diff --git a/theories/countable.v b/theories/countable.v index d837e7d543937e9a7acc8d63ea53a8bab2c3f8b7..0a8a4ba1cb82511ba4d50a0e1079318021127bfb 100644 --- a/theories/countable.v +++ b/theories/countable.v @@ -269,7 +269,7 @@ Qed. Program Instance Qp_countable : Countable Qp := inj_countable - Qp_car + Qp_to_Qc (λ p : Qc, guard (0 < p)%Qc as Hp; Some (mk_Qp p Hp)) _. Next Obligation. intros [p Hp]. unfold mguard, option_guard; simpl. diff --git a/theories/numbers.v b/theories/numbers.v index 420c82d4870eb717d4ec36701339f88c1e7bcecf..8c3195078b0977f95678d54b9a95cdd54d012d2c 100644 --- a/theories/numbers.v +++ b/theories/numbers.v @@ -661,155 +661,315 @@ Local Close Scope Qc_scope. Declare Scope Qp_scope. Delimit Scope Qp_scope with Qp. -(** The theory of positive rationals is very incomplete. We merely provide -some operations and theorems that are relevant for fractional permissions. *) -Record Qp := mk_Qp { Qp_car :> Qc ; Qp_prf : (0 < Qp_car)%Qc }. -Hint Resolve Qp_prf : core. -Arguments Qp_car _%Qp : assert. +Record Qp := mk_Qp { Qp_to_Qc : Qc ; Qp_prf : (0 < Qp_to_Qc)%Qc }. +Add Printing Constructor Qp. Bind Scope Qp_scope with Qp. +Arguments Qp_to_Qc _%Qp : assert. -Local Open Scope Qc_scope. Local Open Scope Qp_scope. Definition Qp_one : Qp := mk_Qp 1 eq_refl. -Program Definition Qp_plus (x y : Qp) : Qp := mk_Qp (x + y) _. -Next Obligation. by intros x y; apply Qcplus_pos_pos. Qed. -Definition Qp_minus (x y : Qp) : option Qp := - let z := (x - y)%Qc in - match decide (0 < z)%Qc with left Hz => Some (mk_Qp z Hz) | _ => None end. -Program Definition Qp_mult (x y : Qp) : Qp := mk_Qp (x * y) _. -Next Obligation. intros x y. apply Qcmult_pos_pos; apply Qp_prf. Qed. - -Program Definition Qp_div (x : Qp) (y : positive) : Qp := mk_Qp (x / Zpos y) _. + +Definition Qp_plus (p q : Qp) : Qp := + let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in + mk_Qp (p + q) (Qcplus_pos_pos _ _ Hp Hq). +Arguments Qp_plus : simpl never. + +Definition Qp_minus (p q : Qp) : option Qp := + let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in + let pq := (p - q)%Qc in + guard (0 < pq)%Qc as Hpq; Some (mk_Qp pq Hpq). +Arguments Qp_minus : simpl never. + +Definition Qp_mult (p q : Qp) : Qp := + let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in + mk_Qp (p * q) (Qcmult_pos_pos _ _ Hp Hq). +Arguments Qp_mult : simpl never. + +Program Definition Qp_div (p : Qp) (y : positive) : Qp := + let 'mk_Qp p Hp := p return _ in + mk_Qp (p / Zpos y)%Qc _. Next Obligation. - intros x y. unfold Qcdiv. assert (0 < Zpos y)%Qc. + intros _ y p Hp. unfold Qcdiv. assert (0 < Zpos y)%Qc. { apply (Z2Qc_inj_lt 0%Z (Zpos y)), Pos2Z.is_pos. } by rewrite (Qcmult_lt_mono_pos_r _ _ (Zpos y)%Z), Qcmult_0_l, <-Qcmult_assoc, Qcmult_inv_l, Qcmult_1_r. Qed. - -Definition Qp_max (q p : Qp) : Qp := if decide (q ≤ p) then p else q. -Definition Qp_min (q p : Qp) : Qp := if decide (q ≤ p) then q else p. +Arguments Qp_div : simpl never. Infix "+" := Qp_plus : Qp_scope. Infix "-" := Qp_minus : Qp_scope. Infix "*" := Qp_mult : Qp_scope. Infix "/" := Qp_div : Qp_scope. -Infix "`max`" := Qp_max (at level 35) : Qp_scope. -Infix "`min`" := Qp_min (at level 35) : Qp_scope. Notation "1" := Qp_one : Qp_scope. Notation "2" := (1 + 1)%Qp : Qp_scope. Notation "3" := (1 + 2)%Qp : Qp_scope. Notation "4" := (1 + 3)%Qp : Qp_scope. -Lemma Qp_eq x y : x = y ↔ Qp_car x = Qp_car y. +Definition Qp_le (p q : Qp) := (Qp_to_Qc p ≤ Qp_to_Qc q)%Qc. +Definition Qp_lt (p q : Qp) := (Qp_to_Qc p < Qp_to_Qc q)%Qc. +Typeclasses Opaque Qp_le Qp_lt. + +Instance Qp_le_dec : RelDecision Qp_le := λ p q, + decide (Qp_to_Qc p ≤ Qp_to_Qc q)%Qc. +Instance Qp_lt_dec : RelDecision Qp_lt := λ p q, + decide (Qp_to_Qc p < Qp_to_Qc q)%Qc. + +Definition Qp_max (q p : Qp) : Qp := if decide (Qp_le q p) then p else q. +Definition Qp_min (q p : Qp) : Qp := if decide (Qp_le q p) then q else p. + +Infix "≤" := Qp_le : Qp_scope. +Infix "<" := Qp_lt : Qp_scope. +Notation "p ≤ q ≤ r" := (p ≤ q ∧ q ≤ r) : Qp_scope. +Notation "p ≤ q < r" := (p ≤ q ∧ q < r) : Qp_scope. +Notation "p < q < r" := (p < q ∧ q < r) : Qp_scope. +Notation "p < q ≤ r" := (p < q ∧ q ≤ r) : Qp_scope. +Notation "p ≤ q ≤ r ≤ r'" := (p ≤ q ∧ q ≤ r ∧ r ≤ r') : Qp_scope. +Notation "(≤)" := Qp_le (only parsing) : Qp_scope. +Notation "(<)" := Qp_lt (only parsing) : Qp_scope. + +Infix "`max`" := Qp_max : Qp_scope. +Infix "`min`" := Qp_min : Qp_scope. + +Hint Extern 0 (_ ≤ _)%Qp => reflexivity : core. + +Lemma Qp_eq p q : p = q ↔ Qp_to_Qc p = Qp_to_Qc q. Proof. split; [by intros ->|]. - destruct x, y; intros; simplify_eq/=; f_equal; apply (proof_irrel _). + destruct p, q; intros; simplify_eq/=; f_equal; apply (proof_irrel _). Qed. -Instance Qp_inhabited : Inhabited Qp := populate 1%Qp. Instance Qp_eq_dec : EqDecision Qp. Proof. - refine (λ x y, cast_if (decide (Qp_car x = Qp_car y))); by rewrite Qp_eq. + refine (λ p q, cast_if (decide (Qp_to_Qc p = Qp_to_Qc q))); by rewrite Qp_eq. Defined. +Instance Qp_inhabited : Inhabited Qp := populate 1%Qp. + Instance Qp_plus_assoc : Assoc (=) Qp_plus. -Proof. intros x y z; apply Qp_eq, Qcplus_assoc. Qed. +Proof. intros [p ?] [q ?] [r ?]; apply Qp_eq, Qcplus_assoc. Qed. Instance Qp_plus_comm : Comm (=) Qp_plus. -Proof. intros x y; apply Qp_eq, Qcplus_comm. Qed. +Proof. intros [p ?] [q ?]; apply Qp_eq, Qcplus_comm. Qed. Instance Qp_plus_inj_r p : Inj (=) (=) (Qp_plus p). -Proof. intros q1 q2. rewrite !Qp_eq; simpl. apply (inj (Qcplus p)). Qed. +Proof. + destruct p as [p ?]. + intros [q1 ?] [q2 ?]. rewrite !Qp_eq; simpl. apply (inj (Qcplus p)). +Qed. Instance Qp_plus_inj_l p : Inj (=) (=) (λ q, q + p)%Qp. -Proof. intros q1 q2. rewrite !Qp_eq; simpl. apply (inj (λ q, q + p)%Qc). Qed. - -Lemma Qp_minus_diag x : (x - x)%Qp = None. -Proof. unfold Qp_minus, Qcminus. by rewrite Qcplus_opp_r. Qed. -Lemma Qp_op_minus x y : ((x + y) - x)%Qp = Some y. Proof. - unfold Qp_minus, Qcminus; simpl. - rewrite (Qcplus_comm x), <- Qcplus_assoc, Qcplus_opp_r, Qcplus_0_r. - destruct (decide _) as [|[]]; auto. by f_equal; apply Qp_eq. + destruct p as [p ?]. + intros [q1 ?] [q2 ?]. rewrite !Qp_eq; simpl. apply (inj (λ q, q + p)%Qc). Qed. Instance Qp_mult_assoc : Assoc (=) Qp_mult. -Proof. intros x y z; apply Qp_eq, Qcmult_assoc. Qed. +Proof. intros [p ?] [q ?] [r ?]. apply Qp_eq, Qcmult_assoc. Qed. Instance Qp_mult_comm : Comm (=) Qp_mult. -Proof. intros x y; apply Qp_eq, Qcmult_comm. Qed. -Lemma Qp_mult_plus_distr_r x y z: (x * (y + z) = x * y + x * z)%Qp. -Proof. apply Qp_eq, Qcmult_plus_distr_r. Qed. -Lemma Qp_mult_plus_distr_l x y z: ((x + y) * z = x * z + y * z)%Qp. -Proof. apply Qp_eq, Qcmult_plus_distr_l. Qed. -Lemma Qp_mult_1_l x: (1 * x)%Qp = x. -Proof. apply Qp_eq, Qcmult_1_l. Qed. -Lemma Qp_mult_1_r x: (x * 1)%Qp = x. -Proof. apply Qp_eq, Qcmult_1_r. Qed. +Proof. intros [p ?] [q ?]; apply Qp_eq, Qcmult_comm. Qed. +Lemma Qp_mult_plus_distr_r p q r : p * (q + r) = p * q + p * r. +Proof. + destruct p as [p ?], q as [q ?], r as [r ?]. apply Qp_eq, Qcmult_plus_distr_r. +Qed. +Lemma Qp_mult_plus_distr_l p q r : (p + q) * r = p * r + q * r. +Proof. + destruct p as [p ?], q as [q ?], r as [r ?]. apply Qp_eq, Qcmult_plus_distr_l. +Qed. +Lemma Qp_mult_1_l p : 1 * p = p. +Proof. destruct p; apply Qp_eq, Qcmult_1_l. Qed. +Lemma Qp_mult_1_r p : p * 1 = p. +Proof. destruct p; apply Qp_eq, Qcmult_1_r. Qed. + +Lemma Qp_plus_diag p : p + p = (2 * p). +Proof. by rewrite Qp_mult_plus_distr_l, !Qp_mult_1_l. Qed. -Lemma Qp_div_1 x : (x / 1 = x)%Qp. +Lemma Qp_div_1 p : p / 1 = p. Proof. - apply Qp_eq; simpl. - rewrite <-(Qcmult_div_r x 1) at 2 by done. by rewrite Qcmult_1_l. + destruct p as [p ?]. apply Qp_eq; simpl. + rewrite <-(Qcmult_div_r p 1) at 2 by done. by rewrite Qcmult_1_l. Qed. -Lemma Qp_div_S x y : (x / (2 * y) + x / (2 * y) = x / y)%Qp. +Lemma Qp_div_S p y : p / (2 * y) + p / (2 * y) = p / y. Proof. - apply Qp_eq; simpl. unfold Qcdiv. + destruct p as [p ?]. apply Qp_eq; simpl. unfold Qcdiv. rewrite <-Qcmult_plus_distr_l, Pos2Z.inj_mul, Z2Qc_inj_mul, Z2Qc_inj_2. rewrite Qcplus_diag. by field_simplify. Qed. -Lemma Qp_div_2 x : (x / 2 + x / 2 = x)%Qp. +Lemma Qp_div_2 p : p / 2 + p / 2 = p. Proof. change 2%positive with (2 * 1)%positive. by rewrite Qp_div_S, Qp_div_1. Qed. -Lemma Qp_half_half : (1 / 2 + 1 / 2 = 1)%Qp. +Lemma Qp_half_half : 1 / 2 + 1 / 2 = 1. Proof. apply (bool_decide_unpack _); by compute. Qed. -Lemma Qp_quarter_three_quarter : (1 / 4 + 3 / 4 = 1)%Qp. +Lemma Qp_quarter_three_quarter : 1 / 4 + 3 / 4 = 1. Proof. apply (bool_decide_unpack _); by compute. Qed. -Lemma Qp_three_quarter_quarter : (3 / 4 + 1 / 4 = 1)%Qp. +Lemma Qp_three_quarter_quarter : 3 / 4 + 1 / 4 = 1. Proof. apply (bool_decide_unpack _); by compute. Qed. -Lemma Qp_lt_sum (x y : Qp) : (x < y)%Qc ↔ ∃ z, y = (x + z)%Qp. -Proof. +Instance Qp_le_po : PartialOrder (≤)%Qp. +Proof. + unfold Qp_le. split; [split|]. + - by intros p. + - intros p q r ??. by etrans. + - intros p q ??. by apply Qp_eq, Qcle_antisym. +Qed. +Instance Qp_lt_strict : StrictOrder (<)%Qp. +Proof. + unfold Qp_lt. split. + - intros p. apply (irreflexivity (<)%Qc). + - intros p q r ??. by etrans. +Qed. +Instance Qp_le_total: Total (≤)%Qp. +Proof. intros p q. apply (total Qcle). Qed. + +Lemma Qp_lt_le_weak p q : p < q → p ≤ q. +Proof. apply Qclt_le_weak. Qed. +Lemma Qp_le_lt_or_eq p q : p ≤ q → p < q ∨ p = q. +Proof. intros [? | ->%Qp_eq]%Qcle_lt_or_eq; auto. Qed. +Lemma Qp_lt_le_dec p q : {p < q} + {q ≤ p}. +Proof. apply Qclt_le_dec. Defined. +Lemma Qp_le_lt_trans p q r : p ≤ q → q < r → p < r. +Proof. apply Qcle_lt_trans. Qed. +Lemma Qp_lt_le_trans p q r : p < q → q ≤ r → p < r. +Proof. apply Qclt_le_trans. Qed. + +Lemma Qp_le_not_lt p q : p ≤ q → ¬q < p. +Proof. apply Qcle_not_lt. Qed. +Lemma Qp_not_lt_le p q : ¬p < q → q ≤ p. +Proof. apply Qcnot_lt_le. Qed. +Lemma Qp_lt_not_le p q : p < q → ¬q ≤ p. +Proof. apply Qclt_not_le. Qed. +Lemma Qp_not_le_lt p q : ¬p ≤ q →q < p. +Proof. apply Qcnot_le_lt. Qed. +Lemma Qp_le_ngt p q : p ≤ q ↔ ¬q < p. +Proof. split; auto using Qp_le_not_lt, Qp_not_lt_le. Qed. +Lemma Qp_lt_nge p q : p < q ↔ ¬q ≤ p. +Proof. split; auto using Qp_lt_not_le, Qp_not_le_lt. Qed. + +Lemma Qp_plus_le_mono_l p q r : p ≤ q ↔ r + p ≤ r + q. +Proof. destruct p, q, r; apply Qcplus_le_mono_l. Qed. +Lemma Qp_plus_le_mono_r p q r : p ≤ q ↔ p + r ≤ q + r. +Proof. rewrite !(comm_L Qp_plus _ r). apply Qp_plus_le_mono_l. Qed. +Lemma Qp_le_plus_compat q p n m : q ≤ n → p ≤ m → q + p ≤ n + m. +Proof. intros. etrans; [by apply Qp_plus_le_mono_l|by apply Qp_plus_le_mono_r]. Qed. + +Lemma Qp_plus_lt_mono_l p q r : p < q ↔ r + p < r + q. +Proof. by rewrite !Qp_lt_nge, <-Qp_plus_le_mono_l. Qed. +Lemma Qp_plus_lt_mono_r p q r : p < q ↔ p + r < q + r. +Proof. by rewrite !Qp_lt_nge, <-Qp_plus_le_mono_r. Qed. + +Lemma Qp_mult_le_mono_l p q r : p ≤ q ↔ r * p ≤ r * q. +Proof. destruct p, q, r; by apply Qcmult_le_mono_pos_l. Qed. +Lemma Qp_mult_le_mono_r p q r : p ≤ q ↔ p * r ≤ q * r. +Proof. destruct p, q, r; by apply Qcmult_le_mono_pos_r. Qed. +Lemma Qcmult_lt_mono_l p q r : p < q ↔ r * p < r * q. +Proof. destruct p, q, r; by apply Qcmult_lt_mono_pos_l. Qed. +Lemma Qcmult_lt_mono_r p q r : p < q ↔ p * r < q * r. +Proof. destruct p, q, r; by apply Qcmult_lt_mono_pos_r. Qed. + +Lemma Qp_lt_plus_r q p : p < q + p. +Proof. + destruct p as [p ?], q as [q ?]. unfold Qp_lt; simpl. + rewrite <- (Qcplus_0_l p) at 1. by rewrite <-Qcplus_lt_mono_r. +Qed. +Lemma Qp_lt_plus_l q p : q < q + p. +Proof. rewrite (comm_L Qp_plus). apply Qp_lt_plus_r. Qed. + +Lemma Qp_not_plus_ge q p : ¬(q + p ≤ q). +Proof. apply Qp_lt_not_le, Qp_lt_plus_l. Qed. +Lemma Qp_plus_id_free q p : q + p ≠q. +Proof. intro Heq. apply (Qp_not_plus_ge q p). by rewrite Heq. Qed. + +Lemma Qp_le_plus_r q p : p ≤ q + p. +Proof. apply Qp_lt_le_weak, Qp_lt_plus_r. Qed. +Lemma Qp_le_plus_l q p : q ≤ q + p. +Proof. apply Qp_lt_le_weak, Qp_lt_plus_l. Qed. + +Lemma Qp_plus_weak_r q p o : q + p ≤ o → q ≤ o. +Proof. intros. etrans; [apply Qp_le_plus_l|done]. Qed. +Lemma Qp_plus_weak_l q p o : q + p ≤ o → p ≤ o. +Proof. rewrite (comm_L Qp_plus). apply Qp_plus_weak_r. Qed. + +Lemma Qp_plus_weak_2_r q p o : q ≤ o → q ≤ p + o. +Proof. intros. etrans; [done|apply Qp_le_plus_r]. Qed. +Lemma Qp_plus_weak_2_l q p o : q ≤ p → q ≤ p + o. +Proof. rewrite (comm_L Qp_plus). apply Qp_plus_weak_2_r. Qed. + +Lemma Qc_minus_Some p q r : p - q = Some r ↔ p = q + r. +Proof. + destruct p as [p Hp], q as [q Hq], r as [r Hr]. + unfold Qp_minus, Qp_plus; simpl; rewrite Qp_eq; simpl. split. + - intros; simplify_option_eq. unfold Qcminus. + by rewrite (Qcplus_comm p), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l. + - intros ->. unfold Qcminus. + rewrite <-Qcplus_assoc, (Qcplus_comm r), Qcplus_assoc. + rewrite Qcplus_opp_r, Qcplus_0_l. simplify_option_eq; [|done]. + f_equal. by apply Qp_eq. +Qed. +Lemma Qp_lt_sum p q : p < q ↔ ∃ r, q = p + r. +Proof. + destruct p as [p Hp], q as [q Hq]. unfold Qp_lt; simpl. split. - - intros Hlt%Qclt_minus_iff. exists (mk_Qp (y - x) Hlt). apply Qp_eq; simpl. - unfold Qcminus. by rewrite (Qcplus_comm y), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l. - - intros [z ->]; simpl. - rewrite <-(Qcplus_0_r x) at 1. apply Qcplus_lt_mono_l, Qp_prf. + - intros Hlt%Qclt_minus_iff. exists (mk_Qp (q - p) Hlt). + apply Qp_eq; simpl. unfold Qcminus. + by rewrite (Qcplus_comm q), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l. + - intros [[r ?] ?%Qp_eq]; simplify_eq/=. + rewrite <-(Qcplus_0_r p) at 1. by apply Qcplus_lt_mono_l. Qed. -Lemma Qp_lower_bound q1 q2 : ∃ q q1' q2', (q1 = q + q1' ∧ q2 = q + q2')%Qp. +Lemma Qc_minus_None p q : p - q = None ↔ p ≤ q. Proof. - revert q1 q2. cut (∀ q1 q2 : Qp, (q1 ≤ q2)%Qc → - ∃ q q1' q2', (q1 = q + q1' ∧ q2 = q + q2')%Qp). + rewrite Qp_le_ngt, Qp_lt_sum, eq_None_not_Some. + by setoid_rewrite <-Qc_minus_Some. +Qed. +Lemma Qp_minus_diag p : p - p = None. +Proof. by apply Qc_minus_None. Qed. +Lemma Qp_plus_minus p q : (p + q) - p = Some q. +Proof. by apply Qc_minus_Some. Qed. + +Lemma Qp_div_lt q y : (1 < y)%positive → q / y < q. +Proof. + intros. destruct q as [q Hq]. unfold Qp_lt, Qp_minus; simpl. + apply (Qcmult_lt_mono_pos_l _ _ (Z.pos y)); [done|]. + rewrite Qcmult_div_r by done. rewrite <- (Qcmult_1_l q) at 1. + apply Qcmult_lt_mono_pos_r; [done|]. by rewrite <-Z2Qc_inj_1, <-Z2Qc_inj_lt. +Qed. +Lemma Qp_div_le q y : q / y ≤ q. +Proof. + destruct (Pos.lt_total y 1) as [[]%Pos.nlt_1_r|[->|?]]. + - by rewrite Qp_div_1. + - by apply Qp_lt_le_weak, Qp_div_lt. +Qed. + +Lemma Qp_lower_bound q1 q2 : ∃ q q1' q2', q1 = q + q1' ∧ q2 = q + q2'. +Proof. + revert q1 q2. cut (∀ q1 q2 : Qp, q1 ≤ q2 → + ∃ q q1' q2', q1 = q + q1' ∧ q2 = q + q2'). { intros help q1 q2. - destruct (Qc_le_dec q1 q2) as [LE|LE%Qclt_nge%Qclt_le_weak]; [by eauto|]. + destruct (Qp_le_dec q1 q2) as [LE|LE%Qp_lt_nge%Qp_lt_le_weak]; [by eauto|]. destruct (help q2 q1) as (q&q1'&q2'&?&?); eauto. } intros q1 q2 Hq. exists (q1 / 2)%Qp, (q1 / 2)%Qp. - assert (0 < q2 +- q1 */ 2)%Qc as Hq2'. - { eapply Qclt_le_trans; [|by apply Qcplus_le_mono_r, Hq]. - replace (q1 +- q1 */ 2)%Qc with (q1 * (1 +- 1*/2))%Qc by ring. - replace 0%Qc with (0 * (1+-1*/2))%Qc by ring. by apply Qcmult_lt_compat_r. } - exists (mk_Qp (q2 +- q1 */ 2%Z) Hq2'). split; [by rewrite Qp_div_2|]. - apply Qp_eq; simpl. unfold Qcdiv. ring. + assert (q1 / 2 < q2) as [q2' ->]%Qp_lt_sum. + { eapply Qp_lt_le_trans, Hq. by apply Qp_div_lt. } + eexists; split; [|done]. by rewrite Qp_div_2. Qed. -Lemma Qp_lower_bound_lt (q1 q2 : Qp) : ∃ q : Qp, q < q1 ∧ q < q2. +Lemma Qp_lower_bound_lt q1 q2 : ∃ q : Qp, q < q1 ∧ q < q2. Proof. destruct (Qp_lower_bound q1 q2) as (qmin & q1' & q2' & [-> ->]). exists qmin. split; eapply Qp_lt_sum; eauto. Qed. Lemma Qp_cross_split p a b c d : - (a + b = p → c + d = p → - ∃ ac ad bc bd, ac + ad = a ∧ bc + bd = b ∧ ac + bc = c ∧ ad + bd = d)%Qp. + a + b = p → c + d = p → + ∃ ac ad bc bd, ac + ad = a ∧ bc + bd = b ∧ ac + bc = c ∧ ad + bd = d. Proof. intros H <-. revert a b c d H. cut (∀ a b c d : Qp, - (a < c)%Qc → a + b = c + d → + a < c → a + b = c + d → ∃ ac ad bc bd, ac + ad = a ∧ bc + bd = b ∧ ac + bc = c ∧ ad + bd = d)%Qp. { intros help a b c d Habcd. - destruct (Qclt_le_dec a c) as [?|[?| ->%Qp_eq]%Qcle_lt_or_eq]. + destruct (Qp_lt_le_dec a c) as [?|[?| ->]%Qp_le_lt_or_eq]. - auto. - destruct (help c d a b); [done..|]. naive_solver. - - apply (inj (Qp_plus a)) in Habcd as ->. destruct (Qp_lower_bound a d) as (q&a'&d'&->&->). + - apply (inj (Qp_plus a)) in Habcd as ->. + destruct (Qp_lower_bound a d) as (q&a'&d'&->&->). exists a', q, q, d'. repeat split; done || by rewrite (comm_L Qp_plus). } intros a b c d [e ->]%Qp_lt_sum. rewrite <-(assoc_L _). intros ->%(inj (Qp_plus a)). destruct (Qp_lower_bound a d) as (q&a'&d'&->&->). @@ -818,153 +978,99 @@ Proof. - by rewrite (assoc_L _), (comm_L Qp_plus a'). Qed. -Lemma Qp_bounded_split (p r : Qp) : ∃ q1 q2 : Qp, (q1 ≤ r)%Qc ∧ p = (q1 + q2)%Qp. -Proof. - destruct (Qclt_le_dec r p) as [?|?]. - - assert (0 < p +- r)%Qc as Hpos. - { apply (Qcplus_lt_mono_r _ _ r). rewrite <-Qcplus_assoc, (Qcplus_comm (-r)). - by rewrite Qcplus_opp_r, Qcplus_0_l, Qcplus_0_r. } - exists r, (mk_Qp _ Hpos); simpl; split; [done|]. - apply Qp_eq; simpl. rewrite Qcplus_comm, <-Qcplus_assoc, (Qcplus_comm (-r)). - by rewrite Qcplus_opp_r, Qcplus_0_r. - - exists (p / 2)%Qp, (p / 2)%Qp; split. - + trans p; [|done]. apply Qclt_le_weak, Qp_lt_sum. - exists (p / 2)%Qp. by rewrite Qp_div_2. - + by rewrite Qp_div_2. -Qed. - -Lemma Qp_not_plus_ge (q p : Qp) : ¬ (q + p)%Qp ≤ q. -Proof. - rewrite <- (Qcplus_0_r q). - intros Hle%(Qcplus_le_mono_l p 0 q)%Qcle_ngt. - apply Hle, Qp_prf. -Qed. - -Lemma Qp_ge_0 (q: Qp): (0 ≤ q)%Qc. -Proof. apply Qclt_le_weak, Qp_prf. Qed. - -Lemma Qp_le_plus_r (q p : Qp) : p ≤ q + p. -Proof. - apply (Qcplus_le_mono_l _ _ (-p)%Qc). rewrite Qcplus_comm, Qcplus_opp_r. - rewrite Qcplus_comm, <- Qcplus_assoc, Qcplus_opp_r, Qcplus_0_r. apply Qp_ge_0. -Qed. - -Lemma Qp_le_plus_l (q p : Qp) : q ≤ q + p. -Proof. rewrite Qcplus_comm. apply Qp_le_plus_r. Qed. - -Lemma Qp_le_plus_compat (q p n m : Qp) : q ≤ n → p ≤ m → q + p ≤ n + m. +Lemma Qp_bounded_split p r : ∃ q1 q2 : Qp, q1 ≤ r ∧ p = q1 + q2. Proof. - intros. eapply Qcle_trans; [by apply Qcplus_le_mono_l - |by apply Qcplus_le_mono_r]. + destruct (Qp_lt_le_dec r p) as [[q ->]%Qp_lt_sum|?]. + { by exists r, q. } + exists (p / 2)%Qp, (p / 2)%Qp; split. + + trans p; [|done]. apply Qp_div_le. + + by rewrite Qp_div_2. Qed. -Lemma Qp_plus_id_free q p : q + p = q → False. -Proof. intro Heq. apply (Qp_not_plus_ge q p). by rewrite Heq. Qed. - -Lemma Qp_plus_weak_r (q p o : Qp) : q + p ≤ o → q ≤ o. -Proof. intros Le. eapply Qcle_trans; [ apply Qp_le_plus_l | apply Le ]. Qed. - -Lemma Qp_plus_weak_l (q p o : Qp) : q + p ≤ o → p ≤ o. -Proof. rewrite Qcplus_comm. apply Qp_plus_weak_r. Qed. - -Lemma Qp_plus_weak_2_r (q p o : Qp) : q ≤ o → q ≤ p + o. -Proof. intros Le. eapply Qcle_trans; [apply Le| apply Qp_le_plus_r]. Qed. - -Lemma Qp_plus_weak_2_l (q p o : Qp) : q ≤ p → q ≤ p + o. -Proof. rewrite Qcplus_comm. apply Qp_plus_weak_2_r. Qed. - -Lemma Qp_max_spec (q p : Qp) : (q < p ∧ q `max` p = p) ∨ (p ≤ q ∧ q `max` p = q). +Lemma Qp_max_spec q p : (q < p ∧ q `max` p = p) ∨ (p ≤ q ∧ q `max` p = q). Proof. unfold Qp_max. - destruct (decide (q ≤ p)) as [[?| ->%Qp_eq]%Qcle_lt_or_eq|?]; [by auto..|]. - right. split; [|done]. by apply Qclt_le_weak, Qcnot_le_lt. + destruct (decide (q ≤ p)) as [[?| ->]%Qp_le_lt_or_eq|?]; [by auto..|]. + right. split; [|done]. by apply Qp_lt_le_weak, Qp_not_le_lt. Qed. -Lemma Qp_max_spec_le (q p : Qp) : (q ≤ p ∧ q `max` p = p) ∨ (p ≤ q ∧ q `max` p = q). -Proof. destruct (Qp_max_spec q p) as [[?%Qclt_le_weak?]|]; [left|right]; done. Qed. +Lemma Qp_max_spec_le q p : (q ≤ p ∧ q `max` p = p) ∨ (p ≤ q ∧ q `max` p = q). +Proof. destruct (Qp_max_spec q p) as [[?%Qp_lt_le_weak?]|]; [left|right]; done. Qed. Instance Qp_max_assoc : Assoc (=) Qp_max. Proof. intros q p o. unfold Qp_max. destruct (decide (q ≤ p)), (decide (p ≤ o)); - eauto using decide_True, Qcle_trans. + try by rewrite ?decide_True by (by etrans). rewrite decide_False by done. - by rewrite decide_False by (eapply Qclt_not_le, Qclt_trans; by apply Qclt_nge). + by rewrite decide_False by (apply Qp_lt_not_le; etrans; by apply Qp_lt_nge). Qed. Instance Qp_max_comm : Comm (=) Qp_max. Proof. - intros q p. apply Qp_eq. - destruct (Qp_max_spec_le q p) as [[?->]|[?->]], (Qp_max_spec_le p q) as [[?->]|[?->]]; - eauto using Qcle_antisym. + intros q p. + destruct (Qp_max_spec_le q p) as [[?->]|[?->]], + (Qp_max_spec_le p q) as [[?->]|[?->]]; done || by apply (anti_symm (≤)). Qed. Lemma Qp_max_id q : q `max` q = q. Proof. by destruct (Qp_max_spec q q) as [[_->]|[_->]]. Qed. -Lemma Qp_le_max_l (q p : Qp) : q ≤ q `max` p. +Lemma Qp_le_max_l q p : q ≤ q `max` p. Proof. unfold Qp_max. by destruct (decide (q ≤ p)). Qed. +Lemma Qp_le_max_r q p : p ≤ q `max` p. +Proof. rewrite (comm_L Qp_max q). apply Qp_le_max_l. Qed. -Lemma Qp_le_max_r (q p : Qp) : p ≤ q `max` p. -Proof. rewrite (comm _ q). apply Qp_le_max_l. Qed. - -Lemma Qp_max_plus (q p : Qp) : q `max` p ≤ q + p. +Lemma Qp_max_plus q p : q `max` p ≤ q + p. Proof. - unfold Qp_max. destruct (decide (q ≤ p)). - - apply Qp_le_plus_r. - - apply Qp_le_plus_l. -Qed. - -Lemma Qp_max_lub_l (q p o : Qp) : q `max` p ≤ o → q ≤ o. -Proof. - unfold Qp_max. destruct (decide (q ≤ p)); [by apply Qcle_trans | done]. + unfold Qp_max. + destruct (decide (q ≤ p)); [apply Qp_le_plus_r|apply Qp_le_plus_l]. Qed. -Lemma Qp_max_lub_r (q p o : Qp) : q `max` p ≤ o → p ≤ o. +Lemma Qp_max_lub_l q p o : q `max` p ≤ o → q ≤ o. +Proof. unfold Qp_max. destruct (decide (q ≤ p)); [by etrans|done]. Qed. +Lemma Qp_max_lub_r q p o : q `max` p ≤ o → p ≤ o. Proof. rewrite (comm _ q). apply Qp_max_lub_l. Qed. -Lemma Qp_min_spec (q p : Qp) : (q < p ∧ q `min` p = q) ∨ (p ≤ q ∧ q `min` p = p). +Lemma Qp_min_spec q p : (q < p ∧ q `min` p = q) ∨ (p ≤ q ∧ q `min` p = p). Proof. unfold Qp_min. - destruct (decide (q ≤ p)) as [[?| ->%Qp_eq]%Qcle_lt_or_eq|?]; [by auto..|]. - right. split; [|done]. by apply Qclt_le_weak, Qcnot_le_lt. + destruct (decide (q ≤ p)) as [[?| ->]%Qp_le_lt_or_eq|?]; [by auto..|]. + right. split; [|done]. by apply Qp_lt_le_weak, Qp_not_le_lt. Qed. -Lemma Qp_min_spec_le (q p : Qp) : (q ≤ p ∧ q `min` p = q) ∨ (p ≤ q ∧ q `min` p = p). -Proof. destruct (Qp_min_spec q p) as [[?%Qclt_le_weak?]|]; [left|right]; done. Qed. +Lemma Qp_min_spec_le q p : (q ≤ p ∧ q `min` p = q) ∨ (p ≤ q ∧ q `min` p = p). +Proof. destruct (Qp_min_spec q p) as [[?%Qp_lt_le_weak?]|]; [left|right]; done. Qed. Instance Qp_min_assoc : Assoc (=) Qp_min. Proof. intros q p o. unfold Qp_min. destruct (decide (q ≤ p)), (decide (p ≤ o)); eauto using decide_False. - - rewrite decide_True by done. by rewrite decide_True by (eapply Qcle_trans; done). - - by rewrite (decide_False _ _) by (eapply Qclt_not_le, Qclt_trans; by apply Qclt_nge). + - by rewrite !decide_True by (by etrans). + - by rewrite decide_False by (apply Qp_lt_not_le; etrans; by apply Qp_lt_nge). Qed. Instance Qp_min_comm : Comm (=) Qp_min. Proof. - intros q p. apply Qp_eq. - destruct (Qp_min_spec_le q p) as [[?->]|[?->]], (Qp_min_spec_le p q) as [[? ->]|[? ->]]; - eauto using Qcle_antisym. + intros q p. + destruct (Qp_min_spec_le q p) as [[?->]|[?->]], + (Qp_min_spec_le p q) as [[? ->]|[? ->]]; done || by apply (anti_symm (≤)). Qed. -Lemma Qp_min_id (q : Qp) : q `min` q = q. +Lemma Qp_min_id q : q `min` q = q. Proof. by destruct (Qp_min_spec q q) as [[_->]|[_->]]. Qed. - -Lemma Qp_le_min_r (q p : Qp) : q `min` p ≤ p. +Lemma Qp_le_min_r q p : q `min` p ≤ p. Proof. by destruct (Qp_min_spec_le q p) as [[?->]|[?->]]. Qed. -Lemma Qp_le_min_l (p q : Qp) : p `min` q ≤ p. -Proof. rewrite (comm _ p). apply Qp_le_min_r. Qed. +Lemma Qp_le_min_l p q : p `min` q ≤ p. +Proof. rewrite (comm_L Qp_min p). apply Qp_le_min_r. Qed. -Lemma Qp_min_l_iff (q p : Qp) : q `min` p = q ↔ q ≤ p. +Lemma Qp_min_l_iff q p : q `min` p = q ↔ q ≤ p. Proof. destruct (Qp_min_spec_le q p) as [[?->]|[?->]]; [done|]. - split; [by intros ->|]. intros. by apply Qp_eq, Qcle_antisym. + split; [by intros ->|]. intros. by apply (anti_symm (≤)). Qed. - -Lemma Qp_min_r_iff (q p : Qp) : q `min` p = p ↔ p ≤ q. -Proof. rewrite (comm _ q). apply Qp_min_l_iff. Qed. +Lemma Qp_min_r_iff q p : q `min` p = p ↔ p ≤ q. +Proof. rewrite (comm_L Qp_min q). apply Qp_min_l_iff. Qed. Local Close Scope Qp_scope. -Local Close Scope Qc_scope. (** * Helper for working with accessing lists with wrap-around See also [rotate] and [rotate_take] in [list.v] *)