sts.v 18.1 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
From stdpp Require Export set.
2 3
From iris.algebra Require Export cmra.
From iris.algebra Require Import dra.
4
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
5 6
Local Arguments valid _ _ !_ /.
Local Arguments op _ _ !_ !_ /.
Ralf Jung's avatar
Ralf Jung committed
7
Local Arguments core _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
8

Robbert Krebbers's avatar
Robbert Krebbers committed
9
(** * Definition of STSs *)
10
Module sts.
11
Structure stsT := STS {
Ralf Jung's avatar
Ralf Jung committed
12 13
  state : Type;
  token : Type;
Robbert Krebbers's avatar
Robbert Krebbers committed
14 15
  prim_step : relation state;
  tok : state  set token;
Ralf Jung's avatar
Ralf Jung committed
16
}.
17
Arguments STS {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
18 19 20 21
Arguments prim_step {_} _ _.
Arguments tok {_} _.
Notation states sts := (set (state sts)).
Notation tokens sts := (set (token sts)).
Ralf Jung's avatar
Ralf Jung committed
22

Robbert Krebbers's avatar
Robbert Krebbers committed
23 24 25
(** * Theory and definitions *)
Section sts.
Context {sts : stsT}.
Ralf Jung's avatar
Ralf Jung committed
26

Robbert Krebbers's avatar
Robbert Krebbers committed
27 28
(** ** Step relations *)
Inductive step : relation (state sts * tokens sts) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
29
  | Step s1 s2 T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
30
     prim_step s1 s2  tok s1  T1  tok s2  T2 
Ralf Jung's avatar
Ralf Jung committed
31
     tok s1  T1  tok s2  T2  step (s1,T1) (s2,T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
32
Notation steps := (rtc step).
Robbert Krebbers's avatar
Robbert Krebbers committed
33
Inductive frame_step (T : tokens sts) (s1 s2 : state sts) : Prop :=
34
  (* Probably equivalent definition: (\mathcal{L}(s') ⊥ T) ∧ s \rightarrow s' *)
Robbert Krebbers's avatar
Robbert Krebbers committed
35
  | Frame_step T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
36
     T1  tok s1  T  step (s1,T1) (s2,T2)  frame_step T s1 s2.
Ralf Jung's avatar
Ralf Jung committed
37
Notation frame_steps T := (rtc (frame_step T)).
Robbert Krebbers's avatar
Robbert Krebbers committed
38 39 40

(** ** Closure under frame steps *)
Record closed (S : states sts) (T : tokens sts) : Prop := Closed {
Robbert Krebbers's avatar
Robbert Krebbers committed
41
  closed_disjoint s : s  S  tok s  T;
Robbert Krebbers's avatar
Robbert Krebbers committed
42 43
  closed_step s1 s2 : s1  S  frame_step T s1 s2  s2  S
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
44
Definition up (s : state sts) (T : tokens sts) : states sts :=
Ralf Jung's avatar
Ralf Jung committed
45
  {[ s' | frame_steps T s s' ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
46
Definition up_set (S : states sts) (T : tokens sts) : states sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
47
  S = λ s, up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
48

Robbert Krebbers's avatar
Robbert Krebbers committed
49 50
(** Tactic setup *)
Hint Resolve Step.
51 52 53 54
Hint Extern 50 (equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (¬equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
55
Hint Extern 50 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
56 57

(** ** Setoids *)
Ralf Jung's avatar
Ralf Jung committed
58 59 60
Instance framestep_mono : Proper (flip () ==> (=) ==> (=) ==> impl) frame_step.
Proof.
  intros ?? HT ?? <- ?? <-; destruct 1; econstructor;
61
    eauto with sts; set_solver.
Ralf Jung's avatar
Ralf Jung committed
62
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
63
Global Instance framestep_proper : Proper (() ==> (=) ==> (=) ==> iff) frame_step.
64
Proof. move=> ?? /collection_equiv_spec [??]; split; by apply framestep_mono. Qed.
65
Instance closed_proper' : Proper (() ==> () ==> impl) closed.
Robbert Krebbers's avatar
Robbert Krebbers committed
66
Proof. destruct 3; constructor; intros until 0; setoid_subst; eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
67
Global Instance closed_proper : Proper (() ==> () ==> iff) closed.
68
Proof. by split; apply closed_proper'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
69
Global Instance up_preserving : Proper ((=) ==> flip () ==> ()) up.
Robbert Krebbers's avatar
Robbert Krebbers committed
70
Proof.
71
  intros s ? <- T T' HT ; apply elem_of_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
  induction 1 as [|s1 s2 s3 [T1 T2]]; [constructor|].
73
  eapply elem_of_mkSet, rtc_l; [eapply Frame_step with T1 T2|]; eauto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
75
Global Instance up_proper : Proper ((=) ==> () ==> ()) up.
76 77 78
Proof.
  by move=> ??? ?? /collection_equiv_spec [??]; split; apply up_preserving.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
79
Global Instance up_set_preserving : Proper (() ==> flip () ==> ()) up_set.
Ralf Jung's avatar
Ralf Jung committed
80 81
Proof.
  intros S1 S2 HS T1 T2 HT. rewrite /up_set.
82
  f_equiv=> // s1 s2 Hs. by apply up_preserving.
Ralf Jung's avatar
Ralf Jung committed
83
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
84
Global Instance up_set_proper : Proper (() ==> () ==> ()) up_set.
85 86 87 88
Proof.
  move=> S1 S2 /collection_equiv_spec [??] T1 T2 /collection_equiv_spec [??];
    split; by apply up_set_preserving.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
89 90 91

(** ** Properties of closure under frame steps *)
Lemma closed_steps S T s1 s2 :
Ralf Jung's avatar
Ralf Jung committed
92
  closed S T  s1  S  frame_steps T s1 s2  s2  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
93 94
Proof. induction 3; eauto using closed_step. Qed.
Lemma closed_op T1 T2 S1 S2 :
95
  closed S1 T1  closed S2 T2  closed (S1  S2) (T1  T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
96
Proof.
97
  intros [? Hstep1] [? Hstep2]; split; [set_solver|].
Robbert Krebbers's avatar
Robbert Krebbers committed
98
  intros s3 s4; rewrite !elem_of_intersection; intros [??] [T3 T4 ?]; split.
99 100
  - apply Hstep1 with s3, Frame_step with T3 T4; auto with sts.
  - apply Hstep2 with s3, Frame_step with T3 T4; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102
Qed.
Lemma step_closed s1 s2 T1 T2 S Tf :
Robbert Krebbers's avatar
Robbert Krebbers committed
103 104
  step (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf 
  s2  S  T2  Tf  tok s2  T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
105
Proof.
106
  inversion_clear 1 as [???? HR Hs1 Hs2]; intros [? Hstep]??; split_and?; auto.
107
  - eapply Hstep with s1, Frame_step with T1 T2; auto with sts.
108
  - set_solver -Hstep Hs1 Hs2.
Robbert Krebbers's avatar
Robbert Krebbers committed
109
Qed.
110
Lemma steps_closed s1 s2 T1 T2 S Tf :
Robbert Krebbers's avatar
Robbert Krebbers committed
111 112
  steps (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf 
  tok s1  T1  s2  S  T2  Tf  tok s2  T2.
113
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
114 115 116 117 118
  remember (s1,T1) as sT1 eqn:HsT1; remember (s2,T2) as sT2 eqn:HsT2.
  intros Hsteps; revert s1 T1 HsT1 s2 T2 HsT2.
  induction Hsteps as [?|? [s2 T2] ? Hstep Hsteps IH];
     intros s1 T1 HsT1 s2' T2' ?????; simplify_eq; first done.
  destruct (step_closed s1 s2 T1 T2 S Tf) as (?&?&?); eauto.
119
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
120 121

(** ** Properties of the closure operators *)
122
Lemma elem_of_up s T : s  up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
123
Proof. constructor. Qed.
124
Lemma subseteq_up_set S T : S  up_set S T.
Robbert Krebbers's avatar
Robbert Krebbers committed
125
Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed.
126 127
Lemma elem_of_up_set S T s : s  S  s  up_set S T.
Proof. apply subseteq_up_set. Qed.
Ralf Jung's avatar
Ralf Jung committed
128 129
Lemma up_up_set s T : up s T  up_set {[ s ]} T.
Proof. by rewrite /up_set collection_bind_singleton. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
Lemma closed_up_set S T : ( s, s  S  tok s  T)  closed (up_set S T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
131
Proof.
132
  intros HS; unfold up_set; split.
133
  - intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs').
134
    specialize (HS s' Hs'); clear Hs' S.
135
    induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
136
    inversion_clear Hstep; apply IH; clear IH; auto with sts.
137
  - intros s1 s2; rewrite /up; set_unfold; intros (s&?&?) ?; exists s.
Robbert Krebbers's avatar
Robbert Krebbers committed
138 139
    split; [eapply rtc_r|]; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
140
Lemma closed_up s T : tok s  T  closed (up s T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
Proof.
142
  intros; rewrite -(collection_bind_singleton (λ s, up s T) s).
143
  apply closed_up_set; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
144
Qed.
145 146
Lemma closed_up_set_empty S : closed (up_set S ) .
Proof. eauto using closed_up_set with sts. Qed.
147
Lemma closed_up_empty s : closed (up s ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
148
Proof. eauto using closed_up with sts. Qed.
149
Lemma up_closed S T : closed S T  up_set S T  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
150
Proof.
151 152
  intros ?; apply collection_equiv_spec; split; auto using subseteq_up_set.
  intros s; unfold up_set; rewrite elem_of_bind; intros (s'&Hstep&?).
Robbert Krebbers's avatar
Robbert Krebbers committed
153 154
  induction Hstep; eauto using closed_step.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
155 156 157 158 159 160 161
Lemma up_subseteq s T S : closed S T  s  S  sts.up s T  S.
Proof. move=> ?? s' ?. eauto using closed_steps. Qed.
Lemma up_set_subseteq S1 T S2 : closed S2 T  S1  S2  sts.up_set S1 T  S2.
Proof. move=> ?? s [s' [? ?]]. eauto using closed_steps. Qed.
End sts.

Notation steps := (rtc step).
Ralf Jung's avatar
Ralf Jung committed
162
Notation frame_steps T := (rtc (frame_step T)).
Robbert Krebbers's avatar
Robbert Krebbers committed
163 164 165 166 167 168 169 170

(* The type of bounds we can give to the state of an STS. This is the type
   that we equip with an RA structure. *)
Inductive car (sts : stsT) :=
  | auth : state sts  set (token sts)  car sts
  | frag : set (state sts)  set (token sts )  car sts.
Arguments auth {_} _ _.
Arguments frag {_} _ _.
171
End sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
172

173 174 175 176
Notation stsT := sts.stsT.
Notation STS := sts.STS.

(** * STSs form a disjoint RA *)
Robbert Krebbers's avatar
Robbert Krebbers committed
177
Section sts_dra.
178 179
Context (sts : stsT).
Import sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
180 181 182 183 184 185
Implicit Types S : states sts.
Implicit Types T : tokens sts.

Inductive sts_equiv : Equiv (car sts) :=
  | auth_equiv s T1 T2 : T1  T2  auth s T1  auth s T2
  | frag_equiv S1 S2 T1 T2 : T1  T2  S1  S2  frag S1 T1  frag S2 T2.
186 187
Existing Instance sts_equiv.
Instance sts_valid : Valid (car sts) := λ x,
188
  match x with
Robbert Krebbers's avatar
Robbert Krebbers committed
189
  | auth s T => tok s  T
190
  | frag S' T => closed S' T   s, s  S'
Robbert Krebbers's avatar
Robbert Krebbers committed
191
  end.
192
Instance sts_core : Core (car sts) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
193 194 195 196 197 198
  match x with
  | frag S' _ => frag (up_set S'  ) 
  | auth s _  => frag (up s ) 
  end.
Inductive sts_disjoint : Disjoint (car sts) :=
  | frag_frag_disjoint S1 S2 T1 T2 :
199
     ( s, s  S1  S2)  T1  T2  frag S1 T1  frag S2 T2
Robbert Krebbers's avatar
Robbert Krebbers committed
200 201
  | auth_frag_disjoint s S T1 T2 : s  S  T1  T2  auth s T1  frag S T2
  | frag_auth_disjoint s S T1 T2 : s  S  T1  T2  frag S T1  auth s T2.
202 203
Existing Instance sts_disjoint.
Instance sts_op : Op (car sts) := λ x1 x2,
Robbert Krebbers's avatar
Robbert Krebbers committed
204 205 206 207 208 209 210
  match x1, x2 with
  | frag S1 T1, frag S2 T2 => frag (S1  S2) (T1  T2)
  | auth s T1, frag _ T2 => auth s (T1  T2)
  | frag _ T1, auth s T2 => auth s (T1  T2)
  | auth s T1, auth _ T2 => auth s (T1  T2)(* never happens *)
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
211
Hint Extern 50 (equiv (A:=set _) _ _) => set_solver : sts.
212
Hint Extern 50 ( s : state sts, _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
213 214
Hint Extern 50 (_  _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
215 216
Hint Extern 50 (_  _) => set_solver : sts.

217 218 219 220 221 222
Global Instance auth_proper s : Proper (() ==> ()) (@auth sts s).
Proof. by constructor. Qed.
Global Instance frag_proper : Proper (() ==> () ==> ()) (@frag sts).
Proof. by constructor. Qed.

Instance sts_equivalence: Equivalence (() : relation (car sts)).
Robbert Krebbers's avatar
Robbert Krebbers committed
223 224
Proof.
  split.
225 226
  - by intros []; constructor.
  - by destruct 1; constructor.
227
  - destruct 1; inversion_clear 1; constructor; etrans; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
228
Qed.
229
Lemma sts_dra_mixin : DRAMixin (car sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
230 231
Proof.
  split.
232 233 234 235
  - apply _.
  - by do 2 destruct 1; constructor; setoid_subst.
  - by destruct 1; constructor; setoid_subst.
  - by destruct 1; simpl; intros ?; setoid_subst.
236
  - by intros ? [|]; destruct 1; inversion_clear 1; econstructor; setoid_subst.
237
  - destruct 3; simpl in *; destruct_and?; eauto using closed_op;
238
      match goal with H : closed _ _ |- _ => destruct H end; set_solver.
239 240
  - intros []; naive_solver eauto using closed_up, closed_up_set,
      elem_of_up, elem_of_up_set with sts.
241 242 243 244 245
  - intros [] [] []; constructor; rewrite ?assoc; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 1; constructor; auto with sts.
  - destruct 3; constructor; auto with sts.
246 247
  - intros []; constructor; eauto with sts.
  - intros []; constructor; auto with sts.
248
  - intros [s T|S T]; constructor; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
249
    + rewrite (up_closed (up _ _)); auto using closed_up with sts.
250
    + rewrite (up_closed (up_set _ _)); eauto using closed_up_set with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
251 252
  - intros x y. exists (core (x  y))=> ?? Hxy; split_and?.
    + destruct Hxy; constructor; unfold up_set; set_solver.
253 254 255
    + destruct Hxy; simpl;
        eauto using closed_up_set_empty, closed_up_empty with sts.
    + destruct Hxy; econstructor;
256
        repeat match goal with
257 258 259 260
        | |- context [ up_set ?S ?T ] =>
           unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
        | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
261
        end; auto with sts.
262
Qed.
263 264
Canonical Structure stsDR : draT := DRAT (car sts) sts_dra_mixin.
End sts_dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
265 266 267

(** * The STS Resource Algebra *)
(** Finally, the general theory of STS that should be used by users *)
268 269
Notation stsC sts := (validityC (stsDR sts)).
Notation stsR sts := (validityR (stsDR sts)).
Robbert Krebbers's avatar
Robbert Krebbers committed
270 271 272

Section sts_definitions.
  Context {sts : stsT}.
273
  Definition sts_auth (s : sts.state sts) (T : sts.tokens sts) : stsR sts :=
274
    to_validity (sts.auth s T).
275
  Definition sts_frag (S : sts.states sts) (T : sts.tokens sts) : stsR sts :=
276
    to_validity (sts.frag S T).
277
  Definition sts_frag_up (s : sts.state sts) (T : sts.tokens sts) : stsR sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
278 279 280 281 282 283 284 285 286 287 288 289
    sts_frag (sts.up s T) T.
End sts_definitions.
Instance: Params (@sts_auth) 2.
Instance: Params (@sts_frag) 1.
Instance: Params (@sts_frag_up) 2.

Section stsRA.
Import sts.
Context {sts : stsT}.
Implicit Types s : state sts.
Implicit Types S : states sts.
Implicit Types T : tokens sts.
290
Arguments dra_valid _ !_/.
291

Robbert Krebbers's avatar
Robbert Krebbers committed
292 293
(** Setoids *)
Global Instance sts_auth_proper s : Proper (() ==> ()) (sts_auth s).
294
Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
295
Global Instance sts_frag_proper : Proper (() ==> () ==> ()) (@sts_frag sts).
296
Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
297
Global Instance sts_frag_up_proper s : Proper (() ==> ()) (sts_frag_up s).
298
Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
299

Robbert Krebbers's avatar
Robbert Krebbers committed
300
(** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
301
Lemma sts_auth_valid s T :  sts_auth s T  tok s  T.
302
Proof. done. Qed.
303
Lemma sts_frag_valid S T :  sts_frag S T  closed S T   s, s  S.
304
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
305
Lemma sts_frag_up_valid s T : tok s  T   sts_frag_up s T.
306
Proof. intros. apply sts_frag_valid; split. by apply closed_up. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
307

Robbert Krebbers's avatar
Robbert Krebbers committed
308 309
Lemma sts_auth_frag_valid_inv s S T1 T2 :
   (sts_auth s T1  sts_frag S T2)  s  S.
310
Proof. by intros (?&?&Hdisj); inversion Hdisj. Qed.
Ralf Jung's avatar
Ralf Jung committed
311

Robbert Krebbers's avatar
Robbert Krebbers committed
312 313 314 315
(** Op *)
Lemma sts_op_auth_frag s S T :
  s  S  closed S T  sts_auth s   sts_frag S T  sts_auth s T.
Proof.
316
  intros; split; [split|constructor; set_solver]; simpl.
317
  - intros (?&?&?); by apply closed_disjoint with S.
318
  - intros; split_and?; last constructor; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
319 320
Qed.
Lemma sts_op_auth_frag_up s T :
321 322 323
  sts_auth s   sts_frag_up s T  sts_auth s T.
Proof.
  intros; split; [split|constructor; set_solver]; simpl.
324
  - intros (?&[??]&?). by apply closed_disjoint with (up s T), elem_of_up.
325 326 327
  - intros; split_and?.
    + set_solver+.
    + by apply closed_up.
328
    + exists s. set_solver.
329 330
    + constructor; last set_solver. apply elem_of_up.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
331

Ralf Jung's avatar
Ralf Jung committed
332
Lemma sts_op_frag S1 S2 T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
333
  T1  T2  sts.closed S1 T1  sts.closed S2 T2 
Ralf Jung's avatar
Ralf Jung committed
334 335
  sts_frag (S1  S2) (T1  T2)  sts_frag S1 T1  sts_frag S2 T2.
Proof.
336
  intros HT HS1 HS2. rewrite /sts_frag -to_validity_op //.
337
  move=>/=[?[? ?]]. split_and!; [set_solver..|constructor; set_solver].
Ralf Jung's avatar
Ralf Jung committed
338 339
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
340 341
(** Frame preserving updates *)
Lemma sts_update_auth s1 s2 T1 T2 :
342
  steps (s1,T1) (s2,T2)  sts_auth s1 T1 ~~> sts_auth s2 T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
343
Proof.
344
  intros ?; apply validity_update.
345
  inversion 3 as [|? S ? Tf|]; simplify_eq/=; destruct_and?.
346
  destruct (steps_closed s1 s2 T1 T2 S Tf) as (?&?&?); auto; [].
347
  repeat (done || constructor).
Robbert Krebbers's avatar
Robbert Krebbers committed
348
Qed.
Ralf Jung's avatar
Ralf Jung committed
349

350 351
Lemma sts_update_frag S1 S2 T1 T2 :
  closed S2 T2  S1  S2  T2  T1  sts_frag S1 T1 ~~> sts_frag S2 T2.
352
Proof.
353
  rewrite /sts_frag=> ? HS HT. apply validity_update.
354
  inversion 3 as [|? S ? Tf|]; simplify_eq/=.
355 356
  - split_and!. done. set_solver. constructor; set_solver.
  - split_and!. done. set_solver. constructor; set_solver.
357 358
Qed.

359 360
Lemma sts_update_frag_up s1 S2 T1 T2 :
  closed S2 T2  s1  S2  T2  T1  sts_frag_up s1 T1 ~~> sts_frag S2 T2.
Ralf Jung's avatar
Ralf Jung committed
361
Proof.
362 363
  intros ? ? HT; apply sts_update_frag; [intros; eauto using closed_steps..].
  rewrite <-HT. eapply up_subseteq; done.
Robbert Krebbers's avatar
Robbert Krebbers committed
364 365
Qed.

366 367
Lemma sts_up_set_intersection S1 Sf Tf :
  closed Sf Tf  S1  Sf  S1  up_set (S1  Sf) Tf.
368 369
Proof.
  intros Hclf. apply (anti_symm ()).
370 371
  - move=>s [HS1 HSf]. split. by apply HS1. by apply subseteq_up_set.
  - move=>s [HS1 [s' [/elem_of_mkSet Hsup Hs']]]. split; first done.
372
    eapply closed_steps, Hsup; first done. set_solver +Hs'.
373 374
Qed.

Janno's avatar
Janno committed
375 376 377 378 379
Global Instance sts_frag_peristent S : Persistent (sts_frag S ).
Proof.
  constructor; split=> //= [[??]]. by rewrite /dra.dra_core /= sts.up_closed.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
380
(** Inclusion *)
381 382 383
(* This is surprisingly different from to_validity_included. I am not sure
   whether this is because to_validity_included is non-canonical, or this
   one here is non-canonical - but I suspect both. *)
384
(* TODO: These have to be proven again. *)
385
(*
Robbert Krebbers's avatar
Robbert Krebbers committed
386
Lemma sts_frag_included S1 S2 T1 T2 :
387 388
  closed S2 T2 → S2 ≢ ∅ →
  (sts_frag S1 T1 ≼ sts_frag S2 T2) ↔
Robbert Krebbers's avatar
Robbert Krebbers committed
389
  (closed S1 T1 ∧ S1 ≢ ∅ ∧ ∃ Tf, T2 ≡ T1 ∪ Tf ∧ T1 ⊥ Tf ∧
390 391
                                 S2 ≡ S1 ∩ up_set S2 Tf).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
392
  intros ??; split.
393
  - intros [[???] ?].
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
  destruct (to_validity_included (sts_dra.car sts) (sts_dra.frag S1 T1) (sts_dra.frag S2 T2)) as [Hfincl Htoincl].
  intros Hcl2 HS2ne. split.
  - intros Hincl. destruct Hfincl as ((Hcl1 & ?) & (z & EQ & Hval & Hdisj)).
    { split; last done. split; done. }
    clear Htoincl. split_and!; try done; [].
    destruct z as [sf Tf|Sf Tf].
    { exfalso. inversion_clear EQ. }
    exists Tf. inversion_clear EQ as [|? ? ? ? HT2 HS2].
    inversion_clear Hdisj as [? ? ? ? _ HTdisj | |]. split_and!; [done..|].
    rewrite HS2. apply up_set_intersection. apply Hval.
  - intros (Hcl & Hne & (Tf & HT & HTdisj & HS)). destruct Htoincl as ((Hcl' & ?) & (z & EQ)); last first.
    { exists z. exact EQ. } clear Hfincl.
    split; first (split; done). exists (sts_dra.frag (up_set S2 Tf) Tf). split_and!.
    + constructor; done.
    + simpl. split.
      * apply closed_up_set. move=>s Hs2. move:(closed_disjoint _ _ Hcl2 _ Hs2).
        set_solver +HT.
Robbert Krebbers's avatar
Robbert Krebbers committed
411
      * by apply up_set_non_empty.
412
    + constructor; last done. by rewrite -HS.
413 414
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
415
Lemma sts_frag_included' S1 S2 T :
416
  closed S2 T → closed S1 T → S2 ≢ ∅ → S1 ≢ ∅ → S2 ≡ S1 ∩ up_set S2 ∅ →
Robbert Krebbers's avatar
Robbert Krebbers committed
417
  sts_frag S1 T ≼ sts_frag S2 T.
418
Proof.
419 420
  intros. apply sts_frag_included; split_and?; auto.
  exists ∅; split_and?; done || set_solver+.
421
Qed. *)
422
End stsRA.
423 424 425 426 427 428 429 430 431 432 433

(** STSs without tokens: Some stuff is simpler *)
Module sts_notok.
Structure stsT := STS {
  state : Type;
  prim_step : relation state;
}.
Arguments STS {_} _.
Arguments prim_step {_} _ _.
Notation states sts := (set (state sts)).

434 435
Definition stsT_token := Empty_set.
Definition stsT_tok {sts : stsT} (_ : state sts) : set stsT_token := .
436

437 438 439
Canonical Structure sts_notok (sts : stsT) : sts.stsT :=
  sts.STS (@prim_step sts) stsT_tok.
Coercion sts_notok.sts_notok : sts_notok.stsT >-> sts.stsT.
440

441 442 443 444
Section sts.
  Context {sts : stsT}.
  Implicit Types s : state sts.
  Implicit Types S : states sts.
445

446
  Notation prim_steps := (rtc prim_step).
447

448 449
  Lemma sts_step s1 s2 : prim_step s1 s2  sts.step (s1, ) (s2, ).
  Proof. intros. split; set_solver. Qed.
450

451 452
  Lemma sts_steps s1 s2 : prim_steps s1 s2  sts.steps (s1, ) (s2, ).
  Proof. induction 1; eauto using sts_step, rtc_refl, rtc_l. Qed.
453

454 455
  Lemma frame_prim_step T s1 s2 : sts.frame_step T s1 s2  prim_step s1 s2.
  Proof. inversion 1 as [??? Hstep]. by inversion_clear Hstep. Qed.
456

457 458 459 460 461
  Lemma prim_frame_step T s1 s2 : prim_step s1 s2  sts.frame_step T s1 s2.
  Proof.
    intros Hstep. apply sts.Frame_step with  ; first set_solver.
    by apply sts_step.
  Qed.
462

463 464 465
  Lemma mk_closed S :
    ( s1 s2, s1  S  prim_step s1 s2  s2  S)  sts.closed S .
  Proof. intros ?. constructor; [by set_solver|eauto using frame_prim_step]. Qed.
466 467 468 469 470 471 472
End sts.
End sts_notok.

Notation sts_notokT := sts_notok.stsT.
Notation STS_NoTok := sts_notok.STS.

Section sts_notokRA.
473 474 475 476 477 478 479 480
  Context {sts : sts_notokT}.
  Import sts_notok.
  Implicit Types s : state sts.
  Implicit Types S : states sts.

  Lemma sts_notok_update_auth s1 s2 :
    rtc prim_step s1 s2  sts_auth s1  ~~> sts_auth s2 .
  Proof. intros. by apply sts_update_auth, sts_steps. Qed.
481
End sts_notokRA.