cmra_big_op.v 26.9 KB
Newer Older
1
From iris.algebra Require Export cmra list.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
From iris.prelude Require Import functions gmap gmultiset.
3

4
5
6
7
8
9
10
11
12
(** The operator [ [⋅] Ps ] folds [⋅] over the list [Ps]. This operator is not a
quantifier, so it binds strongly.

Apart from that, we define the following big operators with binders build in:

- The operator [ [⋅ list] k ↦ x ∈ l, P ] folds over a list [l]. The binder [x]
  refers to each element at index [k].
- The operator [ [⋅ map] k ↦ x ∈ m, P ] folds over a map [m]. The binder [x]
  refers to each element at index [k].
Dan Frumin's avatar
Dan Frumin committed
13
- The operator [ [⋅ set] x ∈ X, P ] folds over a set [X]. The binder [x] refers
14
15
16
17
18
19
20
21
  to each element.

Since these big operators are like quantifiers, they have the same precedence as
[∀] and [∃]. *)

(** * Big ops over lists *)
(* This is the basic building block for other big ops *)
Fixpoint big_op {M : ucmraT} (xs : list M) : M :=
22
  match xs with [] =>  | x :: xs => x  big_op xs end.
23
24
Arguments big_op _ !_ /.
Instance: Params (@big_op) 1.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
Notation "'[⋅]' xs" := (big_op xs) (at level 20) : C_scope.

(** * Other big ops *)
Definition big_opL {M : ucmraT} {A} (l : list A) (f : nat  A  M) : M :=
  [] (imap f l).
Instance: Params (@big_opL) 2.
Typeclasses Opaque big_opL.
Notation "'[⋅' 'list' ] k ↦ x ∈ l , P" := (big_opL l (λ k x, P))
  (at level 200, l at level 10, k, x at level 1, right associativity,
   format "[⋅  list ]  k ↦ x  ∈  l ,  P") : C_scope.
Notation "'[⋅' 'list' ] x ∈ l , P" := (big_opL l (λ _ x, P))
  (at level 200, l at level 10, x at level 1, right associativity,
   format "[⋅  list ]  x  ∈  l ,  P") : C_scope.

Definition big_opM {M : ucmraT} `{Countable K} {A}
    (m : gmap K A) (f : K  A  M) : M :=
  [] (curry f <$> map_to_list m).
Instance: Params (@big_opM) 6.
Typeclasses Opaque big_opM.
Notation "'[⋅' 'map' ] k ↦ x ∈ m , P" := (big_opM m (λ k x, P))
  (at level 200, m at level 10, k, x at level 1, right associativity,
   format "[⋅  map ]  k ↦ x  ∈  m ,  P") : C_scope.
47
48
49
Notation "'[⋅' 'map' ] x ∈ m , P" := (big_opM m (λ _ x, P))
  (at level 200, m at level 10, x at level 1, right associativity,
   format "[⋅  map ]  x  ∈  m ,  P") : C_scope.
50
51
52
53
54
55
56
57

Definition big_opS {M : ucmraT} `{Countable A}
  (X : gset A) (f : A  M) : M := [] (f <$> elements X).
Instance: Params (@big_opS) 5.
Typeclasses Opaque big_opS.
Notation "'[⋅' 'set' ] x ∈ X , P" := (big_opS X (λ x, P))
  (at level 200, X at level 10, x at level 1, right associativity,
   format "[⋅  set ]  x  ∈  X ,  P") : C_scope.
58

Robbert Krebbers's avatar
Robbert Krebbers committed
59
60
61
62
63
64
65
66
Definition big_opMS {M : ucmraT} `{Countable A}
  (X : gmultiset A) (f : A  M) : M := [] (f <$> elements X).
Instance: Params (@big_opMS) 5.
Typeclasses Opaque big_opMS.
Notation "'[⋅' 'mset' ] x ∈ X , P" := (big_opMS X (λ x, P))
  (at level 200, X at level 10, x at level 1, right associativity,
   format "[⋅  'mset' ]  x  ∈  X ,  P") : C_scope.

67
68
(** * Properties about big ops *)
Section big_op.
69
70
Context {M : ucmraT}.
Implicit Types xs : list M.
71
72

(** * Big ops *)
73
74
75
76
77
Lemma big_op_Forall2 R :
  Reflexive R  Proper (R ==> R ==> R) (@op M _) 
  Proper (Forall2 R ==> R) (@big_op M).
Proof. rewrite /Proper /respectful. induction 3; eauto. Qed.

78
Global Instance big_op_ne n : Proper (dist n ==> dist n) (@big_op M).
79
Proof. apply big_op_Forall2; apply _. Qed.
80
81
82
Global Instance big_op_proper : Proper (() ==> ()) (@big_op M) := ne_proper _.

Lemma big_op_nil : [] (@nil M) = .
83
Proof. done. Qed.
84
Lemma big_op_cons x xs : [] (x :: xs) = x  [] xs.
85
Proof. done. Qed.
86
87
88
89
90
91
92
93
94
95
Lemma big_op_app xs ys : [] (xs ++ ys)  [] xs  [] ys.
Proof.
  induction xs as [|x xs IH]; simpl; first by rewrite ?left_id.
  by rewrite IH assoc.
Qed.

Lemma big_op_mono xs ys : Forall2 () xs ys  [] xs  [] ys.
Proof. induction 1 as [|x y xs ys Hxy ? IH]; simpl; eauto using cmra_mono. Qed.

Global Instance big_op_permutation : Proper (() ==> ()) (@big_op M).
96
97
Proof.
  induction 1 as [|x xs1 xs2 ? IH|x y xs|xs1 xs2 xs3]; simpl; auto.
98
99
  - by rewrite IH.
  - by rewrite !assoc (comm _ x).
100
  - by trans (big_op xs2).
101
Qed.
102
103

Lemma big_op_contains xs ys : xs `contains` ys  [] xs  [] ys.
104
Proof.
105
106
  intros [xs' ->]%contains_Permutation.
  rewrite big_op_app; apply cmra_included_l.
107
Qed.
108
109

Lemma big_op_delete xs i x : xs !! i = Some x  x  [] delete i xs  [] xs.
110
111
Proof. by intros; rewrite {2}(delete_Permutation xs i x). Qed.

112
Lemma big_sep_elem_of xs x : x  xs  x  [] xs.
113
Proof.
114
115
  intros [i ?]%elem_of_list_lookup. rewrite -big_op_delete //.
  apply cmra_included_l.
116
Qed.
117
118
119
120
121
122
123

(** ** Big ops over lists *)
Section list.
  Context {A : Type}.
  Implicit Types l : list A.
  Implicit Types f g : nat  A  M.

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
  Lemma big_opL_nil f : ([ list] ky  nil, f k y) = .
  Proof. done. Qed.
  Lemma big_opL_cons f x l :
    ([ list] ky  x :: l, f k y) = f 0 x  [ list] ky  l, f (S k) y.
  Proof. by rewrite /big_opL imap_cons. Qed.
  Lemma big_opL_singleton f x : ([ list] ky  [x], f k y)  f 0 x.
  Proof. by rewrite big_opL_cons big_opL_nil right_id. Qed.
  Lemma big_opL_app f l1 l2 :
    ([ list] ky  l1 ++ l2, f k y)
     ([ list] ky  l1, f k y)  ([ list] ky  l2, f (length l1 + k) y).
  Proof. by rewrite /big_opL imap_app big_op_app. Qed.

  Lemma big_opL_forall R f g l :
    Reflexive R  Proper (R ==> R ==> R) (@op M _) 
    ( k y, l !! k = Some y  R (f k y) (g k y)) 
    R ([ list] k  y  l, f k y) ([ list] k  y  l, g k y).
  Proof.
    intros ? Hop. revert f g. induction l as [|x l IH]=> f g Hf; [done|].
    rewrite !big_opL_cons. apply Hop; eauto.
  Qed.

145
146
147
  Lemma big_opL_mono f g l :
    ( k y, l !! k = Some y  f k y  g k y) 
    ([ list] k  y  l, f k y)  [ list] k  y  l, g k y.
148
  Proof. apply big_opL_forall; apply _. Qed.
149
150
151
152
  Lemma big_opL_ext f g l :
    ( k y, l !! k = Some y  f k y = g k y) 
    ([ list] k  y  l, f k y) = [ list] k  y  l, g k y.
  Proof. apply big_opL_forall; apply _. Qed.
153
154
155
  Lemma big_opL_proper f g l :
    ( k y, l !! k = Some y  f k y  g k y) 
    ([ list] k  y  l, f k y)  ([ list] k  y  l, g k y).
156
  Proof. apply big_opL_forall; apply _. Qed.
157
158
  Lemma big_opL_permutation (f : A  M) l1 l2 :
    l1  l2  ([ list] x  l1, f x)  ([ list] x  l2, f x).
159
  Proof. intros Hl. by rewrite /big_opL !imap_const Hl. Qed.
160
161
162
163

  Global Instance big_opL_ne l n :
    Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> (dist n))
           (big_opL (M:=M) l).
164
  Proof. intros f g Hf. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
165
166
167
  Global Instance big_opL_proper' l :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
           (big_opL (M:=M) l).
168
  Proof. intros f g Hf. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
169
170
171
  Global Instance big_opL_mono' l :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
           (big_opL (M:=M) l).
172
  Proof. intros f g Hf. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
173

174
175
176
177
178
179
180
  Lemma big_opL_consZ_l (f : Z  A  M) x l :
    ([ list] ky  x :: l, f k y) = f 0 x  [ list] ky  l, f (1 + k)%Z y.
  Proof. rewrite big_opL_cons. auto using big_opL_ext with f_equal lia. Qed.
  Lemma big_opL_consZ_r (f : Z  A  M) x l :
    ([ list] ky  x :: l, f k y) = f 0 x  [ list] ky  l, f (k + 1)%Z y.
  Proof. rewrite big_opL_cons. auto using big_opL_ext with f_equal lia. Qed.

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
  Lemma big_opL_lookup f l i x :
    l !! i = Some x  f i x  [ list] ky  l, f k y.
  Proof.
    intros. rewrite -(take_drop_middle l i x) // big_opL_app big_opL_cons.
    rewrite Nat.add_0_r take_length_le; eauto using lookup_lt_Some, Nat.lt_le_incl.
    eapply transitivity, cmra_included_r; eauto using cmra_included_l.
  Qed.

  Lemma big_opL_elem_of (f : A  M) l x : x  l  f x  [ list] y  l, f y.
  Proof.
    intros [i ?]%elem_of_list_lookup; eauto using (big_opL_lookup (λ _, f)).
  Qed.

  Lemma big_opL_fmap {B} (h : A  B) (f : nat  B  M) l :
    ([ list] ky  h <$> l, f k y)  ([ list] ky  l, f k (h y)).
  Proof. by rewrite /big_opL imap_fmap. Qed.

  Lemma big_opL_opL f g l :
    ([ list] kx  l, f k x  g k x)
     ([ list] kx  l, f k x)  ([ list] kx  l, g k x).
  Proof.
    revert f g; induction l as [|x l IH]=> f g.
    { by rewrite !big_opL_nil left_id. }
    rewrite !big_opL_cons IH.
    by rewrite -!assoc (assoc _ (g _ _)) [(g _ _  _)]comm -!assoc.
  Qed.
End list.

(** ** Big ops over finite maps *)
Section gmap.
  Context `{Countable K} {A : Type}.
  Implicit Types m : gmap K A.
  Implicit Types f g : K  A  M.

215
216
217
218
219
220
221
222
223
  Lemma big_opM_forall R f g m :
    Reflexive R  Proper (R ==> R ==> R) (@op M _) 
    ( k x, m !! k = Some x  R (f k x) (g k x)) 
    R ([ map] k  x  m, f k x) ([ map] k  x  m, g k x).
  Proof.
    intros ?? Hf. apply (big_op_Forall2 R _ _), Forall2_fmap, Forall_Forall2.
    apply Forall_forall=> -[i x] ? /=. by apply Hf, elem_of_map_to_list.
  Qed.

224
225
226
227
  Lemma big_opM_mono f g m1 m2 :
    m1  m2  ( k x, m2 !! k = Some x  f k x  g k x) 
    ([ map] k  x  m1, f k x)  [ map] k  x  m2, g k x.
  Proof.
228
    intros Hm Hf. trans ([ map] kx  m2, f k x).
229
    - by apply big_op_contains, fmap_contains, map_to_list_contains.
230
    - apply big_opM_forall; apply _ || auto.
231
  Qed.
232
233
234
235
  Lemma big_opM_ext f g m :
    ( k x, m !! k = Some x  f k x = g k x) 
    ([ map] k  x  m, f k x) = ([ map] k  x  m, g k x).
  Proof. apply big_opM_forall; apply _. Qed.
236
237
238
  Lemma big_opM_proper f g m :
    ( k x, m !! k = Some x  f k x  g k x) 
    ([ map] k  x  m, f k x)  ([ map] k  x  m, g k x).
239
  Proof. apply big_opM_forall; apply _. Qed.
240
241
242
243

  Global Instance big_opM_ne m n :
    Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> (dist n))
           (big_opM (M:=M) m).
244
  Proof. intros f g Hf. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
245
246
247
  Global Instance big_opM_proper' m :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
           (big_opM (M:=M) m).
248
  Proof. intros f g Hf. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
249
250
251
  Global Instance big_opM_mono' m :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
           (big_opM (M:=M) m).
252
  Proof. intros f g Hf. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

  Lemma big_opM_empty f : ([ map] kx  , f k x) = .
  Proof. by rewrite /big_opM map_to_list_empty. Qed.

  Lemma big_opM_insert f m i x :
    m !! i = None 
    ([ map] ky  <[i:=x]> m, f k y)  f i x  [ map] ky  m, f k y.
  Proof. intros ?. by rewrite /big_opM map_to_list_insert. Qed.

  Lemma big_opM_delete f m i x :
    m !! i = Some x 
    ([ map] ky  m, f k y)  f i x  [ map] ky  delete i m, f k y.
  Proof.
    intros. rewrite -big_opM_insert ?lookup_delete //.
    by rewrite insert_delete insert_id.
  Qed.

  Lemma big_opM_lookup f m i x :
    m !! i = Some x  f i x  [ map] ky  m, f k y.
  Proof. intros. rewrite big_opM_delete //. apply cmra_included_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
273
274
275
  Lemma big_opM_lookup_dom (f : K  M) m i :
    is_Some (m !! i)  f i  [ map] k_  m, f k.
  Proof. intros [x ?]. by eapply (big_opM_lookup (λ i x, f i)). Qed.
276
277
278
279
280
281
282
283
284
285
286
287
288
289

  Lemma big_opM_singleton f i x : ([ map] ky  {[i:=x]}, f k y)  f i x.
  Proof.
    rewrite -insert_empty big_opM_insert/=; last auto using lookup_empty.
    by rewrite big_opM_empty right_id.
  Qed.

  Lemma big_opM_fmap {B} (h : A  B) (f : K  B  M) m :
    ([ map] ky  h <$> m, f k y)  ([ map] ky  m, f k (h y)).
  Proof.
    rewrite /big_opM map_to_list_fmap -list_fmap_compose.
    f_equiv; apply reflexive_eq, list_fmap_ext. by intros []. done.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
290
291
292
  Lemma big_opM_insert_override (f : K  A  M) m i x x' :
    m !! i = Some x  f i x  f i x' 
    ([ map] ky  <[i:=x']> m, f k y)  ([ map] ky  m, f k y).
293
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
294
295
    intros ? Hx. rewrite -insert_delete big_opM_insert ?lookup_delete //.
    by rewrite -Hx -big_opM_delete.
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
  Qed.

  Lemma big_opM_fn_insert {B} (g : K  A  B  M) (f : K  B) m i (x : A) b :
    m !! i = None 
      ([ map] ky  <[i:=x]> m, g k y (<[i:=b]> f k))
     (g i x b  [ map] ky  m, g k y (f k)).
  Proof.
    intros. rewrite big_opM_insert // fn_lookup_insert.
    apply cmra_op_proper', big_opM_proper; auto=> k y ?.
    by rewrite fn_lookup_insert_ne; last set_solver.
  Qed.
  Lemma big_opM_fn_insert' (f : K  M) m i x P :
    m !! i = None 
    ([ map] ky  <[i:=x]> m, <[i:=P]> f k)  (P  [ map] ky  m, f k).
  Proof. apply (big_opM_fn_insert (λ _ _, id)). Qed.

  Lemma big_opM_opM f g m :
Robbert Krebbers's avatar
Robbert Krebbers committed
313
    ([ map] kx  m, f k x  g k x)
314
315
     ([ map] kx  m, f k x)  ([ map] kx  m, g k x).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
316
317
318
319
    induction m as [|i x ?? IH] using map_ind.
    { by rewrite !big_opM_empty left_id. }
    rewrite !big_opM_insert // IH.
    by rewrite -!assoc (assoc _ (g _ _)) [(g _ _  _)]comm -!assoc.
320
321
322
323
324
325
326
327
328
329
  Qed.
End gmap.


(** ** Big ops over finite sets *)
Section gset.
  Context `{Countable A}.
  Implicit Types X : gset A.
  Implicit Types f : A  M.

330
331
332
333
334
335
336
337
338
  Lemma big_opS_forall R f g X :
    Reflexive R  Proper (R ==> R ==> R) (@op M _) 
    ( x, x  X  R (f x) (g x)) 
    R ([ set] x  X, f x) ([ set] x  X, g x).
  Proof.
    intros ?? Hf. apply (big_op_Forall2 R _ _), Forall2_fmap, Forall_Forall2.
    apply Forall_forall=> x ? /=. by apply Hf, elem_of_elements.
  Qed.

339
340
341
342
343
344
  Lemma big_opS_mono f g X Y :
    X  Y  ( x, x  Y  f x  g x) 
    ([ set] x  X, f x)  [ set] x  Y, g x.
  Proof.
    intros HX Hf. trans ([ set] x  Y, f x).
    - by apply big_op_contains, fmap_contains, elements_contains.
345
    - apply big_opS_forall; apply _ || auto.
346
  Qed.
347
348
349
350
351
352
353
354
  Lemma big_opS_ext f g X :
    ( x, x  X  f x = g x) 
    ([ set] x  X, f x) = ([ set] x  X, g x).
  Proof. apply big_opS_forall; apply _. Qed.
  Lemma big_opS_proper f g X :
    ( x, x  X  f x  g x) 
    ([ set] x  X, f x)  ([ set] x  X, g x).
  Proof. apply big_opS_forall; apply _. Qed.
355

356
  Global Instance big_opS_ne X n :
357
    Proper (pointwise_relation _ (dist n) ==> dist n) (big_opS (M:=M) X).
358
  Proof. intros f g Hf. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
359
  Global Instance big_opS_proper' X :
360
    Proper (pointwise_relation _ () ==> ()) (big_opS (M:=M) X).
361
  Proof. intros f g Hf. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
362
  Global Instance big_opS_mono' X :
363
    Proper (pointwise_relation _ () ==> ()) (big_opS (M:=M) X).
364
  Proof. intros f g Hf. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
365
366
367
368
369
370
371
372
373
374
375
376
377

  Lemma big_opS_empty f : ([ set] x  , f x) = .
  Proof. by rewrite /big_opS elements_empty. Qed.

  Lemma big_opS_insert f X x :
    x  X  ([ set] y  {[ x ]}  X, f y)  (f x  [ set] y  X, f y).
  Proof. intros. by rewrite /big_opS elements_union_singleton. Qed.
  Lemma big_opS_fn_insert {B} (f : A  B  M) h X x b :
    x  X 
       ([ set] y  {[ x ]}  X, f y (<[x:=b]> h y))
     (f x b  [ set] y  X, f y (h y)).
  Proof.
    intros. rewrite big_opS_insert // fn_lookup_insert.
378
    apply cmra_op_proper', big_opS_proper; auto=> y ?.
379
380
381
382
383
384
    by rewrite fn_lookup_insert_ne; last set_solver.
  Qed.
  Lemma big_opS_fn_insert' f X x P :
    x  X  ([ set] y  {[ x ]}  X, <[x:=P]> f y)  (P  [ set] y  X, f y).
  Proof. apply (big_opS_fn_insert (λ y, id)). Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
385
386
387
388
389
390
391
392
393
394
  Lemma big_opS_union f X Y :
    X  Y 
    ([ set] y  X  Y, f y)  ([ set] y  X, f y)  ([ set] y  Y, f y).
  Proof.
    intros. induction X as [|x X ? IH] using collection_ind_L.
    { by rewrite left_id_L big_opS_empty left_id. }
    rewrite -assoc_L !big_opS_insert; [|set_solver..].
    by rewrite -assoc IH; last set_solver.
  Qed.

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
  Lemma big_opS_delete f X x :
    x  X  ([ set] y  X, f y)  f x  [ set] y  X  {[ x ]}, f y.
  Proof.
    intros. rewrite -big_opS_insert; last set_solver.
    by rewrite -union_difference_L; last set_solver.
  Qed.

  Lemma big_opS_elem_of f X x : x  X  f x  [ set] y  X, f y.
  Proof. intros. rewrite big_opS_delete //. apply cmra_included_l. Qed.

  Lemma big_opS_singleton f x : ([ set] y  {[ x ]}, f y)  f x.
  Proof. intros. by rewrite /big_opS elements_singleton /= right_id. Qed.

  Lemma big_opS_opS f g X :
    ([ set] y  X, f y  g y)  ([ set] y  X, f y)  ([ set] y  X, g y).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
411
412
413
414
    induction X as [|x X ? IH] using collection_ind_L.
    { by rewrite !big_opS_empty left_id. }
    rewrite !big_opS_insert // IH.
    by rewrite -!assoc (assoc _ (g _)) [(g _  _)]comm -!assoc.
415
416
  Qed.
End gset.
Robbert Krebbers's avatar
Robbert Krebbers committed
417

Robbert Krebbers's avatar
Robbert Krebbers committed
418
419
420
421
422
423
Lemma big_opM_dom `{Countable K} {A} (f : K  M) (m : gmap K A) :
  ([ map] k_  m, f k)  ([ set] k  dom _ m, f k).
Proof.
  induction m as [|i x ?? IH] using map_ind; [by rewrite dom_empty_L|].
  by rewrite dom_insert_L big_opM_insert // IH big_opS_insert ?not_elem_of_dom.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

(** ** Big ops over finite msets *)
Section gmultiset.
  Context `{Countable A}.
  Implicit Types X : gmultiset A.
  Implicit Types f : A  M.

  Lemma big_opMS_forall R f g X :
    Reflexive R  Proper (R ==> R ==> R) (@op M _) 
    ( x, x  X  R (f x) (g x)) 
    R ([ mset] x  X, f x) ([ mset] x  X, g x).
  Proof.
    intros ?? Hf. apply (big_op_Forall2 R _ _), Forall2_fmap, Forall_Forall2.
    apply Forall_forall=> x ? /=. by apply Hf, gmultiset_elem_of_elements.
  Qed.

  Lemma big_opMS_mono f g X Y :
    X  Y  ( x, x  Y  f x  g x) 
    ([ mset] x  X, f x)  [ mset] x  Y, g x.
  Proof.
    intros HX Hf. trans ([ mset] x  Y, f x).
    - by apply big_op_contains, fmap_contains, gmultiset_elements_contains.
    - apply big_opMS_forall; apply _ || auto.
  Qed.
  Lemma big_opMS_ext f g X :
    ( x, x  X  f x = g x) 
    ([ mset] x  X, f x) = ([ mset] x  X, g x).
  Proof. apply big_opMS_forall; apply _. Qed.
  Lemma big_opMS_proper f g X :
    ( x, x  X  f x  g x) 
    ([ mset] x  X, f x)  ([ mset] x  X, g x).
  Proof. apply big_opMS_forall; apply _. Qed.

457
  Global Instance big_opMS_ne X n :
Robbert Krebbers's avatar
Robbert Krebbers committed
458
459
    Proper (pointwise_relation _ (dist n) ==> dist n) (big_opMS (M:=M) X).
  Proof. intros f g Hf. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.
460
  Global Instance big_opMS_proper' X :
Robbert Krebbers's avatar
Robbert Krebbers committed
461
462
    Proper (pointwise_relation _ () ==> ()) (big_opMS (M:=M) X).
  Proof. intros f g Hf. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.
463
  Global Instance big_opMS_mono' X :
Robbert Krebbers's avatar
Robbert Krebbers committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    Proper (pointwise_relation _ () ==> ()) (big_opMS (M:=M) X).
  Proof. intros f g Hf. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.

  Lemma big_opMS_empty f : ([ mset] x  , f x) = .
  Proof. by rewrite /big_opMS gmultiset_elements_empty. Qed.

  Lemma big_opMS_union f X Y :
    ([ mset] y  X  Y, f y)  ([ mset] y  X, f y)  [ mset] y  Y, f y.
  Proof. by rewrite /big_opMS gmultiset_elements_union fmap_app big_op_app. Qed.

  Lemma big_opMS_singleton f x : ([ mset] y  {[ x ]}, f y)  f x.
  Proof.
    intros. by rewrite /big_opMS gmultiset_elements_singleton /= right_id.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
479
480
481
  Lemma big_opMS_delete f X x :
    x  X  ([ mset] y  X, f y)  f x  [ mset] y  X  {[ x ]}, f y.
  Proof.
482
483
    intros. rewrite -big_opMS_singleton -big_opMS_union.
    by rewrite -gmultiset_union_difference'.
Robbert Krebbers's avatar
Robbert Krebbers committed
484
485
486
487
488
  Qed.

  Lemma big_opMS_elem_of f X x : x  X  f x  [ mset] y  X, f y.
  Proof. intros. rewrite big_opMS_delete //. apply cmra_included_l. Qed.

489
  Lemma big_opMS_opMS f g X :
Robbert Krebbers's avatar
Robbert Krebbers committed
490
491
    ([ mset] y  X, f y  g y)  ([ mset] y  X, f y)  ([ mset] y  X, g y).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
492
493
494
495
    induction X as [|x X IH] using gmultiset_ind.
    { by rewrite !big_opMS_empty left_id. }
    rewrite !big_opMS_union !big_opMS_singleton IH.
    by rewrite -!assoc (assoc _ (g _)) [(g _  _)]comm -!assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
496
497
  Qed.
End gmultiset.
498
End big_op.
499

Robbert Krebbers's avatar
Robbert Krebbers committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
(** Option *)
Lemma big_opL_None {M : cmraT} {A} (f : nat  A  option M) l :
  ([ list] kx  l, f k x) = None   k x, l !! k = Some x  f k x = None.
Proof.
  revert f. induction l as [|x l IH]=> f //=.
  rewrite big_opL_cons op_None IH. split.
  - intros [??] [|k] y ?; naive_solver.
  - intros Hl. split. by apply (Hl 0). intros k. apply (Hl (S k)).
Qed.
Lemma big_opM_None {M : cmraT} `{Countable K} {A} (f : K  A  option M) m :
  ([ map] kx  m, f k x) = None   k x, m !! k = Some x  f k x = None.
Proof.
  induction m as [|i x m ? IH] using map_ind=> //=.
  rewrite -equiv_None big_opM_insert // equiv_None op_None IH. split.
  { intros [??] k y. rewrite lookup_insert_Some; naive_solver. }
  intros Hm; split.
  - apply (Hm i). by simplify_map_eq.
  - intros k y ?. apply (Hm k). by simplify_map_eq.
Qed.
Lemma big_opS_None {M : cmraT} `{Countable A} (f : A  option M) X :
  ([ set] x  X, f x) = None   x, x  X  f x = None.
Proof.
  induction X as [|x X ? IH] using collection_ind_L; [done|].
  rewrite -equiv_None big_opS_insert // equiv_None op_None IH. set_solver.
Qed.
525
526
527
528
529
530
531
532
Lemma big_opMS_None {M : cmraT} `{Countable A} (f : A  option M) X :
  ([ mset] x  X, f x) = None   x, x  X  f x = None.
Proof.
  induction X as [|x X IH] using gmultiset_ind.
  { rewrite big_opMS_empty. set_solver. }
  rewrite -equiv_None big_opMS_union big_opMS_singleton equiv_None op_None IH.
  set_solver.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
533
534

(** Commuting with respect to homomorphisms *)
535
Lemma big_opL_commute {M1 M2 : ucmraT} {A} (h : M1  M2)
536
    `{!UCMRAHomomorphism h} (f : nat  A  M1) l :
537
538
  h ([ list] kx  l, f k x)  ([ list] kx  l, h (f k x)).
Proof.
539
540
541
  revert f. induction l as [|x l IH]=> f.
  - by rewrite !big_opL_nil ucmra_homomorphism_unit.
  - by rewrite !big_opL_cons cmra_homomorphism -IH.
542
543
Qed.
Lemma big_opL_commute1 {M1 M2 : ucmraT} {A} (h : M1  M2)
544
545
    `{!CMRAHomomorphism h} (f : nat  A  M1) l :
  l  []  h ([ list] kx  l, f k x)  ([ list] kx  l, h (f k x)).
546
Proof.
547
  intros ?. revert f. induction l as [|x [|x' l'] IH]=> f //.
548
  - by rewrite !big_opL_singleton.
549
  - by rewrite !(big_opL_cons _ x) cmra_homomorphism -IH.
550
551
552
Qed.

Lemma big_opM_commute {M1 M2 : ucmraT} `{Countable K} {A} (h : M1  M2)
553
    `{!UCMRAHomomorphism h} (f : K  A  M1) m :
554
555
  h ([ map] kx  m, f k x)  ([ map] kx  m, h (f k x)).
Proof.
556
557
558
  intros. induction m as [|i x m ? IH] using map_ind.
  - by rewrite !big_opM_empty ucmra_homomorphism_unit.
  - by rewrite !big_opM_insert // cmra_homomorphism -IH.
559
560
Qed.
Lemma big_opM_commute1 {M1 M2 : ucmraT} `{Countable K} {A} (h : M1  M2)
561
562
    `{!CMRAHomomorphism h} (f : K  A  M1) m :
  m    h ([ map] kx  m, f k x)  ([ map] kx  m, h (f k x)).
563
Proof.
564
565
566
567
  intros. induction m as [|i x m ? IH] using map_ind; [done|].
  destruct (decide (m = )) as [->|].
  - by rewrite !big_opM_insert // !big_opM_empty !right_id.
  - by rewrite !big_opM_insert // cmra_homomorphism -IH //.
568
569
Qed.

570
571
Lemma big_opS_commute {M1 M2 : ucmraT} `{Countable A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : A  M1) X :
572
573
  h ([ set] x  X, f x)  ([ set] x  X, h (f x)).
Proof.
574
575
576
  intros. induction X as [|x X ? IH] using collection_ind_L.
  - by rewrite !big_opS_empty ucmra_homomorphism_unit.
  - by rewrite !big_opS_insert // cmra_homomorphism -IH.
577
Qed.
578
579
580
Lemma big_opS_commute1 {M1 M2 : ucmraT} `{Countable A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : A  M1) X :
  X    h ([ set] x  X, f x)  ([ set] x  X, h (f x)).
581
Proof.
582
583
584
585
  intros. induction X as [|x X ? IH] using collection_ind_L; [done|].
  destruct (decide (X = )) as [->|].
  - by rewrite !big_opS_insert // !big_opS_empty !right_id.
  - by rewrite !big_opS_insert // cmra_homomorphism -IH //.
586
Qed.
587

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
Lemma big_opMS_commute {M1 M2 : ucmraT} `{Countable A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : A  M1) X :
  h ([ mset] x  X, f x)  ([ mset] x  X, h (f x)).
Proof.
  intros. induction X as [|x X IH] using gmultiset_ind.
  - by rewrite !big_opMS_empty ucmra_homomorphism_unit.
  - by rewrite !big_opMS_union !big_opMS_singleton cmra_homomorphism -IH.
Qed.
Lemma big_opMS_commute1 {M1 M2 : ucmraT} `{Countable A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : A  M1) X :
  X    h ([ mset] x  X, f x)  ([ mset] x  X, h (f x)).
Proof.
  intros. induction X as [|x X IH] using gmultiset_ind; [done|].
  destruct (decide (X = )) as [->|].
  - by rewrite !big_opMS_union !big_opMS_singleton !big_opMS_empty !right_id.
  - by rewrite !big_opMS_union !big_opMS_singleton cmra_homomorphism -IH //.
Qed.

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
Lemma big_opL_commute_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2} {A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : nat  A  M1) l :
  h ([ list] kx  l, f k x) = ([ list] kx  l, h (f k x)).
Proof. unfold_leibniz. by apply big_opL_commute. Qed.
Lemma big_opL_commute1_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2} {A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : nat  A  M1) l :
  l  []  h ([ list] kx  l, f k x) = ([ list] kx  l, h (f k x)).
Proof. unfold_leibniz. by apply big_opL_commute1. Qed.

Lemma big_opM_commute_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable K} {A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : K  A  M1) m :
  h ([ map] kx  m, f k x) = ([ map] kx  m, h (f k x)).
Proof. unfold_leibniz. by apply big_opM_commute. Qed.
Lemma big_opM_commute1_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable K} {A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : K  A  M1) m :
  m    h ([ map] kx  m, f k x) = ([ map] kx  m, h (f k x)).
Proof. unfold_leibniz. by apply big_opM_commute1. Qed.

Lemma big_opS_commute_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : A  M1) X :
  h ([ set] x  X, f x) = ([ set] x  X, h (f x)).
Proof. unfold_leibniz. by apply big_opS_commute. Qed.
Lemma big_opS_commute1_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : A  M1) X :
  X    h ([ set] x  X, f x) = ([ set] x  X, h (f x)).
Proof. intros. rewrite <-leibniz_equiv_iff. by apply big_opS_commute1. Qed.
632
633
634
635
636
637
638
639
640

Lemma big_opMS_commute_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable A}
    (h : M1  M2) `{!UCMRAHomomorphism h} (f : A  M1) X :
  h ([ mset] x  X, f x) = ([ mset] x  X, h (f x)).
Proof. unfold_leibniz. by apply big_opMS_commute. Qed.
Lemma big_opMS_commute1_L {M1 M2 : ucmraT} `{!LeibnizEquiv M2, Countable A}
    (h : M1  M2) `{!CMRAHomomorphism h} (f : A  M1) X :
  X    h ([ mset] x  X, f x) = ([ mset] x  X, h (f x)).
Proof. intros. rewrite <-leibniz_equiv_iff. by apply big_opMS_commute1. Qed.