
Proof.
  unseal; split => n x Hnx /= Hng.
  destruct (Hng n ε) as [? [_ Hng']]; try rewrite right_id; auto.
  eapply uPred_mono; eauto using ucmra_unit_leastN.
Qed.
612 613

(* Products *)
614
Lemma prod_equivI {A B : ofeT} (x y : A * B) : x  y  x.1  y.1  x.2  y.2.
615 616 617 618
Proof. by unseal. Qed.
Lemma prod_validI {A B : cmraT} (x : A * B) :  x   x.1   x.2.
Proof. by unseal. Qed.

619
(* Type-level Later *)
620
Lemma later_equivI {A : ofeT} (x y : A) : Next x  Next y   (x  y).
621 622 623
Proof. by unseal. Qed.

(* Discrete *)
624
Lemma discrete_valid {A : cmraT} `{!CmraDiscrete A} (a : A) :  a  ⌜✓ a.
625
Proof. unseal; split=> n x _. by rewrite /= -cmra_discrete_valid_iff. Qed.
626
Lemma discrete_eq {A : ofeT} (a b : A) : Discrete a  a  b  a  b.
627
Proof.
628
  unseal=> ?. apply (anti_symm ()); split=> n x ?; by apply (discrete_iff n).
629 630 631
Qed.

(* Option *)
632
Lemma option_equivI {A : ofeT} (mx my : option A) :
633 634 635 636 637 638 639 640 641 642
  mx  my  match mx, my with
             | Some x, Some y => x  y | None, None => True | _, _ => False
             end.
Proof.
  unseal. do 2 split. by destruct 1. by destruct mx, my; try constructor.
Qed.
Lemma option_validI {A : cmraT} (mx : option A) :
   mx  match mx with Some x =>  x | None => True end.
Proof. unseal. by destruct mx. Qed.

643 644
(* Contractive functions *)
Lemma contractiveI {A B : ofeT} (f : A  B) :
645
  Contractive f  ( a b,  (a  b)  f a  f b).
646 647
Proof.
  split; unseal; intros Hf.
648 649
  - intros a b; split=> n x _; apply Hf.
  - intros i a b; eapply Hf, ucmra_unit_validN.
650 651
Qed.

652
(* Functions *)
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
653
Lemma ofe_funC_equivI {A B} (f g : A -c> B) : f  g   x, f x  g x.
654
Proof. by unseal. Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
655
Lemma ofe_morC_equivI {A B : ofeT} (f g : A -n> B) : f  g   x, f x  g x.
656
Proof. by unseal. Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
657 658 659 660 661

(* Sig ofes *)
Lemma sig_equivI {A : ofeT} (P : A  Prop) (x y : sigC P) :
  x  y  proj1_sig x  proj1_sig y.
Proof. by unseal. Qed.
662
End primitive.
663
End uPred.