diff --git a/theories/sets.v b/theories/sets.v index e8bed5bb556d0c78b6e089583327dbe97081919d..33e2139589f167c34d9a2e399401ba34165ff648 100644 --- a/theories/sets.v +++ b/theories/sets.v @@ -940,6 +940,11 @@ Section pred_finite_infinite. Lemma pred_not_infinite_finite {A} (P : A → Prop) : pred_infinite P → pred_finite P → False. Proof. intros Hinf [xs ?]. destruct (Hinf xs). set_solver. Qed. + + Lemma pred_infinite_True `{Infinite A} : pred_infinite (λ _: A, True). + Proof. + intros xs. exists (fresh xs). split; [done|]. apply infinite_is_fresh. + Qed. End pred_finite_infinite. Section set_finite_infinite.