cofe.v 14.3 KB
Newer Older
1
Require Export algebra.base.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
3
4

(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
5
Instance: Params (@dist) 3.
6
7
8
9
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
Hint Extern 0 (?x {_} ?y) => reflexivity.
Hint Extern 0 (_ {_} _) => symmetry; assumption.
10
11
12
13
14
15
16
17

Tactic Notation "cofe_subst" ident(x) :=
  repeat match goal with
  | _ => progress simplify_equality'
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
Tactic Notation "cofe_subst" :=
18
19
  repeat match goal with
  | _ => progress simplify_equality'
20
21
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
22
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
23
24
25

Record chain (A : Type) `{Dist A} := {
  chain_car :> nat  A;
26
  chain_cauchy n i : n < i  chain_car i {n} chain_car (S n)
Robbert Krebbers's avatar
Robbert Krebbers committed
27
28
29
30
31
}.
Arguments chain_car {_ _} _ _.
Arguments chain_cauchy {_ _} _ _ _ _.
Class Compl A `{Dist A} := compl : chain A  A.

32
Record CofeMixin A `{Equiv A, Compl A} := {
33
  mixin_equiv_dist x y : x  y   n, x {n} y;
34
  mixin_dist_equivalence n : Equivalence (dist n);
35
  mixin_dist_S n x y : x {S n} y  x {n} y;
36
  mixin_conv_compl (c : chain A) n : compl c {n} c (S n)
Robbert Krebbers's avatar
Robbert Krebbers committed
37
38
}.
Class Contractive `{Dist A, Dist B} (f : A -> B) :=
39
  contractive n x y : ( i, i < n  x {i} y)  f x {n} f y.
Robbert Krebbers's avatar
Robbert Krebbers committed
40
41
42
43
44
45
46

(** Bundeled version *)
Structure cofeT := CofeT {
  cofe_car :> Type;
  cofe_equiv : Equiv cofe_car;
  cofe_dist : Dist cofe_car;
  cofe_compl : Compl cofe_car;
47
  cofe_mixin : CofeMixin cofe_car
Robbert Krebbers's avatar
Robbert Krebbers committed
48
}.
49
Arguments CofeT {_ _ _ _} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
50
Add Printing Constructor cofeT.
51
52
53
54
55
56
57
58
59
60
61
Existing Instances cofe_equiv cofe_dist cofe_compl.
Arguments cofe_car : simpl never.
Arguments cofe_equiv : simpl never.
Arguments cofe_dist : simpl never.
Arguments cofe_compl : simpl never.
Arguments cofe_mixin : simpl never.

(** Lifting properties from the mixin *)
Section cofe_mixin.
  Context {A : cofeT}.
  Implicit Types x y : A.
62
  Lemma equiv_dist x y : x  y   n, x {n} y.
63
64
65
  Proof. apply (mixin_equiv_dist _ (cofe_mixin A)). Qed.
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
  Proof. apply (mixin_dist_equivalence _ (cofe_mixin A)). Qed.
66
  Lemma dist_S n x y : x {S n} y  x {n} y.
67
  Proof. apply (mixin_dist_S _ (cofe_mixin A)). Qed.
68
  Lemma conv_compl (c : chain A) n : compl c {n} c (S n).
69
70
71
  Proof. apply (mixin_conv_compl _ (cofe_mixin A)). Qed.
End cofe_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
72
73
(** General properties *)
Section cofe.
74
75
  Context {A : cofeT}.
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
76
77
78
79
80
81
82
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
    * by intros x; rewrite equiv_dist.
    * by intros x y; rewrite !equiv_dist.
    * by intros x y z; rewrite !equiv_dist; intros; transitivity y.
  Qed.
83
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
84
85
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
Robbert Krebbers's avatar
Robbert Krebbers committed
86
87
    * by transitivity x1; [|transitivity y1].
    * by transitivity x2; [|transitivity y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
88
  Qed.
89
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
90
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
91
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
92
93
94
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
95
  Lemma dist_le (x y : A) n n' : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
96
  Proof. induction 2; eauto using dist_S. Qed.
97
  Instance ne_proper {B : cofeT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
98
99
    `{! n, Proper (dist n ==> dist n) f} : Proper (() ==> ()) f | 100.
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
100
  Instance ne_proper_2 {B C : cofeT} (f : A  B  C)
Robbert Krebbers's avatar
Robbert Krebbers committed
101
102
103
104
    `{! n, Proper (dist n ==> dist n ==> dist n) f} :
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
105
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
106
  Qed.
107
108
109
  Lemma contractive_S {B : cofeT} {f : A  B} `{!Contractive f} n x y :
    x {n} y  f x {S n} f y.
  Proof. eauto using contractive, dist_le with omega. Qed.
110
  Global Instance contractive_ne {B : cofeT} (f : A  B) `{!Contractive f} n :
111
    Proper (dist n ==> dist n) f | 100.
112
  Proof. by intros x y ?; apply dist_S, contractive_S. Qed.
113
  Global Instance contractive_proper {B : cofeT} (f : A  B) `{!Contractive f} :
114
    Proper (() ==> ()) f | 100 := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
115
116
End cofe.

Robbert Krebbers's avatar
Robbert Krebbers committed
117
118
119
120
(** Mapping a chain *)
Program Definition chain_map `{Dist A, Dist B} (f : A  B)
    `{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
  {| chain_car n := f (c n) |}.
121
Next Obligation. by intros ? A ? B f Hf c n i ?; apply Hf, chain_cauchy. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
122

Robbert Krebbers's avatar
Robbert Krebbers committed
123
(** Timeless elements *)
124
Class Timeless {A : cofeT} (x : A) := timeless y : x {0} y  x  y.
125
Arguments timeless {_} _ {_} _ _.
126
Lemma timeless_iff {A : cofeT} (x y : A) n : Timeless x  x  y  x {n} y.
127
128
Proof.
  split; intros; [by apply equiv_dist|].
129
  apply (timeless _), dist_le with n; auto with lia.
130
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
131

Robbert Krebbers's avatar
Robbert Krebbers committed
132
(** Fixpoint *)
133
Program Definition fixpoint_chain {A : cofeT} `{Inhabited A} (f : A  A)
134
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
135
Next Obligation.
136
137
138
  intros A ? f ? n. induction n as [|n IH]; intros [|i] ?; simpl; try omega.
  * apply contractive; auto with omega.
  * apply contractive_S, IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
139
Qed.
140
Program Definition fixpoint {A : cofeT} `{Inhabited A} (f : A  A)
141
  `{!Contractive f} : A := compl (fixpoint_chain f).
Robbert Krebbers's avatar
Robbert Krebbers committed
142
143

Section fixpoint.
144
  Context {A : cofeT} `{Inhabited A} (f : A  A) `{!Contractive f}.
145
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
146
  Proof.
147
148
    apply equiv_dist=>n; rewrite /fixpoint (conv_compl (fixpoint_chain f) n) //.
    induction n as [|n IH]; simpl; eauto using contractive, dist_le with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
149
  Qed.
150
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
151
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
152
  Proof.
153
154
155
156
    intros Hfg. rewrite /fixpoint
      (conv_compl (fixpoint_chain f) n) (conv_compl (fixpoint_chain g) n) /=.
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
157
  Qed.
158
159
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
160
161
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
End fixpoint.
162
Global Opaque fixpoint.
Robbert Krebbers's avatar
Robbert Krebbers committed
163
164

(** Function space *)
Robbert Krebbers's avatar
Robbert Krebbers committed
165
Record cofeMor (A B : cofeT) : Type := CofeMor {
Robbert Krebbers's avatar
Robbert Krebbers committed
166
167
168
169
170
171
172
  cofe_mor_car :> A  B;
  cofe_mor_ne n : Proper (dist n ==> dist n) cofe_mor_car
}.
Arguments CofeMor {_ _} _ {_}.
Add Printing Constructor cofeMor.
Existing Instance cofe_mor_ne.

173
174
175
176
177
Section cofe_mor.
  Context {A B : cofeT}.
  Global Instance cofe_mor_proper (f : cofeMor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, cofe_mor_ne. Qed.
  Instance cofe_mor_equiv : Equiv (cofeMor A B) := λ f g,  x, f x  g x.
178
  Instance cofe_mor_dist : Dist (cofeMor A B) := λ n f g,  x, f x {n} g x.
179
180
181
182
183
184
  Program Definition fun_chain `(c : chain (cofeMor A B)) (x : A) : chain B :=
    {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Instance cofe_mor_compl : Compl (cofeMor A B) := λ c,
    {| cofe_mor_car x := compl (fun_chain c x) |}.
  Next Obligation.
185
186
    intros c n x y Hx. by rewrite (conv_compl (fun_chain c x) n)
      (conv_compl (fun_chain c y) n) /= Hx.
187
188
189
190
  Qed.
  Definition cofe_mor_cofe_mixin : CofeMixin (cofeMor A B).
  Proof.
    split.
191
192
    * intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist; intros n; apply Hfg.
193
194
195
196
197
198
    * intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; transitivity (g x).
    * by intros n f g ? x; apply dist_S.
    * intros c n x; simpl.
199
      by rewrite (conv_compl (fun_chain c x) n) /=.
200
201
202
203
204
205
206
207
208
209
210
211
212
  Qed.
  Canonical Structure cofe_mor : cofeT := CofeT cofe_mor_cofe_mixin.

  Global Instance cofe_mor_car_ne n :
    Proper (dist n ==> dist n ==> dist n) (@cofe_mor_car A B).
  Proof. intros f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
  Global Instance cofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@cofe_mor_car A B) := ne_proper_2 _.
  Lemma cofe_mor_ext (f g : cofeMor A B) : f  g   x, f x  g x.
  Proof. done. Qed.
End cofe_mor.

Arguments cofe_mor : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
213
Infix "-n>" := cofe_mor (at level 45, right associativity).
214
215
Instance cofe_more_inhabited {A B : cofeT} `{Inhabited B} :
  Inhabited (A -n> B) := populate (CofeMor (λ _, inhabitant)).
Robbert Krebbers's avatar
Robbert Krebbers committed
216
217
218
219
220
221
222
223
224

(** Identity and composition *)
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
225
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
226
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
227
228

(** unit *)
229
230
231
232
233
234
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
  Instance unit_compl : Compl unit := λ _, ().
  Definition unit_cofe_mixin : CofeMixin unit.
  Proof. by repeat split; try exists 0. Qed.
  Canonical Structure unitC : cofeT := CofeT unit_cofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
235
236
  Global Instance unit_timeless (x : ()) : Timeless x.
  Proof. done. Qed.
237
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
238
239

(** Product *)
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
Section product.
  Context {A B : cofeT}.

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
    Proper (dist n ==> dist n ==> dist n) (@pair A B) := _.
  Global Instance fst_ne : Proper (dist n ==> dist n) (@fst A B) := _.
  Global Instance snd_ne : Proper (dist n ==> dist n) (@snd A B) := _.
  Instance prod_compl : Compl (A * B) := λ c,
    (compl (chain_map fst c), compl (chain_map snd c)).
  Definition prod_cofe_mixin : CofeMixin (A * B).
  Proof.
    split.
    * intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
      rewrite !equiv_dist; naive_solver.
    * apply _.
    * by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
    * intros c n; split. apply (conv_compl (chain_map fst c) n).
      apply (conv_compl (chain_map snd c) n).
  Qed.
  Canonical Structure prodC : cofeT := CofeT prod_cofe_mixin.
  Global Instance pair_timeless (x : A) (y : B) :
    Timeless x  Timeless y  Timeless (x,y).
  Proof. by intros ?? [x' y'] [??]; split; apply (timeless _). Qed.
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

Instance prod_map_ne {A A' B B' : cofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
270
271
272
273
274
275
276
277
278
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
Instance prodC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@prodC_map A A' B B').
Proof. intros f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.

279
280
281
(** Discrete cofe *)
Section discrete_cofe.
  Context `{Equiv A, @Equivalence A ()}.
282
  Instance discrete_dist : Dist A := λ n x y, x  y.
283
  Instance discrete_compl : Compl A := λ c, c 1.
284
  Definition discrete_cofe_mixin : CofeMixin A.
285
286
  Proof.
    split.
287
288
    * intros x y; split; [done|intros Hn; apply (Hn 0)].
    * done.
289
    * done.
290
291
    * intros c n. rewrite /compl /discrete_compl /=.
      symmetry; apply (chain_cauchy c 0 (S n)); omega.
292
  Qed.
293
294
  Definition discreteC : cofeT := CofeT discrete_cofe_mixin.
  Global Instance discrete_timeless (x : A) : Timeless (x : discreteC).
Robbert Krebbers's avatar
Robbert Krebbers committed
295
  Proof. by intros y. Qed.
296
End discrete_cofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
297
Arguments discreteC _ {_ _}.
298

Robbert Krebbers's avatar
Robbert Krebbers committed
299
Definition leibnizC (A : Type) : cofeT := @discreteC A equivL _.
300
301
302
Instance leibnizC_leibniz : LeibnizEquiv (leibnizC A).
Proof. by intros A x y. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
303
304
Canonical Structure natC := leibnizC nat.
Canonical Structure boolC := leibnizC bool.
305

306
(** Later *)
307
Inductive later (A : Type) : Type := Next { later_car : A }.
308
Add Printing Constructor later.
309
Arguments Next {_} _.
310
Arguments later_car {_} _.
311
Lemma later_eta {A} (x : later A) : Next (later_car x) = x.
Robbert Krebbers's avatar
Robbert Krebbers committed
312
Proof. by destruct x. Qed.
313

314
Section later.
315
316
317
  Context {A : cofeT}.
  Instance later_equiv : Equiv (later A) := λ x y, later_car x  later_car y.
  Instance later_dist : Dist (later A) := λ n x y,
318
    match n with 0 => True | S n => later_car x {n} later_car y end.
319
  Program Definition later_chain (c : chain (later A)) : chain A :=
320
    {| chain_car n := later_car (c (S n)) |}.
321
  Next Obligation. intros c n i ?; apply (chain_cauchy c (S n)); lia. Qed.
322
  Instance later_compl : Compl (later A) := λ c, Next (compl (later_chain c)).
323
  Definition later_cofe_mixin : CofeMixin (later A).
324
325
326
327
328
329
330
331
332
333
334
  Proof.
    split.
    * intros x y; unfold equiv, later_equiv; rewrite !equiv_dist.
      split. intros Hxy [|n]; [done|apply Hxy]. intros Hxy n; apply (Hxy (S n)).
    * intros [|n]; [by split|split]; unfold dist, later_dist.
      + by intros [x].
      + by intros [x] [y].
      + by intros [x] [y] [z] ??; transitivity y.
    * intros [|n] [x] [y] ?; [done|]; unfold dist, later_dist; by apply dist_S.
    * intros c [|n]; [done|by apply (conv_compl (later_chain c) n)].
  Qed.
335
  Canonical Structure laterC : cofeT := CofeT later_cofe_mixin.
336
337
338
  Global Instance Next_contractive : Contractive (@Next A).
  Proof. intros [|n] x y Hxy; [done|]; apply Hxy; lia. Qed.
  Global Instance Later_inj n : Injective (dist n) (dist (S n)) (@Next A).
Robbert Krebbers's avatar
Robbert Krebbers committed
339
  Proof. by intros x y. Qed.
340
End later.
341
342
343
344

Arguments laterC : clear implicits.

Definition later_map {A B} (f : A  B) (x : later A) : later B :=
345
  Next (f (later_car x)).
346
347
348
349
350
351
352
353
354
355
356
357
Instance later_map_ne {A B : cofeT} (f : A  B) n :
  Proper (dist (pred n) ==> dist (pred n)) f 
  Proper (dist n ==> dist n) (later_map f) | 0.
Proof. destruct n as [|n]; intros Hf [x] [y] ?; do 2 red; simpl; auto. Qed.
Lemma later_map_id {A} (x : later A) : later_map id x = x.
Proof. by destruct x. Qed.
Lemma later_map_compose {A B C} (f : A  B) (g : B  C) (x : later A) :
  later_map (g  f) x = later_map g (later_map f x).
Proof. by destruct x. Qed.
Definition laterC_map {A B} (f : A -n> B) : laterC A -n> laterC B :=
  CofeMor (later_map f).
Instance laterC_map_contractive (A B : cofeT) : Contractive (@laterC_map A B).
358
Proof. intros [|n] f g Hf n'; [done|]; apply Hf; lia. Qed.