heap.v 10.5 KB
Newer Older
1
2
From heap_lang Require Export derived.
From program_logic Require Import ownership auth.
Ralf Jung's avatar
Ralf Jung committed
3
From heap_lang Require Import notation.
4
5
6
7
8
Import uPred.
(* TODO: The entire construction could be generalized to arbitrary languages that have
   a finmap as their state. Or maybe even beyond "as their state", i.e. arbitrary
   predicates over finmaps instead of just ownP. *)

9
Definition heapRA := mapRA loc (exclRA (leibnizC val)).
10

11
12
13
Class HeapInG Σ (i : gid) := heap_inG :> InG heap_lang Σ i (authRA heapRA).
Instance heap_inG_auth `{HeapInG Σ i} : AuthInG heap_lang Σ i heapRA.
Proof. split; apply _. Qed.
14

15
16
Definition to_heap : state  heapRA := fmap Excl.
Definition from_heap : heapRA  state := omap (maybe Excl).
17

18
19
20
21
22
23
24
25
26
27
28
(* TODO: Do we want to expose heap ownership based on the state, or the heapRA?
   The former does not expose the annoying "Excl", so for now I am going for
   that. We should be able to derive the lemmas we want for this, too. *)
Definition heap_own {Σ} (i : gid) `{HeapInG Σ i}
  (γ : gname) (σ : state) : iPropG heap_lang Σ := auth_own i γ (to_heap σ).
Definition heap_mapsto {Σ} (i : gid) `{HeapInG Σ i}
  (γ : gname) (l : loc) (v : val) : iPropG heap_lang Σ := heap_own i γ {[ l  v ]}.
Definition heap_inv {Σ} (i : gid) `{HeapInG Σ i}
  (h : heapRA) : iPropG heap_lang Σ := ownP (from_heap h).
Definition heap_ctx {Σ} (i : gid) `{HeapInG Σ i}
  (γ : gname) (N : namespace) : iPropG heap_lang Σ := auth_ctx i γ N (heap_inv i).
29

30
31
32
33
34
35
36
Section heap.
  Context {Σ : iFunctorG} (HeapI : gid) `{!HeapInG Σ HeapI}.
  Implicit Types N : namespace.
  Implicit Types P : iPropG heap_lang Σ.
  Implicit Types σ : state.
  Implicit Types h g : heapRA.
  Implicit Types γ : gname.
37

Robbert Krebbers's avatar
Robbert Krebbers committed
38
  Lemma from_to_heap σ : from_heap (to_heap σ) = σ.
39
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
40
41
42
43
44
45
46
    apply map_eq=>l. rewrite lookup_omap lookup_fmap. by case (σ !! l).
  Qed.
  Lemma to_heap_valid σ :  to_heap σ.
  Proof. intros n l. rewrite lookup_fmap. by case (σ !! l). Qed.
  Hint Resolve to_heap_valid.

  Global Instance heap_inv_proper : Proper (() ==> ()) (heap_inv HeapI).
47
  Proof. intros h1 h2. by fold_leibniz=> ->. Qed.
48
49

  Lemma heap_own_op γ σ1 σ2 :
50
51
    (heap_own HeapI γ σ1  heap_own HeapI γ σ2)%I
     ( (σ1  σ2)  heap_own HeapI γ (σ1  σ2))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
52
53
  Proof.
 (* TODO. *)
54
55
56
57
  Abort.

  Lemma heap_own_mapsto γ σ l v :
    (* TODO: Is this the best way to express "l ∉ dom σ"? *)
58
59
    (heap_own HeapI γ σ  heap_mapsto HeapI γ l v)%I
     ( (σ !! l = None)  heap_own HeapI γ (<[l:=v]>σ))%I.
60
61
62
  Proof. (* TODO. *)
  Abort.

63
  (* TODO: Do we want equivalence to a big sum? *)
64

65
66
  Lemma heap_alloc N σ :
    ownP σ  pvs N N ( γ, heap_ctx HeapI γ N  heap_own HeapI γ σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
67
  Proof. by rewrite -{1}[σ]from_to_heap -(auth_alloc _ N). Qed.
68

Ralf Jung's avatar
Ralf Jung committed
69
70
71
72
73
74
75
  Lemma wp_alloc_heap N E γ σ e v P Q :
    nclose N  E   to_val e = Some v 
    P  heap_ctx HeapI γ N 
    P  (heap_own HeapI γ σ 
          ( l, σ !! l = None  heap_own HeapI γ (<[l:=v]>σ) - Q (LocV l))) 
    P  wp E (Alloc e) Q.
  Proof.
Ralf Jung's avatar
Ralf Jung committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    rewrite /heap_ctx /heap_own. intros HN Hval Hctx HP.
    set (LU (l : loc) := local_update_op (A:=heapRA) ({[ l  Excl v ]})).
    eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) _ (LU := LU)); simpl.
    { by eauto. } { by eauto. } { by eauto. }
    rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
    apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
    rewrite -assoc. apply const_elim_sep_l=>Hv /=.
    rewrite {1}[(ownP _)%I]pvs_timeless !pvs_frame_r. apply wp_strip_pvs.
    rewrite -wp_alloc_pst; first (apply sep_mono; first done); try eassumption.
    apply later_mono, forall_intro=>l. rewrite (forall_elim l). apply wand_intro_l.
    rewrite -(exist_intro l) !left_id. rewrite always_and_sep_l -assoc.
    apply const_elim_sep_l=>Hfresh.
    assert (σ !! l = None) as Hfresh_σ.
    { move: Hfresh (Hv 0%nat l). rewrite /from_heap /to_heap lookup_omap.
      rewrite lookup_op !lookup_fmap.
      case _:(σ !! l)=>[v'|]/=; case _:(hf !! l)=>[[?||]|]/=; done. }
    rewrite const_equiv // const_equiv; last first.
    { move=>n l'. move:(Hv n l') Hfresh.
      rewrite /from_heap /to_heap !lookup_omap !lookup_op !lookup_fmap !Hfresh_σ /=.
      destruct (decide (l=l')).
      - subst l'. rewrite lookup_singleton !Hfresh_σ.
        case _:(hf !! l)=>[[?||]|]/=; done.
      - rewrite lookup_singleton_ne //.
        case _:(σ !! l')=>[?|]/=; case _:(hf !! l')=>[[?||]|]/=; done. }
    rewrite !left_id -later_intro.
    assert ({[l  Excl v]}  to_heap σ = to_heap (<[l:=v]> σ)) as EQ.
    { apply: map_eq=>l'. rewrite lookup_op !lookup_fmap.
      destruct (decide (l=l')); simplify_map_equality.
      - rewrite lookup_insert. done.
      - rewrite !lookup_insert_ne // lookup_empty left_id. done. }
    rewrite EQ. apply sep_mono; last done. f_equiv. apply: map_eq=>l'. 
    move:(Hv 0%nat l') Hfresh. destruct (decide (l=l')); simplify_map_equality.
    - rewrite lookup_insert !lookup_omap !lookup_op !lookup_fmap lookup_insert.
      case _:(σ !! l')=>[?|]/=; case _:(hf !! l')=>[[?||]|]/=; done.
    - rewrite lookup_insert_ne // !lookup_omap !lookup_op !lookup_fmap lookup_insert_ne //.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
112

113
  Lemma wp_load_heap N E γ σ l v P Q :
114
    σ !! l = Some v 
Ralf Jung's avatar
Ralf Jung committed
115
    nclose N  E 
116
117
    P  heap_ctx HeapI γ N 
    P  (heap_own HeapI γ σ   (heap_own HeapI γ σ - Q v)) 
118
119
    P  wp E (Load (Loc l)) Q.
  Proof.
Ralf Jung's avatar
Ralf Jung committed
120
    rewrite /heap_ctx /heap_own. intros Hl HN Hctx HP.
121
    eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) (λ _:(), id)); simpl; eauto.
122
123
124
125
126
127
    rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
    apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
    rewrite -assoc. apply const_elim_sep_l=>Hv /=.
    rewrite {1}[(ownP _)%I]pvs_timeless !pvs_frame_r. apply wp_strip_pvs.
    rewrite -wp_load_pst; first (apply sep_mono; first done); last first.
    { move: (Hv 0%nat l). rewrite lookup_omap lookup_op lookup_fmap Hl /=.
Ralf Jung's avatar
Ralf Jung committed
128
      case _:(hf !! l)=>[[?||]|]; by auto. }
129
130
    apply later_mono, wand_intro_l.
    rewrite -(exist_intro ()) left_id const_equiv // left_id.
131
132
133
    by rewrite -later_intro.
  Qed.

134
  Lemma wp_load N E γ l v P Q :
Ralf Jung's avatar
Ralf Jung committed
135
    nclose N  E 
136
137
    P  heap_ctx HeapI γ N 
    P  (heap_mapsto HeapI γ l v   (heap_mapsto HeapI γ l v - Q v)) 
Ralf Jung's avatar
Ralf Jung committed
138
139
    P  wp E (Load (Loc l)) Q.
  Proof.
Ralf Jung's avatar
Ralf Jung committed
140
    intros HN. rewrite /heap_mapsto. apply wp_load_heap; last done.
Ralf Jung's avatar
Ralf Jung committed
141
142
    by simplify_map_equality.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
143

Ralf Jung's avatar
Ralf Jung committed
144
145
146
  Lemma wp_store_heap N E γ σ l v' e v P Q :
    σ !! l = Some v'  to_val e = Some v  
    nclose N  E 
Ralf Jung's avatar
Ralf Jung committed
147
148
149
150
    P  heap_ctx HeapI γ N 
    P  (heap_own HeapI γ σ   (heap_own HeapI γ (<[l:=v]>σ) - Q (LitV LitUnit))) 
    P  wp E (Store (Loc l) e) Q.
  Proof.
Ralf Jung's avatar
Ralf Jung committed
151
    rewrite /heap_ctx /heap_own. intros Hl Hval HN Hctx HP.
152
    eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) (λ _:(), alter (λ _, Excl v) l)); simpl; eauto.
Ralf Jung's avatar
Ralf Jung committed
153
154
155
156
157
158
159
    rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
    apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
    rewrite -assoc. apply const_elim_sep_l=>Hv /=.
    rewrite {1}[(ownP _)%I]pvs_timeless !pvs_frame_r. apply wp_strip_pvs.
    rewrite -wp_store_pst; first (apply sep_mono; first done); try eassumption; last first.
    { move: (Hv 0%nat l). rewrite lookup_omap lookup_op lookup_fmap Hl /=.
      case _:(hf !! l)=>[[?||]|]; by auto. }
160
161
    apply later_mono, wand_intro_l.
    rewrite -(exist_intro ()) const_equiv //; last first.
Ralf Jung's avatar
Ralf Jung committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    (* TODO I think there are some general fin_map lemmas hiding in here. *)
    { split.
      - exists (Excl v'). by rewrite lookup_fmap Hl.
      - move=>n l'. move: (Hv n l'). rewrite !lookup_op.
        destruct (decide (l=l')); simplify_map_equality.
        + rewrite lookup_alter lookup_fmap Hl /=. case (hf !! l')=>[[?||]|]; by auto.
        + rewrite lookup_alter_ne //. }
    rewrite left_id -later_intro.
    assert (alter (λ _ : excl val, Excl v) l (to_heap σ) = to_heap (<[l:=v]> σ)) as EQ.
    { apply: map_eq=>l'. destruct (decide (l=l')); simplify_map_equality.
      + by rewrite lookup_alter /to_heap !lookup_fmap lookup_insert Hl /=.
      + rewrite lookup_alter_ne // !lookup_fmap lookup_insert_ne //. }
    rewrite !EQ. apply sep_mono; last done.
    f_equiv. apply: map_eq=>l'. move: (Hv 0%nat l'). destruct (decide (l=l')); simplify_map_equality.
    - rewrite /from_heap /to_heap lookup_insert lookup_omap !lookup_op.
      rewrite !lookup_fmap lookup_insert Hl.
      case (hf !! l')=>[[?||]|]; auto; contradiction.
    - rewrite /from_heap /to_heap lookup_insert_ne // !lookup_omap !lookup_op !lookup_fmap.
      rewrite lookup_insert_ne //.
  Qed.

Ralf Jung's avatar
Ralf Jung committed
183
184
185
  Lemma wp_store N E γ l v' e v P Q :
    to_val e = Some v  
    nclose N  E  
Ralf Jung's avatar
Ralf Jung committed
186
187
188
189
    P  heap_ctx HeapI γ N 
    P  (heap_mapsto HeapI γ l v'   (heap_mapsto HeapI γ l v - Q (LitV LitUnit))) 
    P  wp E (Store (Loc l) e) Q.
  Proof.
Ralf Jung's avatar
Ralf Jung committed
190
    rewrite /heap_mapsto=>Hval HN Hctx HP. eapply wp_store_heap; try eassumption; last first.
Ralf Jung's avatar
Ralf Jung committed
191
192
193
    - rewrite HP. apply sep_mono; first done. by rewrite insert_singleton.
    - by rewrite lookup_insert.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
194
195
196
197
198
199
200
201
202

  Lemma wp_cas_fail_heap N E γ σ l v' e1 v1 e2 v2 P Q :
    to_val e1 = Some v1  to_val e2 = Some v2  σ !! l = Some v'  v'  v1 
    nclose N  E 
    P  heap_ctx HeapI γ N 
    P  (heap_own HeapI γ σ   (heap_own HeapI γ σ - Q 'false)) 
    P  wp E (Cas (Loc l) e1 e2) Q.
  Proof.
    rewrite /heap_ctx /heap_own. intros He1 He2 Hl Hne HN Hctx HP.
203
    eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) (λ _:(), id)); simpl; eauto.
Ralf Jung's avatar
Ralf Jung committed
204
205
206
207
208
209
210
211
    { split_ands; eexists; eauto. }
    rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
    apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
    rewrite -assoc. apply const_elim_sep_l=>Hv /=.
    rewrite {1}[(ownP _)%I]pvs_timeless !pvs_frame_r. apply wp_strip_pvs.
    rewrite -wp_cas_fail_pst; first (apply sep_mono; first done); try eassumption; last first.
    { move: (Hv 0%nat l). rewrite lookup_omap lookup_op lookup_fmap Hl /=.
      case _:(hf !! l)=>[[?||]|]; by auto. }
212
213
    apply later_mono, wand_intro_l.
    rewrite -(exist_intro ()) left_id const_equiv // left_id.
Ralf Jung's avatar
Ralf Jung committed
214
215
216
217
218
219
220
221
222
223
224
225
226
    by rewrite -later_intro.
  Qed.

  Lemma wp_cas_fail N E γ l v' e1 v1 e2 v2 P Q :
    to_val e1 = Some v1  to_val e2 = Some v2  v'  v1 
    nclose N  E 
    P  heap_ctx HeapI γ N 
    P  (heap_mapsto HeapI γ l v'   (heap_mapsto HeapI γ l v' - Q 'false)) 
    P  wp E (Cas (Loc l) e1 e2) Q.
  Proof.
    rewrite /heap_mapsto=>???. eapply wp_cas_fail_heap; try eassumption.
    by simplify_map_equality.
  Qed.
227
End heap.