diff --git a/theories/sets.v b/theories/sets.v index 8e95e8d45f9acdef9a8c80c2f8d81691f29da107..6e5d84be44a85471bff399b6e2c3bf5e4fded0f4 100644 --- a/theories/sets.v +++ b/theories/sets.v @@ -795,10 +795,7 @@ Section set. Proof. set_solver. Qed. Lemma singleton_union_difference X Y x : {[x]} ∪ (X ∖ Y) ≡ ({[x]} ∪ X) ∖ (Y ∖ {[x]}). - Proof. - intro y; split; intros Hy; [ set_solver | ]. - destruct (decide (y ∈ ({[x]} : C))); set_solver. - Qed. + Proof. intro y; destruct (decide (y ∈@{C} {[x]})); set_solver. Qed. Context `{!LeibnizEquiv C}. Lemma union_difference_L X Y : X ⊆ Y → Y = X ∪ Y ∖ X.