diff --git a/theories/fin_sets.v b/theories/fin_sets.v index 11789c4aaf74ae027aaf65c3d5ce739a8a8cbbbc..588b58af2a06ce29e0524ba9a95ca22cc08b2019 100644 --- a/theories/fin_sets.v +++ b/theories/fin_sets.v @@ -35,6 +35,10 @@ Proof. Defined. (** * The [elements] operation *) +Global Instance set_unfold_elements X x P : + SetUnfold (x ∈ X) P → SetUnfold (x ∈ elements X) P. +Proof. constructor. by rewrite elem_of_elements, (set_unfold (x ∈ X) P). Qed. + Global Instance elements_proper: Proper ((≡) ==> (≡ₚ)) (elements (C:=C)). Proof. intros ?? E. apply NoDup_Permutation. @@ -321,4 +325,21 @@ Proof. refine (cast_if (decide (Exists P (elements X)))); by rewrite set_Exists_elements. Defined. + +(** Alternative versions of finite and infinite predicates *) +Lemma pred_finite_set (P : A → Prop) : + pred_finite P ↔ (∃ X : C, ∀ x, P x → x ∈ X). +Proof. + split. + - intros [xs Hfin]. exists (list_to_set xs). set_solver. + - intros [X Hfin]. exists (elements X). set_solver. +Qed. + +Lemma pred_infinite_set (P : A → Prop) : + pred_infinite P ↔ (∀ X : C, ∃ x, P x ∧ x ∉ X). +Proof. + split. + - intros Hinf X. destruct (Hinf (elements X)). set_solver. + - intros Hinf xs. destruct (Hinf (list_to_set xs)). set_solver. +Qed. End fin_set. diff --git a/theories/sets.v b/theories/sets.v index 05e39f734ac3377daa8f36bd095176640a102045..e1d9d1c6147a9a36f5c9691e18ffeaa9221bfa1e 100644 --- a/theories/sets.v +++ b/theories/sets.v @@ -990,17 +990,39 @@ Section set_monad. End set_monad. (** Finite sets *) -Definition set_finite `{ElemOf A B} (X : B) := ∃ l : list A, ∀ x, x ∈ X → x ∈ l. +Definition pred_finite {A} (P : A → Prop) := ∃ xs : list A, ∀ x, P x → x ∈ xs. +Definition set_finite `{ElemOf A B} (X : B) := pred_finite (∈ X). -Section finite. +Definition pred_infinite {A} (P : A → Prop) := ∀ xs : list A, ∃ x, P x ∧ x ∉ xs. +Definition set_infinite `{ElemOf A C} (X : C) := pred_infinite (∈ X). + +Section pred_finite_infinite. + Lemma pred_finite_impl {A} (P Q : A → Prop) : + pred_finite P → (∀ x, Q x → P x) → pred_finite Q. + Proof. unfold pred_finite. set_solver. Qed. + + Lemma pred_infinite_impl {A} (P Q : A → Prop) : + pred_infinite P → (∀ x, P x → Q x) → pred_infinite Q. + Proof. unfold pred_infinite. set_solver. Qed. + + Lemma pred_not_infinite_finite {A} (P : A → Prop) : + pred_infinite P → pred_finite P → False. + Proof. intros Hinf [xs ?]. destruct (Hinf xs). set_solver. Qed. +End pred_finite_infinite. + +Section set_finite_infinite. Context `{SemiSet A C}. Implicit Types X Y : C. + Lemma set_not_infinite_finite X : set_infinite X → set_finite X → False. + Proof. apply pred_not_infinite_finite. Qed. + Global Instance set_finite_subseteq : Proper (flip (⊆) ==> impl) (@set_finite A C _). - Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed. + Proof. intros X Y HX ?. eapply pred_finite_impl; set_solver. Qed. Global Instance set_finite_proper : Proper ((≡) ==> iff) (@set_finite A C _). Proof. intros X Y HX; apply exist_proper. by setoid_rewrite HX. Qed. + Lemma empty_finite : set_finite (∅ : C). Proof. by exists []; intros ?; rewrite elem_of_empty. Qed. Lemma singleton_finite (x : A) : set_finite ({[ x ]} : C). @@ -1014,7 +1036,18 @@ Section finite. Proof. intros [l ?]; exists l; set_solver. Qed. Lemma union_finite_inv_r X Y : set_finite (X ∪ Y) → set_finite Y. Proof. intros [l ?]; exists l; set_solver. Qed. -End finite. + + Global Instance set_infinite_subseteq : + Proper ((⊆) ==> impl) (@set_infinite A C _). + Proof. intros X Y HX ?. eapply pred_infinite_impl; set_solver. Qed. + Global Instance set_infinite_proper : Proper ((≡) ==> iff) (@set_infinite A C _). + Proof. intros X Y HX; apply forall_proper. by setoid_rewrite HX. Qed. + + Lemma union_infinite_l X Y : set_infinite X → set_infinite (X ∪ Y). + Proof. intros Hinf xs. destruct (Hinf xs). set_solver. Qed. + Lemma union_infinite_r X Y : set_infinite Y → set_infinite (X ∪ Y). + Proof. intros Hinf xs. destruct (Hinf xs). set_solver. Qed. +End set_finite_infinite. Section more_finite. Context `{Set_ A C}. @@ -1032,6 +1065,10 @@ Section more_finite. intros [l ?] [k ?]; exists (l ++ k). intros x ?; destruct (decide (x ∈ Y)); rewrite elem_of_app; set_solver. Qed. + + Lemma difference_infinite X Y : + set_infinite X → set_finite Y → set_infinite (X ∖ Y). + Proof. intros Hinf [xs ?] xs'. destruct (Hinf (xs ++ xs')). set_solver. Qed. End more_finite. (** Sets of sequences of natural numbers *)