double_negation.v 14.4 KB
Newer Older
1
2
3
From iris.algebra Require Import upred.
Import upred.

4
(* In this file we show that the bupd can be thought of a kind of
5
6
7
8
9
10
11
12
13
14
   step-indexed double-negation when our meta-logic is classical *)

(* To define this, we need a way to talk about iterated later modalities: *)
Definition uPred_laterN {M} (n : nat) (P : uPred M) : uPred M :=
  Nat.iter n uPred_later P.
Instance: Params (@uPred_laterN) 2.
Notation "▷^ n P" := (uPred_laterN n P)
  (at level 20, n at level 9, right associativity,
   format "▷^ n  P") : uPred_scope.

15
Definition uPred_nnupd {M} (P: uPred M) : uPred M :=
16
17
   n, (P - ^n False) - ^n False.

18
Notation "|=n=> Q" := (uPred_nnupd Q)
19
20
21
22
23
24
25
  (at level 99, Q at level 200, format "|=n=>  Q") : uPred_scope.
Notation "P =n=> Q" := (P  |=n=> Q)
  (at level 99, Q at level 200, only parsing) : C_scope.
Notation "P =n=★ Q" := (P - |=n=> Q)%I
  (at level 99, Q at level 200, format "P  =n=★  Q") : uPred_scope.

(* Our goal is to prove that:
26
27
  (1) |=n=> has (nearly) all the properties of the |==> modality that are used in Iris
  (2) If our meta-logic is classical, then |=n=> and |==> are equivalent
28
29
*)

30
Section bupd_nnupd.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Context {M : ucmraT}.
Implicit Types φ : Prop.
Implicit Types P Q : uPred M.
Implicit Types A : Type.
Implicit Types x : M.
Import uPred.

(* Helper lemmas about iterated later modalities *)
Lemma laterN_big n a x φ: {n} x   a  n  (^a ( φ))%I n x  φ.
Proof.
  induction 2 as [| ?? IHle].
  - induction a; repeat (rewrite //= || uPred.unseal). 
    intros Hlater. apply IHa; auto using cmra_validN_S.
    move:Hlater; repeat (rewrite //= || uPred.unseal). 
  - intros. apply IHle; auto using cmra_validN_S.
    eapply uPred_closed; eauto using cmra_validN_S.
Qed.

Lemma laterN_small n a x φ: {n} x   n < a  (^a ( φ))%I n x.
Proof.
  induction 2.
  - induction n as [| n IHn]; [| move: IHn];
      repeat (rewrite //= || uPred.unseal).
    naive_solver eauto using cmra_validN_S.
  - induction n as [| n IHn]; [| move: IHle];
      repeat (rewrite //= || uPred.unseal).
    red; rewrite //=. intros.
    eapply (uPred_closed _ _ (S n)); eauto using cmra_validN_S.
Qed.

61
62
(* It is easy to show that most of the basic properties of bupd that
   are used throughout Iris hold for nnupd. 
63
64
65

   In fact, the first three properties that follow hold for any
   modality of the form (- -★ Q) -★ Q for arbitrary Q. The situation
66
   here is slightly different, because nnupd is of the form 
67
68
69
   ∀ n, (- -★ (Q n)) -★ (Q n), but the proofs carry over straightforwardly.

 *)
70

71
Lemma nnupd_intro P : P =n=> P.
72
Proof. apply forall_intro=>?. apply wand_intro_l, wand_elim_l. Qed.
73
Lemma nnupd_mono P Q : (P  Q)  (|=n=> P) =n=> Q.
74
75
76
Proof.
  intros HPQ. apply forall_intro=>n.
  apply wand_intro_l.  rewrite -{1}HPQ.
77
  rewrite /uPred_nnupd (forall_elim n).
78
79
  apply wand_elim_r.
Qed.
80
Lemma nnupd_frame_r P R : (|=n=> P)  R =n=> P  R.
81
82
83
Proof.
  apply forall_intro=>n. apply wand_intro_r.
  rewrite (comm _ P) -wand_curry.
84
  rewrite /uPred_nnupd (forall_elim n).
85
86
  by rewrite -assoc wand_elim_r wand_elim_l.
Qed.
87
Lemma nnupd_ownM_updateP x (Φ : M  Prop) :
88
  x ~~>: Φ  uPred_ownM x =n=>  y,  Φ y  uPred_ownM y.
89
Proof. 
90
  intros Hbupd. split. rewrite /uPred_nnupd. repeat uPred.unseal. 
91
92
93
  intros n y ? Hown a.
  red; rewrite //= => n' yf ??.
  inversion Hown as (x'&Hequiv).
94
  edestruct (Hbupd n' (Some (x'  yf))) as (y'&?&?); eauto.
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
  { by rewrite //= assoc -(dist_le _ _ _ _ Hequiv). }
  case (decide (a  n')).
  - intros Hle Hwand.
    exfalso. eapply laterN_big; last (uPred.unseal; eapply (Hwand n' (y'  x'))); eauto.
    * rewrite comm -assoc. done. 
    * rewrite comm -assoc. done. 
    * eexists. split; eapply uPred_mono; red; rewrite //=; eauto.
  - intros; assert (n' < a). omega.
    move: laterN_small. uPred.unseal.
    naive_solver.
Qed.

(* However, the transitivity property seems to be much harder to
   prove. This is surprising, because transitivity does hold for 
   modalities of the form (- -★ Q) -★ Q. What goes wrong when we quantify
   now over n? 
 *)

113
Remark nnupd_trans P: (|=n=> |=n=> P)  (|=n=> P).
114
Proof.
115
  rewrite /uPred_nnupd.
116
117
  apply forall_intro=>a. apply wand_intro_l.
  rewrite (forall_elim a).
118
119
  rewrite (nnupd_intro (P - _)).
  rewrite /uPred_nnupd.
120
121
122
123
  (* Oops -- the exponents of the later modality don't match up! *)
Abort.

(* Instead, we will need to prove this in the model. We start by showing that 
124
   nnupd is the limit of a the following sequence:
125
126
127
128
129
130
131

   (- -★ False) - ★ False,
   (- -★ ▷ False) - ★ ▷ False ∧ (- -★ False) - ★ False,
   (- -★ ▷^2 False) - ★ ▷^2 False ∧ (- -★ ▷ False) - ★ ▷ False ∧ (- -★ False) - ★ False,
   ...

   Then, it is easy enough to show that each of the uPreds in this sequence
132
   is transitive. It turns out that this implies that nnupd is transitive. *)
133
134
135
   

(* The definition of the sequence above: *)
136
Fixpoint uPred_nnupd_k {M} k (P: uPred M) : uPred M :=
137
138
139
  ((P - ^k False) - ^k False) 
  match k with 
    O => True
140
  | S k' => uPred_nnupd_k k' P
141
142
  end.

143
Notation "|=n=>_ k Q" := (uPred_nnupd_k k Q)
144
145
146
  (at level 99, k at level 9, Q at level 200, format "|=n=>_ k  Q") : uPred_scope.


147
148
(* One direction of the limiting process is easy -- nnupd implies nnupd_k for each k *)
Lemma nnupd_trunc1 k P: (|=n=> P)  |=n=>_k P.
149
Proof.
150
  induction k. 
151
  - rewrite /uPred_nnupd_k /uPred_nnupd. 
152
153
    rewrite (forall_elim 0) //= right_id //.
  - simpl. apply and_intro; auto.
154
    rewrite /uPred_nnupd. 
155
    rewrite (forall_elim (S k)) //=.
156
157
Qed.

158
Lemma nnupd_k_elim n k P: n  k  ((|=n=>_k P)  (P - (^n False))   (^n False))%I.
159
160
161
162
163
164
165
166
Proof.
  induction k.
  - inversion 1; subst; rewrite //= ?right_id. apply wand_elim_l.
  - inversion 1; subst; rewrite //= ?right_id.
    * rewrite and_elim_l. apply wand_elim_l.
    * rewrite and_elim_r IHk //.
Qed.

167
Lemma nnupd_k_unfold k P:
168
169
  (|=n=>_(S k) P)  ((P - (^(S k) False)) - (^(S k) False))  (|=n=>_k P).
Proof. done.  Qed.
170
Lemma nnupd_k_unfold' k P n x:
171
172
173
  (|=n=>_(S k) P)%I n x  (((P - (^(S k) False)) - (^(S k) False))  (|=n=>_k P))%I n x.
Proof. done.  Qed.

174
175
Lemma nnupd_k_weaken k P: (|=n=>_(S k) P)  |=n=>_k P.
Proof. by rewrite nnupd_k_unfold and_elim_r. Qed.
176

177
(* Now we are ready to show nnupd is the limit -- ie, for each k, it is within distance k
178
   of the kth term of the sequence *)
179
Lemma nnupd_nnupd_k_dist k P: (|=n=> P)%I {k} (|=n=>_k P)%I.
180
  split; intros n' x Hle Hx. split.
181
  - by apply (nnupd_trunc1 k).
182
  - revert n' x Hle Hx; induction k; intros n' x Hle Hx;
183
      rewrite ?nnupd_k_unfold' /uPred_nnupd.
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    * rewrite //=. unseal.
      inversion Hle; subst.
      intros (HnnP&_) n k' x' ?? HPF.
      case (decide (k' < n)).
      ** move: laterN_small; uPred.unseal; naive_solver.
      ** intros. exfalso. eapply HnnP; eauto.
         assert (n  k'). omega.
         intros n'' x'' ???.
         specialize (HPF n'' x''). exfalso.
         eapply laterN_big; last (unseal; eauto).
         eauto. omega.
    * inversion Hle; subst.
      ** unseal. intros (HnnP&HnnP_IH) n k' x' ?? HPF.
         case (decide (k' < n)).
         *** move: laterN_small; uPred.unseal; naive_solver.
         *** intros. exfalso. assert (n  k'). omega.
             assert (n = S k  n < S k) as [->|] by omega.
             **** eapply laterN_big; eauto; unseal. eapply HnnP; eauto.
202
             **** move:nnupd_k_elim. unseal. intros Hnnupdk. 
203
                  eapply laterN_big; eauto. unseal.
204
                  eapply (Hnnupdk n k); first omega; eauto.
205
206
207
208
209
210
                  exists x, x'. split_and!; eauto. eapply uPred_closed; eauto.
                  eapply cmra_validN_op_l; eauto.
      ** intros HP. eapply IHk; auto.
         move:HP. unseal. intros (?&?); naive_solver.
Qed.

211
212
(* nnupd_k has a number of structural properties, including transitivity *)
Lemma nnupd_k_intro k P: P  (|=n=>_k P).
213
214
215
216
217
218
219
Proof.
  induction k; rewrite //= ?right_id.
  - apply wand_intro_l. apply wand_elim_l.
  - apply and_intro; auto. 
    apply wand_intro_l. apply wand_elim_l.
Qed.

220
Lemma nnupd_k_mono k P Q: (P  Q)  (|=n=>_k P)  (|=n=>_k Q).
221
222
223
224
225
Proof.
  induction k; rewrite //= ?right_id=>HPQ. 
  - do 2 (apply wand_mono; auto).
  - apply and_mono; auto; do 2 (apply wand_mono; auto).
Qed.
226
227
Instance nnupd_k_mono' k: Proper (() ==> ()) (@uPred_nnupd_k M k).
Proof. by intros P P' HP; apply nnupd_k_mono. Qed.
228

229
Instance nnupd_k_ne k n : Proper (dist n ==> dist n) (@uPred_nnupd_k M k).
230
Proof. induction k; rewrite //= ?right_id=>P P' HP; by rewrite HP. Qed.
231
232
233
234
Lemma nnupd_k_proper k P Q: (P  Q)  (|=n=>_k P)  (|=n=>_k Q).
Proof. intros HP; apply (anti_symm ()); eapply nnupd_k_mono; by rewrite HP. Qed.
Instance nnupd_k_proper' k: Proper (() ==> ()) (@uPred_nnupd_k M k).
Proof. by intros P P' HP; apply nnupd_k_proper. Qed.
235

236
Lemma nnupd_k_trans k P: (|=n=>_k |=n=>_k P)  (|=n=>_k P).
237
238
239
240
Proof.
  revert P.
  induction k; intros P.
  - rewrite //= ?right_id. apply wand_intro_l. 
241
242
    rewrite {1}(nnupd_k_intro 0 (P - False)%I) //= ?right_id. apply wand_elim_r. 
  - rewrite {2}(nnupd_k_unfold k P).
243
    apply and_intro.
244
245
    * rewrite (nnupd_k_unfold k P). rewrite and_elim_l.
      rewrite nnupd_k_unfold. rewrite and_elim_l.
246
      apply wand_intro_l. 
247
248
249
      rewrite {1}(nnupd_k_intro (S k) (P - ^(S k) (False)%I)).
      rewrite nnupd_k_unfold and_elim_l. apply wand_elim_r.
    * do 2 rewrite nnupd_k_weaken //.
250
251
Qed.

252
Lemma nnupd_trans P : (|=n=> |=n=> P) =n=> P.
253
254
Proof.
  split=> n x ? Hnn.
255
256
257
258
259
  eapply nnupd_nnupd_k_dist in Hnn; eauto.
  eapply (nnupd_k_ne (n) n ((|=n=>_(n) P)%I)) in Hnn; eauto;
    [| symmetry; eapply nnupd_nnupd_k_dist].
  eapply nnupd_nnupd_k_dist; eauto.
  by apply nnupd_k_trans.
260
261
Qed.

262
263
264
265
(* Now that we have shown nnupd has all of the desired properties of
   bupd, we go further and show it is in fact equivalent to bupd! The
   direction from bupd to nnupd is similar to the proof of
   nnupd_ownM_updateP *)
266

267
Lemma bupd_nnupd P: (|==> P)  |=n=> P.
268
Proof.
269
  split. rewrite /uPred_nnupd. repeat uPred.unseal. intros n x ? Hbupd a.
270
  red; rewrite //= => n' yf ??.
271
  edestruct Hbupd as (x'&?&?); eauto.
272
273
274
275
276
277
278
279
280
281
282
283
284
  case (decide (a  n')).
  - intros Hle Hwand.
    exfalso. eapply laterN_big; last (uPred.unseal; eapply (Hwand n' x')); eauto.
    * rewrite comm. done. 
    * rewrite comm. done. 
  - intros; assert (n' < a). omega.
    move: laterN_small. uPred.unseal.
    naive_solver.
Qed.

(* However, the other direction seems to need a classical axiom: *)
Section classical.
Context (not_all_not_ex:  (P : M  Prop), ¬ ( n : M, ¬ P n)   n : M, P n).
285
Lemma nnupd_bupd P:  (|=n=> P)  (|==> P).
286
Proof.
287
  rewrite /uPred_nnupd.
288
289
  split. uPred.unseal; red; rewrite //=.
  intros n x ? Hforall k yf Hle ?.
290
  apply not_all_not_ex.
291
292
293
294
295
296
297
298
299
300
  intros Hfal.
  specialize (Hforall k k).
  eapply laterN_big; last (uPred.unseal; red; rewrite //=; eapply Hforall);
    eauto.
  red; rewrite //= => n' x' ???.
  case (decide (n' = k)); intros.
  - subst. exfalso. eapply Hfal. rewrite (comm op); eauto.
  - assert (n' < k). omega.
    move: laterN_small. uPred.unseal. naive_solver.
Qed.
301
End classical.
302

303
304
(* We might wonder whether we can prove an adequacy lemma for nnupd. We could combine
   the adequacy lemma for bupd with the previous result to get adquacy for nnupd, but 
305
306
   this would rely on the classical axiom we needed to prove the equivalence! Can
   we establish adequacy without axioms? Unfortunately not, because adequacy for 
307
   nnupd would imply double negation elimination, which is classical: *)
308

309
Lemma nnupd_dne φ: True  (|=n=> ((¬¬ φ  φ)): uPred M)%I.
310
Proof.
311
  rewrite /uPred_nnupd. apply forall_intro=>n.
312
313
314
  apply wand_intro_l. rewrite ?right_id. 
  assert ( φ, ¬¬¬¬φ  ¬¬φ) by naive_solver.
  assert (Hdne: ¬¬ (¬¬φ  φ)) by naive_solver.
315
  split. unseal. intros n' ?? Hupd.
316
317
318
  case (decide (n' < n)).
  - intros. move: laterN_small. unseal. naive_solver.
  - intros. assert (n  n'). omega. 
319
    exfalso. specialize (Hupd n' ).
320
321
    eapply Hdne. intros Hfal.
    eapply laterN_big; eauto. 
322
    unseal. rewrite right_id in Hupd *; naive_solver.
323
324
Qed.

325
(* Nevertheless, we can prove a weaker form of adequacy (which is equvialent to adequacy
326
   under classical axioms) directly without passing through the proofs for bupd: *)
327
328
329
330
331
Lemma adequacy_helper1 P n k x:
  {S n + k} x  ¬¬ (Nat.iter (S n) (λ P, |=n=>  P)%I P (S n + k) x) 
             ¬¬ ( x', {n + k} (x')  Nat.iter n (λ P, |=n=>  P)%I P (n + k) (x')).
Proof.
  revert k P x. induction n.
332
  - rewrite /uPred_nnupd. unseal=> k P x Hx Hf1 Hf2.
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    eapply Hf1. intros Hf3.
    eapply (laterN_big (S k) (S k)); eauto.
    specialize (Hf3 (S k) (S k) ). rewrite right_id in Hf3 *. unseal.
    intros Hf3. eapply Hf3; eauto.
    intros ??? Hx'. rewrite left_id in Hx' *=> Hx'.
    unseal. 
    assert (n' < S k  n' = S k) as [|] by omega.
    * intros. move:(laterN_small n' (S k) x' False). rewrite //=. unseal. intros Hsmall. 
      eapply Hsmall; eauto.
    * subst. intros. exfalso. eapply Hf2. exists x'. split; eauto using cmra_validN_S.
  - intros k P x Hx. rewrite ?Nat_iter_S_r. 
    replace (S (S n) + k) with (S n + (S k)) by omega.
    replace (S n + k) with (n + (S k)) by omega.
    intros. eapply IHn. replace (S n + S k) with (S (S n) + k) by omega. eauto.
    rewrite ?Nat_iter_S_r. eauto.
Qed.
349

350
351
352
353
354
355
356
357
358
359
Lemma adequacy_helper2 P n k x:
  {S n + k} x  ¬¬ (Nat.iter (S n) (λ P, |=n=>  P)%I P (S n + k) x) 
             ¬¬ ( x', {k} (x')  Nat.iter 0 (λ P, |=n=>  P)%I P k (x')).
Proof.
  revert x. induction n.
  - specialize (adequacy_helper1 P 0). rewrite //=. naive_solver.
  - intros ?? Hfal%adequacy_helper1; eauto using cmra_validN_S.
    intros Hfal'. eapply Hfal. intros (x''&?&?).
    eapply IHn; eauto.
Qed.
360

361
362
363
364
365
366
367
368
369
370
371
372
Lemma adequacy φ n : (True  Nat.iter n (λ P, |=n=>  P) ( φ))  ¬¬ φ.
Proof.
  cut ( x, {S n} x  Nat.iter n (λ P, |=n=>  P)%I ( φ)%I (S n) x  ¬¬φ).
  { intros help H. eapply (help ); eauto using ucmra_unit_validN.
    eapply H; try unseal; eauto using ucmra_unit_validN. red; rewrite //=. }
  destruct n.
  - rewrite //=; unseal; auto.
  - intros ??? Hfal.
    eapply (adequacy_helper2 _ n 1); (replace (S n + 1) with (S (S n)) by omega); eauto.
    unseal. intros (x'&?&Hphi). simpl in *.
    eapply Hfal. auto.
Qed.
373

374
(* Open question:
375

376
377
   Do the basic properties of the |==> modality (bupd_intro, bupd_mono, rvs_trans, rvs_frame_r,
      bupd_ownM_updateP, and adequacy) uniquely characterize |==>?
378
*)
379

380
End bupd_nnupd.