diff --git a/theories/functions.v b/theories/functions.v index af040172bd7f1ceb12b2cc5d3e71b7a5240e3fe4..35db3221d333808bf46ed4b3c0ed771fda035617 100644 --- a/theories/functions.v +++ b/theories/functions.v @@ -31,20 +31,41 @@ Section functions. End functions. (** "Cons-ing" of functions from nat to T *) +(* Coq's standard lists are not universe polymorphic. Hence we have to re-define them. Ouch. + TODO: If we decide to end up going with this, we should move this elsewhere. *) +Polymorphic Inductive plist {A : Type} : Type := +| pnil : plist +| pcons: A → plist → plist. +Arguments plist : clear implicits. + +Polymorphic Fixpoint papp {A : Type} (l1 l2 : plist A) : plist A := + match l1 with + | pnil => l2 + | pcons a l => pcons a (papp l l2) + end. + +(* TODO: Notation is totally up for debate. *) +Infix "`::`" := pcons (at level 60, right associativity) : C_scope. +Infix "`++`" := papp (at level 60, right associativity) : C_scope. + Polymorphic Definition fn_cons {T : Type} (t : T) (f: nat → T) : nat → T := λ n, match n with | O => t | S n => f n end. -Polymorphic Definition fn_mcons {T : Type} (ts : list T) (f : nat → T) : nat → T := - fold_right fn_cons f ts. +Polymorphic Fixpoint fn_mcons {T : Type} (ts : plist T) (f : nat → T) : nat → T := + match ts with + | pnil => f + | pcons t ts => fn_cons t (fn_mcons ts f) + end. +(* TODO: Notation is totally up for debate. *) Infix ".::" := fn_cons (at level 60, right associativity) : C_scope. Infix ".++" := fn_mcons (at level 60, right associativity) : C_scope. -Polymorphic Lemma fn_mcons_app {T : Type} (ts1 ts2 : list T) f : - (ts1 ++ ts2) .++ f = ts1 .++ (ts2 .++ f). +Polymorphic Lemma fn_mcons_app {T : Type} (ts1 ts2 : plist T) f : + (ts1 `++` ts2) .++ f = ts1 .++ (ts2 .++ f). Proof. - unfold fn_mcons. rewrite fold_right_app. done. + induction ts1; simpl; eauto. congruence. Qed.