diff --git a/_CoqProject b/_CoqProject index 582ae30e99b1093d48784ab918f0eaaab6ec6308..c64118f9c21814723843322542c2ca8231c3df65 100644 --- a/_CoqProject +++ b/_CoqProject @@ -26,6 +26,7 @@ theories/algebra/gmultiset.v theories/algebra/coPset.v theories/algebra/deprecated.v theories/algebra/proofmode_classes.v +theories/bi/notation.v theories/bi/interface.v theories/bi/derived_connectives.v theories/bi/derived_laws_bi.v @@ -44,6 +45,7 @@ theories/bi/lib/laterable.v theories/bi/lib/atomic.v theories/bi/lib/core.v theories/base_logic/upred.v +theories/base_logic/bi.v theories/base_logic/derived.v theories/base_logic/base_logic.v theories/base_logic/soundness.v diff --git a/theories/base_logic/base_logic.v b/theories/base_logic/base_logic.v index 40a3d9a3eea6dde15f21c9faa89123226605d00e..88a6d22e2a44603a036e44233547a4e164eb50f1 100644 --- a/theories/base_logic/base_logic.v +++ b/theories/base_logic/base_logic.v @@ -7,7 +7,6 @@ Set Default Proof Using "Type". another [uPred] module is by Jason Gross and described in: https://sympa.inria.fr/sympa/arc/coq-club/2016-12/msg00069.html *) Module Import uPred. - Export upred.uPred. Export derived.uPred. Export bi. End uPred. @@ -25,7 +24,7 @@ Global Instance from_pure_cmra_valid {A : cmraT} af (a : A) : @FromPure (uPredI M) af (✓ a) (✓ a). Proof. rewrite /FromPure. eapply bi.pure_elim; [by apply affinely_if_elim|]=> ?. - rewrite -cmra_valid_intro //. by apply pure_intro. + rewrite -cmra_valid_intro //. Qed. Global Instance from_sep_ownM (a b1 b2 : M) : diff --git a/theories/base_logic/bi.v b/theories/base_logic/bi.v new file mode 100644 index 0000000000000000000000000000000000000000..c1b8e8f25acc72a5efd0bb8f43de5697eacefe8f --- /dev/null +++ b/theories/base_logic/bi.v @@ -0,0 +1,150 @@ +From iris.bi Require Export derived_connectives updates plainly. +From iris.base_logic Require Export upred. +Import uPred_primitive. + +(** BI and other MoSeL instances for uPred. This file does *not* unseal. *) + +Definition uPred_emp {M} : uPred M := uPred_pure True. + +Local Existing Instance entails_po. + +Lemma uPred_bi_mixin (M : ucmraT) : + BiMixin + uPred_entails uPred_emp uPred_pure uPred_and uPred_or uPred_impl + (@uPred_forall M) (@uPred_exist M) uPred_sep uPred_wand + uPred_persistently. +Proof. + split. + - exact: entails_po. + - exact: equiv_spec. + - exact: pure_ne. + - exact: and_ne. + - exact: or_ne. + - exact: impl_ne. + - exact: forall_ne. + - exact: exist_ne. + - exact: sep_ne. + - exact: wand_ne. + - exact: persistently_ne. + - exact: pure_intro. + - exact: pure_elim'. + - exact: @pure_forall_2. + - exact: and_elim_l. + - exact: and_elim_r. + - exact: and_intro. + - exact: or_intro_l. + - exact: or_intro_r. + - exact: or_elim. + - exact: impl_intro_r. + - exact: impl_elim_l'. + - exact: @forall_intro. + - exact: @forall_elim. + - exact: @exist_intro. + - exact: @exist_elim. + - exact: sep_mono. + - exact: True_sep_1. + - exact: True_sep_2. + - exact: sep_comm'. + - exact: sep_assoc'. + - exact: wand_intro_r. + - exact: wand_elim_l'. + - exact: persistently_mono. + - exact: persistently_idemp_2. + - (* emp ⊢ <pers> emp (ADMISSIBLE) *) + trans (uPred_forall (M:=M) (fun _ : False => uPred_persistently uPred_emp)). + + apply forall_intro=>[[]]. + + etrans; first exact: persistently_forall_2. + apply persistently_mono. exact: pure_intro. + - exact: @persistently_forall_2. + - exact: @persistently_exist_1. + - (* <pers> P ∗ Q ⊢ <pers> P (ADMISSIBLE) *) + intros. etrans; first exact: sep_comm'. + etrans; last exact: True_sep_2. + apply sep_mono; last done. + exact: pure_intro. + - exact: persistently_and_sep_l_1. +Qed. + +Lemma uPred_sbi_mixin (M : ucmraT) : SbiMixin + uPred_entails uPred_pure uPred_or uPred_impl + (@uPred_forall M) (@uPred_exist M) uPred_sep + uPred_persistently (@uPred_internal_eq M) uPred_later. +Proof. + split. + - exact: later_contractive. + - exact: internal_eq_ne. + - exact: @internal_eq_refl. + - exact: @internal_eq_rewrite. + - exact: @fun_ext. + - exact: @sig_eq. + - exact: @discrete_eq_1. + - exact: @later_eq_1. + - exact: @later_eq_2. + - exact: later_mono. + - exact: later_intro. + - exact: @later_forall_2. + - exact: @later_exist_false. + - exact: later_sep_1. + - exact: later_sep_2. + - exact: later_persistently_1. + - exact: later_persistently_2. + - exact: later_false_em. +Qed. + +Canonical Structure uPredI (M : ucmraT) : bi := + {| bi_ofe_mixin := ofe_mixin_of (uPred M); bi_bi_mixin := uPred_bi_mixin M |}. +Canonical Structure uPredSI (M : ucmraT) : sbi := + {| sbi_ofe_mixin := ofe_mixin_of (uPred M); + sbi_bi_mixin := uPred_bi_mixin M; sbi_sbi_mixin := uPred_sbi_mixin M |}. + +Coercion uPred_valid {M} : uPred M → Prop := bi_emp_valid. + +Lemma uPred_plainly_mixin M : BiPlainlyMixin (uPredSI M) uPred_plainly. +Proof. + split. + - exact: plainly_ne. + - exact: plainly_mono. + - exact: plainly_elim_persistently. + - exact: plainly_idemp_2. + - exact: @plainly_forall_2. + - exact: persistently_impl_plainly. + - exact: plainly_impl_plainly. + - (* P ⊢ â– emp (ADMISSIBLE) *) + intros P. + trans (uPred_forall (M:=M) (fun _ : False => uPred_plainly uPred_emp)). + + apply forall_intro=>[[]]. + + etrans; first exact: plainly_forall_2. + apply plainly_mono. exact: pure_intro. + - (* â– P ∗ Q ⊢ â– P (ADMISSIBLE) *) + intros P Q. etrans; last exact: True_sep_2. + etrans; first exact: sep_comm'. + apply sep_mono; last done. + exact: pure_intro. + - exact: prop_ext. + - exact: later_plainly_1. + - exact: later_plainly_2. +Qed. +Instance uPred_plainlyC M : BiPlainly (uPredSI M) := + {| bi_plainly_mixin := uPred_plainly_mixin M |}. + +Lemma uPred_bupd_mixin M : BiBUpdMixin (uPredI M) uPred_bupd. +Proof. + split. + - exact: bupd_ne. + - exact: bupd_intro. + - exact: bupd_mono. + - exact: bupd_trans. + - exact: bupd_frame_r. +Qed. +Instance uPred_bi_bupd M : BiBUpd (uPredI M) := {| bi_bupd_mixin := uPred_bupd_mixin M |}. + +Instance uPred_bi_bupd_plainly M : BiBUpdPlainly (uPredSI M). +Proof. exact: bupd_plainly. Qed. + +(** extra BI instances *) + +Global Instance uPred_affine : BiAffine (uPredI M) | 0. +Proof. intros P Q. exact: pure_intro. Qed. + +Global Instance uPred_plainly_exist_1 : BiPlainlyExist (uPredSI M). +Proof. exact: @plainly_exist_1. Qed. diff --git a/theories/base_logic/derived.v b/theories/base_logic/derived.v index e1c324096dbb1f37b9d3f34de057d45cf4a5987f..f4fe5135f9a484ee29cb6e53e45ed427be2866c7 100644 --- a/theories/base_logic/derived.v +++ b/theories/base_logic/derived.v @@ -1,9 +1,21 @@ -From iris.base_logic Require Export upred. +From iris.base_logic Require Export bi. From iris.bi Require Export bi. Set Default Proof Using "Type". -Import upred.uPred bi. +Import bi. Module uPred. + +(* New unseal tactic that also unfolds the BI layer *) +Ltac unseal := (* Coq unfold is used to circumvent bug #5699 in rewrite /foo *) + unfold bi_emp; simpl; unfold sbi_emp; simpl; + unfold uPred_emp, bupd, bi_bupd_bupd, bi_pure, + bi_and, bi_or, bi_impl, bi_forall, bi_exist, + bi_sep, bi_wand, bi_persistently, sbi_internal_eq, sbi_later; simpl; + unfold sbi_emp, sbi_pure, sbi_and, sbi_or, sbi_impl, sbi_forall, sbi_exist, + sbi_internal_eq, sbi_sep, sbi_wand, sbi_persistently; simpl; + unfold plainly, bi_plainly_plainly; simpl; + uPred_primitive.unseal. + Section derived. Context {M : ucmraT}. Implicit Types φ : Prop. @@ -14,7 +26,57 @@ Implicit Types A : Type. Notation "P ⊢ Q" := (bi_entails (PROP:=uPredI M) P%I Q%I). Notation "P ⊣⊢ Q" := (equiv (A:=uPredI M) P%I Q%I). -(* Own and valid derived *) +(** Propers *) +Global Instance uPred_valid_proper : Proper ((⊣⊢) ==> iff) (@uPred_valid M). +Proof. solve_proper. Qed. +Global Instance uPred_valid_mono : Proper ((⊢) ==> impl) (@uPred_valid M). +Proof. solve_proper. Qed. +Global Instance uPred_valid_flip_mono : + Proper (flip (⊢) ==> flip impl) (@uPred_valid M). +Proof. solve_proper. Qed. + +Global Existing Instance uPred_primitive.ownM_ne. +Global Instance ownM_proper: Proper ((≡) ==> (⊣⊢)) (@uPred_ownM M) := ne_proper _. + +Global Existing Instance uPred_primitive.cmra_valid_ne. +Global Instance cmra_valid_proper {A : cmraT} : + Proper ((≡) ==> (⊣⊢)) (@uPred_cmra_valid M A) := ne_proper _. + +(** Re-exporting primitive Own and valid lemmas *) +Lemma ownM_op (a1 a2 : M) : + uPred_ownM (a1 â‹… a2) ⊣⊢ uPred_ownM a1 ∗ uPred_ownM a2. +Proof. exact: uPred_primitive.ownM_op. Qed. +Lemma persistently_ownM_core (a : M) : uPred_ownM a ⊢ <pers> uPred_ownM (core a). +Proof. exact: uPred_primitive.persistently_ownM_core. Qed. +Lemma ownM_unit P : P ⊢ (uPred_ownM ε). +Proof. exact: uPred_primitive.ownM_unit. Qed. +Lemma later_ownM a : â–· uPred_ownM a ⊢ ∃ b, uPred_ownM b ∧ â–· (a ≡ b). +Proof. exact: uPred_primitive.later_ownM. Qed. +Lemma bupd_ownM_updateP x (Φ : M → Prop) : + x ~~>: Φ → uPred_ownM x ⊢ |==> ∃ y, ⌜Φ y⌠∧ uPred_ownM y. +Proof. exact: uPred_primitive.bupd_ownM_updateP. Qed. + +Lemma ownM_valid (a : M) : uPred_ownM a ⊢ ✓ a. +Proof. exact: uPred_primitive.ownM_valid. Qed. +Lemma cmra_valid_intro {A : cmraT} P (a : A) : ✓ a → P ⊢ (✓ a). +Proof. exact: uPred_primitive.cmra_valid_intro. Qed. +Lemma cmra_valid_elim {A : cmraT} (a : A) : ¬ ✓{0} a → ✓ a ⊢ False. +Proof. exact: uPred_primitive.cmra_valid_elim. Qed. +Lemma plainly_cmra_valid_1 {A : cmraT} (a : A) : ✓ a ⊢ ■✓ a. +Proof. exact: uPred_primitive.plainly_cmra_valid_1. Qed. +Lemma cmra_valid_weaken {A : cmraT} (a b : A) : ✓ (a â‹… b) ⊢ ✓ a. +Proof. exact: uPred_primitive.cmra_valid_weaken. Qed. +Lemma prod_validI {A B : cmraT} (x : A * B) : ✓ x ⊣⊢ ✓ x.1 ∧ ✓ x.2. +Proof. exact: uPred_primitive.prod_validI. Qed. +Lemma option_validI {A : cmraT} (mx : option A) : + ✓ mx ⊣⊢ match mx with Some x => ✓ x | None => True : uPred M end. +Proof. exact: uPred_primitive.option_validI. Qed. +Lemma discrete_valid {A : cmraT} `{!CmraDiscrete A} (a : A) : ✓ a ⊣⊢ ⌜✓ aâŒ. +Proof. exact: uPred_primitive.discrete_valid. Qed. +Lemma ofe_fun_validI `{B : A → ucmraT} (g : ofe_fun B) : ✓ g ⊣⊢ ∀ i, ✓ g i. +Proof. exact: uPred_primitive.ofe_fun_validI. Qed. + +(** Own and valid derived *) Lemma persistently_cmra_valid_1 {A : cmraT} (a : A) : ✓ a ⊢ <pers> (✓ a : uPred M). Proof. by rewrite {1}plainly_cmra_valid_1 plainly_elim_persistently. Qed. Lemma intuitionistically_ownM (a : M) : CoreId a → â–¡ uPred_ownM a ⊣⊢ uPred_ownM a. diff --git a/theories/base_logic/lib/own.v b/theories/base_logic/lib/own.v index a2bdd3d2e073017132e306078a23ac8a5d461ee7..a9d78acb9ff6502969e1c11c83253d1c951d4cbf 100644 --- a/theories/base_logic/lib/own.v +++ b/theories/base_logic/lib/own.v @@ -118,7 +118,7 @@ Lemma own_alloc_strong a (G : gset gname) : Proof. intros Ha. rewrite -(bupd_mono (∃ m, ⌜∃ γ, γ ∉ G ∧ m = iRes_singleton γ a⌠∧ uPred_ownM m)%I). - - rewrite /uPred_valid /bi_emp_valid ownM_unit. + - rewrite /uPred_valid /bi_emp_valid (ownM_unit emp). eapply bupd_ownM_updateP, (ofe_fun_singleton_updateP_empty (inG_id _)); first (eapply alloc_updateP_strong', cmra_transport_valid, Ha); naive_solver. @@ -168,7 +168,7 @@ Arguments own_update_3 {_ _} [_] _ _ _ _ _ _. Lemma own_unit A `{inG Σ (A:ucmraT)} γ : (|==> own γ ε)%I. Proof. - rewrite /uPred_valid /bi_emp_valid ownM_unit !own_eq /own_def. + rewrite /uPred_valid /bi_emp_valid (ownM_unit emp) !own_eq /own_def. apply bupd_ownM_update, ofe_fun_singleton_update_empty. apply (alloc_unit_singleton_update (cmra_transport inG_prf ε)); last done. - apply cmra_transport_valid, ucmra_unit_valid. diff --git a/theories/base_logic/upred.v b/theories/base_logic/upred.v index 2c628625d0f8ae1ffbe7acfa07cbc25887121620..a47ddc9947579d076bd04ff086c36f6ee18e37e9 100644 --- a/theories/base_logic/upred.v +++ b/theories/base_logic/upred.v @@ -1,5 +1,5 @@ From iris.algebra Require Export cmra updates. -From iris.bi Require Export derived_connectives updates plainly. +From iris.bi Require Import notation. From stdpp Require Import finite. Set Default Proof Using "Type". Local Hint Extern 1 (_ ≼ _) => etrans; [eassumption|]. @@ -52,13 +52,11 @@ Record uPred (M : ucmraT) : Type := IProp { uPred_mono n1 n2 x1 x2 : uPred_holds n1 x1 → x1 ≼{n1} x2 → n2 ≤ n1 → uPred_holds n2 x2 }. -Arguments uPred_holds {_} _ _ _ : simpl never. +Bind Scope bi_scope with uPred. +Arguments uPred_holds {_} _%I _ _ : simpl never. Add Printing Constructor uPred. Instance: Params (@uPred_holds) 3. -Bind Scope bi_scope with uPred. -Arguments uPred_holds {_} _%I _ _. - Section cofe. Context {M : ucmraT}. @@ -199,8 +197,6 @@ Definition uPred_pure {M} := uPred_pure_aux.(unseal) M. Definition uPred_pure_eq : @uPred_pure = @uPred_pure_def := uPred_pure_aux.(seal_eq). -Definition uPred_emp {M} : uPred M := uPred_pure True. - Program Definition uPred_and_def {M} (P Q : uPred M) : uPred M := {| uPred_holds n x := P n x ∧ Q n x |}. Solve Obligations with naive_solver eauto 2 with uPred_def. @@ -278,7 +274,7 @@ Definition uPred_wand_eq : (* Equivalently, this could be `∀ y, P n y`. That's closer to the intuition of "embedding the step-indexed logic in Iris", but the two are equivalent because Iris is afine. The following is easier to work with. *) -Program Definition uPred_plainly_def {M} : Plainly (uPred M) := λ P, +Program Definition uPred_plainly_def {M} (P : uPred M) : uPred M := {| uPred_holds n x := P n ε |}. Solve Obligations with naive_solver eauto using uPred_mono, ucmra_unit_validN. Definition uPred_plainly_aux : seal (@uPred_plainly_def). by eexists. Qed. @@ -335,391 +331,473 @@ Next Obligation. exists (x' â‹… x3); split; first by rewrite -assoc. eauto using uPred_mono, cmra_includedN_l. Qed. -Definition uPred_bupd_aux {M} : seal (@uPred_bupd_def M). by eexists. Qed. -Definition uPred_bupd {M} : BUpd (uPred M) := uPred_bupd_aux.(unseal). -Definition uPred_bupd_eq {M} : - @bupd _ uPred_bupd = @uPred_bupd_def M := uPred_bupd_aux.(seal_eq). +Definition uPred_bupd_aux : seal (@uPred_bupd_def). by eexists. Qed. +Definition uPred_bupd {M} := uPred_bupd_aux.(unseal) M. +Definition uPred_bupd_eq : + @uPred_bupd = @uPred_bupd_def := uPred_bupd_aux.(seal_eq). + +(** Global uPred-specific Notation *) +Notation "✓ x" := (uPred_cmra_valid x) (at level 20) : bi_scope. -Module uPred_unseal. +(** Promitive logical rules. + These are not directly usable later because they do not refer to the BI + connectives. *) +Module uPred_primitive. Definition unseal_eqs := (uPred_pure_eq, uPred_and_eq, uPred_or_eq, uPred_impl_eq, uPred_forall_eq, uPred_exist_eq, uPred_internal_eq_eq, uPred_sep_eq, uPred_wand_eq, uPred_plainly_eq, uPred_persistently_eq, uPred_later_eq, uPred_ownM_eq, uPred_cmra_valid_eq, @uPred_bupd_eq). Ltac unseal := (* Coq unfold is used to circumvent bug #5699 in rewrite /foo *) - unfold bi_emp; simpl; unfold sbi_emp; simpl; - unfold uPred_emp, bi_pure, bi_and, bi_or, bi_impl, bi_forall, bi_exist, - bi_sep, bi_wand, bi_persistently, sbi_internal_eq, sbi_later; simpl; - unfold sbi_emp, sbi_pure, sbi_and, sbi_or, sbi_impl, sbi_forall, sbi_exist, - sbi_internal_eq, sbi_sep, sbi_wand, sbi_persistently; simpl; - unfold plainly, bi_plainly_plainly; simpl; rewrite !unseal_eqs /=. -End uPred_unseal. -Import uPred_unseal. -Local Arguments uPred_holds {_} !_ _ _ /. +Section primitive. +Context {M : ucmraT}. +Implicit Types φ : Prop. +Implicit Types P Q : uPred M. +Implicit Types A : Type. +Arguments uPred_holds {_} !_ _ _ /. +Hint Immediate uPred_in_entails. -Lemma uPred_bi_mixin (M : ucmraT) : - BiMixin - uPred_entails uPred_emp uPred_pure uPred_and uPred_or uPred_impl - (@uPred_forall M) (@uPred_exist M) uPred_sep uPred_wand - uPred_persistently. +Notation "P ⊢ Q" := (@uPred_entails M P%I Q%I) : stdpp_scope. +Notation "(⊢)" := (@uPred_entails M) (only parsing) : stdpp_scope. +Notation "P ⊣⊢ Q" := (@uPred_equiv M P%I Q%I) : stdpp_scope. +Notation "(⊣⊢)" := (@uPred_equiv M) (only parsing) : stdpp_scope. + +Notation "'True'" := (uPred_pure True) : bi_scope. +Notation "'False'" := (uPred_pure False) : bi_scope. +Notation "'⌜' φ 'âŒ'" := (uPred_pure φ%type%stdpp) : bi_scope. +Infix "∧" := uPred_and : bi_scope. +Infix "∨" := uPred_or : bi_scope. +Infix "→" := uPred_impl : bi_scope. +Notation "∀ x .. y , P" := + (uPred_forall (λ x, .. (uPred_forall (λ y, P)) ..)) : bi_scope. +Notation "∃ x .. y , P" := + (uPred_exist (λ x, .. (uPred_exist (λ y, P)) ..)) : bi_scope. +Infix "∗" := uPred_sep : bi_scope. +Infix "-∗" := uPred_wand : bi_scope. +Notation "â–¡ P" := (uPred_persistently P) : bi_scope. +Notation "â– P" := (uPred_plainly P) : bi_scope. +Notation "x ≡ y" := (uPred_internal_eq x y) : bi_scope. +Notation "â–· P" := (uPred_later P) : bi_scope. +Notation "|==> P" := (uPred_bupd P) : bi_scope. + +(** Entailment *) +Lemma entails_po : PreOrder (⊢). Proof. split. - - (* PreOrder uPred_entails *) - split. - + by intros P; split=> x i. - + by intros P Q Q' HP HQ; split=> x i ??; apply HQ, HP. - - (* (P ⊣⊢ Q) ↔ (P ⊢ Q) ∧ (Q ⊢ P) *) - intros P Q. split. - + intros HPQ; split; split=> x i; apply HPQ. - + intros [HPQ HQP]; split=> x n; by split; [apply HPQ|apply HQP]. - - (* Proper (iff ==> dist n) (@uPred_pure M) *) - intros φ1 φ2 Hφ. by unseal; split=> -[|n] ?; try apply Hφ. - - (* NonExpansive2 uPred_and *) - intros n P P' HP Q Q' HQ; unseal; split=> x n' ??. - split; (intros [??]; split; [by apply HP|by apply HQ]). - - (* NonExpansive2 uPred_or *) - intros n P P' HP Q Q' HQ; split=> x n' ??. - unseal; split; (intros [?|?]; [left; by apply HP|right; by apply HQ]). - - (* NonExpansive2 uPred_impl *) - intros n P P' HP Q Q' HQ; split=> x n' ??. - unseal; split; intros HPQ x' n'' ????; apply HQ, HPQ, HP; auto. - - (* Proper (pointwise_relation A (dist n) ==> dist n) uPred_forall *) - by intros A n Ψ1 Ψ2 HΨ; unseal; split=> n' x; split; intros HP a; apply HΨ. - - (* Proper (pointwise_relation A (dist n) ==> dist n) uPred_exist *) - intros A n Ψ1 Ψ2 HΨ. - unseal; split=> n' x ??; split; intros [a ?]; exists a; by apply HΨ. - - (* NonExpansive2 uPred_sep *) - intros n P P' HP Q Q' HQ; split=> n' x ??. - unseal; split; intros (x1&x2&?&?&?); ofe_subst x; - exists x1, x2; split_and!; try (apply HP || apply HQ); - eauto using cmra_validN_op_l, cmra_validN_op_r. - - (* NonExpansive2 uPred_wand *) - intros n P P' HP Q Q' HQ; split=> n' x ??. - unseal; split; intros HPQ x' n'' ???; - apply HQ, HPQ, HP; eauto using cmra_validN_op_r. - - (* NonExpansive uPred_persistently *) - intros n P1 P2 HP. - unseal; split=> n' x; split; apply HP; eauto using @cmra_core_validN. - - (* φ → P ⊢ ⌜φ⌠*) - intros P φ ?. unseal; by split. - - (* (φ → True ⊢ P) → ⌜φ⌠⊢ P *) - intros φ P. unseal=> HP; split=> n x ??. by apply HP. - - (* (∀ x : A, ⌜φ xâŒ) ⊢ ⌜∀ x : A, φ x⌠*) - by unseal. - - (* P ∧ Q ⊢ P *) - intros P Q. unseal; by split=> n x ? [??]. - - (* P ∧ Q ⊢ Q *) - intros P Q. unseal; by split=> n x ? [??]. - - (* (P ⊢ Q) → (P ⊢ R) → P ⊢ Q ∧ R *) - intros P Q R HQ HR; unseal; split=> n x ??; by split; [apply HQ|apply HR]. - - (* P ⊢ P ∨ Q *) - intros P Q. unseal; split=> n x ??; left; auto. - - (* Q ⊢ P ∨ Q *) - intros P Q. unseal; split=> n x ??; right; auto. - - (* (P ⊢ R) → (Q ⊢ R) → P ∨ Q ⊢ R *) - intros P Q R HP HQ. unseal; split=> n x ? [?|?]. by apply HP. by apply HQ. - - (* (P ∧ Q ⊢ R) → P ⊢ Q → R. *) - intros P Q R. unseal => HQ; split=> n x ?? n' x' ????. apply HQ; - naive_solver eauto using uPred_mono, cmra_included_includedN. - - (* (P ⊢ Q → R) → P ∧ Q ⊢ R *) - intros P Q R. unseal=> HP; split=> n x ? [??]. apply HP with n x; auto. - - (* (∀ a, P ⊢ Ψ a) → P ⊢ ∀ a, Ψ a *) - intros A P Ψ. unseal; intros HPΨ; split=> n x ?? a; by apply HPΨ. - - (* (∀ a, Ψ a) ⊢ Ψ a *) - intros A Ψ a. unseal; split=> n x ? HP; apply HP. - - (* Ψ a ⊢ ∃ a, Ψ a *) - intros A Ψ a. unseal; split=> n x ??; by exists a. - - (* (∀ a, Ψ a ⊢ Q) → (∃ a, Ψ a) ⊢ Q *) - intros A Ψ Q. unseal; intros HΨ; split=> n x ? [a ?]; by apply HΨ with a. - - (* (P ⊢ Q) → (P' ⊢ Q') → P ∗ P' ⊢ Q ∗ Q' *) - intros P P' Q Q' HQ HQ'; unseal. - split; intros n' x ? (x1&x2&?&?&?); exists x1,x2; ofe_subst x; - eauto 7 using cmra_validN_op_l, cmra_validN_op_r, uPred_in_entails. - - (* P ⊢ emp ∗ P *) - intros P. rewrite /uPred_emp. unseal; split=> n x ?? /=. - exists (core x), x. by rewrite cmra_core_l. - - (* emp ∗ P ⊢ P *) - intros P. unseal; split; intros n x ? (x1&x2&?&_&?); ofe_subst; - eauto using uPred_mono, cmra_includedN_r. - - (* P ∗ Q ⊢ Q ∗ P *) - intros P Q. unseal; split; intros n x ? (x1&x2&?&?&?). - exists x2, x1; by rewrite (comm op). - - (* (P ∗ Q) ∗ R ⊢ P ∗ (Q ∗ R) *) - intros P Q R. unseal; split; intros n x ? (x1&x2&Hx&(y1&y2&Hy&?&?)&?). - exists y1, (y2 â‹… x2); split_and?; auto. - + by rewrite (assoc op) -Hy -Hx. - + by exists y2, x2. - - (* (P ∗ Q ⊢ R) → P ⊢ Q -∗ R *) - intros P Q R. unseal=> HPQR; split=> n x ?? n' x' ???; apply HPQR; auto. - exists x, x'; split_and?; auto. - eapply uPred_mono; eauto using cmra_validN_op_l. - - (* (P ⊢ Q -∗ R) → P ∗ Q ⊢ R *) - intros P Q R. unseal=> HPQR. split; intros n x ? (?&?&?&?&?). ofe_subst. - eapply HPQR; eauto using cmra_validN_op_l. - - (* (P ⊢ Q) → <pers> P ⊢ <pers> Q *) - intros P QR HP. unseal; split=> n x ? /=. by apply HP, cmra_core_validN. - - (* <pers> P ⊢ <pers> <pers> P *) - intros P. unseal; split=> n x ?? /=. by rewrite cmra_core_idemp. - - (* P ⊢ <pers> emp (ADMISSIBLE) *) - by unseal. - - (* (∀ a, <pers> (Ψ a)) ⊢ <pers> (∀ a, Ψ a) *) - by unseal. - - (* <pers> (∃ a, Ψ a) ⊢ ∃ a, <pers> (Ψ a) *) - by unseal. - - (* <pers> P ∗ Q ⊢ <pers> P (ADMISSIBLE) *) - intros P Q. move: (uPred_persistently P)=> P'. - unseal; split; intros n x ? (x1&x2&?&?&_); ofe_subst; - eauto using uPred_mono, cmra_includedN_l. - - (* <pers> P ∧ Q ⊢ P ∗ Q *) - intros P Q. unseal; split=> n x ? [??]; simpl in *. - exists (core x), x; rewrite ?cmra_core_l; auto. -Qed. - -Lemma uPred_sbi_mixin (M : ucmraT) : SbiMixin - uPred_entails uPred_pure uPred_or uPred_impl - (@uPred_forall M) (@uPred_exist M) uPred_sep - uPred_persistently (@uPred_internal_eq M) uPred_later. + - by intros P; split=> x i. + - by intros P Q Q' HP HQ; split=> x i ??; apply HQ, HP. +Qed. +Lemma entails_anti_sym : AntiSymm (⊣⊢) (⊢). +Proof. intros P Q HPQ HQP; split=> x n; by split; [apply HPQ|apply HQP]. Qed. +Lemma equiv_spec P Q : (P ⊣⊢ Q) ↔ (P ⊢ Q) ∧ (Q ⊢ P). Proof. split. - - (* Contractive sbi_later *) - unseal; intros [|n] P Q HPQ; split=> -[|n'] x ?? //=; try omega. - apply HPQ; eauto using cmra_validN_S. - - (* NonExpansive2 (@uPred_internal_eq M A) *) - intros A n x x' Hx y y' Hy; split=> n' z; unseal; split; intros; simpl in *. - + by rewrite -(dist_le _ _ _ _ Hx) -?(dist_le _ _ _ _ Hy); auto. - + by rewrite (dist_le _ _ _ _ Hx) ?(dist_le _ _ _ _ Hy); auto. - - (* P ⊢ a ≡ a *) - intros A P a. unseal; by split=> n x ?? /=. - - (* a ≡ b ⊢ Ψ a → Ψ b *) - intros A a b Ψ Hnonexp. - unseal; split=> n x ? Hab n' x' ??? HΨ. eapply Hnonexp with n a; auto. - - (* (∀ x, f x ≡ g x) ⊢ f ≡ g *) - by unseal. - - (* `x ≡ `y ⊢ x ≡ y *) - by unseal. - - (* Discrete a → a ≡ b ⊣⊢ ⌜a ≡ b⌠*) - intros A a b ?. unseal; split=> n x ?; by apply (discrete_iff n). - - (* Next x ≡ Next y ⊢ â–· (x ≡ y) *) - by unseal. - - (* â–· (x ≡ y) ⊢ Next x ≡ Next y *) - by unseal. - - (* (P ⊢ Q) → â–· P ⊢ â–· Q *) - intros P Q. - unseal=> HP; split=>-[|n] x ??; [done|apply HP; eauto using cmra_validN_S]. - - (* P ⊢ â–· P *) - intros P. unseal; split=> -[|n] /= x ? HP; first done. - apply uPred_mono with (S n) x; eauto using cmra_validN_S. - - (* (∀ a, â–· Φ a) ⊢ â–· ∀ a, Φ a *) - intros A Φ. unseal; by split=> -[|n] x. - - (* (â–· ∃ a, Φ a) ⊢ â–· False ∨ (∃ a, â–· Φ a) *) - intros A Φ. unseal; split=> -[|[|n]] x /=; eauto. - - (* â–· (P ∗ Q) ⊢ â–· P ∗ â–· Q *) - intros P Q. unseal; split=> -[|n] x ? /=. - { by exists x, (core x); rewrite cmra_core_r. } - intros (x1&x2&Hx&?&?); destruct (cmra_extend n x x1 x2) - as (y1&y2&Hx'&Hy1&Hy2); eauto using cmra_validN_S; simpl in *. - exists y1, y2; split; [by rewrite Hx'|by rewrite Hy1 Hy2]. - - (* â–· P ∗ â–· Q ⊢ â–· (P ∗ Q) *) - intros P Q. unseal; split=> -[|n] x ? /=; [done|intros (x1&x2&Hx&?&?)]. - exists x1, x2; eauto using dist_S. - - (* â–· <pers> P ⊢ <pers> â–· P *) - by unseal. - - (* <pers> â–· P ⊢ â–· <pers> P *) - by unseal. - - (* â–· P ⊢ â–· False ∨ (â–· False → P) *) - intros P. unseal; split=> -[|n] x ? /= HP; [by left|right]. - intros [|n'] x' ????; [|done]. - eauto using uPred_mono, cmra_included_includedN. -Qed. - -Canonical Structure uPredI (M : ucmraT) : bi := - {| bi_ofe_mixin := ofe_mixin_of (uPred M); bi_bi_mixin := uPred_bi_mixin M |}. -Canonical Structure uPredSI (M : ucmraT) : sbi := - {| sbi_ofe_mixin := ofe_mixin_of (uPred M); - sbi_bi_mixin := uPred_bi_mixin M; sbi_sbi_mixin := uPred_sbi_mixin M |}. - -Coercion uPred_valid {M} : uPred M → Prop := bi_emp_valid. - -(* Latest notation *) -Notation "✓ x" := (uPred_cmra_valid x) (at level 20) : bi_scope. + - intros HPQ; split; split=> x i; apply HPQ. + - intros [??]. exact: entails_anti_sym. +Qed. +Lemma entails_lim (cP cQ : chain (uPredC M)) : + (∀ n, cP n ⊢ cQ n) → compl cP ⊢ compl cQ. +Proof. + intros Hlim; split=> n m ? HP. + eapply uPred_holds_ne, Hlim, HP; eauto using conv_compl. +Qed. -Lemma uPred_plainly_mixin M : BiPlainlyMixin (uPredSI M) uPred_plainly. +(** Non-expansiveness and setoid morphisms *) +Lemma pure_ne n : Proper (iff ==> dist n) (@uPred_pure M). +Proof. intros φ1 φ2 Hφ. by unseal; split=> -[|m] ?; try apply Hφ. Qed. + +Lemma and_ne : NonExpansive2 (@uPred_and M). Proof. - split. - - (* NonExpansive uPred_plainly *) - intros n P1 P2 HP. - unseal; split=> n' x; split; apply HP; eauto using @ucmra_unit_validN. - - (* (P ⊢ Q) → â– P ⊢ â– Q *) - intros P QR HP. unseal; split=> n x ? /=. by apply HP, ucmra_unit_validN. - - (* â– P ⊢ <pers> P *) - unseal; split; simpl; eauto using uPred_mono, @ucmra_unit_leastN. - - (* â– P ⊢ â– â– P *) - unseal; split=> n x ?? //. - - (* (∀ a, â– (Ψ a)) ⊢ â– (∀ a, Ψ a) *) - by unseal. - - (* (â– P → <pers> Q) ⊢ <pers> (â– P → Q) *) - unseal; split=> /= n x ? HPQ n' x' ????. - eapply uPred_mono with n' (core x)=>//; [|by apply cmra_included_includedN]. - apply (HPQ n' x); eauto using cmra_validN_le. - - (* (â– P → â– Q) ⊢ â– (â– P → Q) *) - unseal; split=> /= n x ? HPQ n' x' ????. - eapply uPred_mono with n' ε=>//; [|by apply cmra_included_includedN]. - apply (HPQ n' x); eauto using cmra_validN_le. - - (* P ⊢ â– emp (ADMISSIBLE) *) - by unseal. - - (* â– P ∗ Q ⊢ â– P *) - intros P Q. move: (uPred_persistently P)=> P'. - unseal; split; intros n x ? (x1&x2&?&?&_); ofe_subst; - eauto using uPred_mono, cmra_includedN_l. - - (* â– ((P -∗ Q) ∧ (Q -∗ P)) ⊢ P ≡ Q *) - unseal; split=> n x ? /= HPQ. split=> n' x' ??. - move: HPQ=> [] /(_ n' x'); rewrite !left_id=> ?. - move=> /(_ n' x'); rewrite !left_id=> ?. naive_solver. - - (* â–· â– P ⊢ â– â–· P *) - by unseal. - - (* â– â–· P ⊢ â–· â– P *) - by unseal. + intros n P P' HP Q Q' HQ; unseal; split=> x n' ??. + split; (intros [??]; split; [by apply HP|by apply HQ]). Qed. -Instance uPred_plainlyC M : BiPlainly (uPredSI M) := - {| bi_plainly_mixin := uPred_plainly_mixin M |}. -Lemma uPred_bupd_mixin M : BiBUpdMixin (uPredI M) uPred_bupd. +Lemma or_ne : NonExpansive2 (@uPred_or M). Proof. - split. - - intros n P Q HPQ. - unseal; split=> n' x; split; intros HP k yf ??; - destruct (HP k yf) as (x'&?&?); auto; - exists x'; split; auto; apply HPQ; eauto using cmra_validN_op_l. - - unseal. split=> n x ? HP k yf ?; exists x; split; first done. - apply uPred_mono with n x; eauto using cmra_validN_op_l. - - unseal. intros HPQ; split=> n x ? HP k yf ??. - destruct (HP k yf) as (x'&?&?); eauto. - exists x'; split; eauto using uPred_in_entails, cmra_validN_op_l. - - unseal; split; naive_solver. - - unseal. split; intros n x ? (x1&x2&Hx&HP&?) k yf ??. - destruct (HP k (x2 â‹… yf)) as (x'&?&?); eauto. - { by rewrite assoc -(dist_le _ _ _ _ Hx); last lia. } - exists (x' â‹… x2); split; first by rewrite -assoc. - exists x', x2. eauto using uPred_mono, cmra_validN_op_l, cmra_validN_op_r. -Qed. -Instance uPred_bi_bupd M : BiBUpd (uPredI M) := {| bi_bupd_mixin := uPred_bupd_mixin M |}. - -Instance uPred_bi_bupd_plainly M : BiBUpdPlainly (uPredSI M). -Proof. - rewrite /BiBUpdPlainly. unseal; split => n x Hnx /= Hng. - destruct (Hng n ε) as [? [_ Hng']]; try rewrite right_id; auto. - eapply uPred_mono; eauto using ucmra_unit_leastN. + intros n P P' HP Q Q' HQ; split=> x n' ??. + unseal; split; (intros [?|?]; [left; by apply HP|right; by apply HQ]). Qed. -Module uPred. -Include uPred_unseal. -Section uPred. -Context {M : ucmraT}. -Implicit Types φ : Prop. -Implicit Types P Q : uPred M. -Implicit Types A : Type. -Arguments uPred_holds {_} !_ _ _ /. -Hint Immediate uPred_in_entails. +Lemma impl_ne : + NonExpansive2 (@uPred_impl M). +Proof. + intros n P P' HP Q Q' HQ; split=> x n' ??. + unseal; split; intros HPQ x' n'' ????; apply HQ, HPQ, HP; auto. +Qed. -Global Instance ownM_ne : NonExpansive (@uPred_ownM M). +Lemma sep_ne : NonExpansive2 (@uPred_sep M). +Proof. + intros n P P' HP Q Q' HQ; split=> n' x ??. + unseal; split; intros (x1&x2&?&?&?); ofe_subst x; + exists x1, x2; split_and!; try (apply HP || apply HQ); + eauto using cmra_validN_op_l, cmra_validN_op_r. +Qed. + +Lemma wand_ne : + NonExpansive2 (@uPred_wand M). +Proof. + intros n P P' HP Q Q' HQ; split=> n' x ??; unseal; split; intros HPQ x' n'' ???; + apply HQ, HPQ, HP; eauto using cmra_validN_op_r. +Qed. + +Lemma internal_eq_ne (A : ofeT) : + NonExpansive2 (@uPred_internal_eq M A). +Proof. + intros n x x' Hx y y' Hy; split=> n' z; unseal; split; intros; simpl in *. + - by rewrite -(dist_le _ _ _ _ Hx) -?(dist_le _ _ _ _ Hy); auto. + - by rewrite (dist_le _ _ _ _ Hx) ?(dist_le _ _ _ _ Hy); auto. +Qed. + +Lemma forall_ne A n : + Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_forall M A). +Proof. + by intros Ψ1 Ψ2 HΨ; unseal; split=> n' x; split; intros HP a; apply HΨ. +Qed. + +Lemma exist_ne A n : + Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_exist M A). +Proof. + intros Ψ1 Ψ2 HΨ. + unseal; split=> n' x ??; split; intros [a ?]; exists a; by apply HΨ. +Qed. + +Lemma later_contractive : Contractive (@uPred_later M). +Proof. + unseal; intros [|n] P Q HPQ; split=> -[|n'] x ?? //=; try omega. + apply HPQ; eauto using cmra_validN_S. +Qed. + +Lemma plainly_ne : NonExpansive (@uPred_plainly M). +Proof. + intros n P1 P2 HP. + unseal; split=> n' x; split; apply HP; eauto using @ucmra_unit_validN. +Qed. + +Lemma persistently_ne : NonExpansive (@uPred_persistently M). +Proof. + intros n P1 P2 HP. + unseal; split=> n' x; split; apply HP; eauto using @cmra_core_validN. +Qed. + +Lemma ownM_ne : NonExpansive (@uPred_ownM M). Proof. intros n a b Ha. unseal; split=> n' x ? /=. by rewrite (dist_le _ _ _ _ Ha); last lia. Qed. -Global Instance ownM_proper: Proper ((≡) ==> (⊣⊢)) (@uPred_ownM M) := ne_proper _. -Global Instance cmra_valid_ne {A : cmraT} : +Lemma cmra_valid_ne {A : cmraT} : NonExpansive (@uPred_cmra_valid M A). Proof. intros n a b Ha; unseal; split=> n' x ? /=. by rewrite (dist_le _ _ _ _ Ha); last lia. Qed. -Global Instance cmra_valid_proper {A : cmraT} : - Proper ((≡) ==> (⊣⊢)) (@uPred_cmra_valid M A) := ne_proper _. -(** BI instances *) +Lemma bupd_ne : NonExpansive (@uPred_bupd M). +Proof. + intros n P Q HPQ. + unseal; split=> n' x; split; intros HP k yf ??; + destruct (HP k yf) as (x'&?&?); auto; + exists x'; split; auto; apply HPQ; eauto using cmra_validN_op_l. +Qed. + +(** Introduction and elimination rules *) +Lemma pure_intro φ P : φ → P ⊢ ⌜φâŒ. +Proof. by intros ?; unseal; split. Qed. +Lemma pure_elim' φ P : (φ → True ⊢ P) → ⌜φ⌠⊢ P. +Proof. unseal; intros HP; split=> n x ??. by apply HP. Qed. +Lemma pure_forall_2 {A} (φ : A → Prop) : (∀ x : A, ⌜φ xâŒ) ⊢ ⌜∀ x : A, φ xâŒ. +Proof. by unseal. Qed. -Global Instance uPred_affine : BiAffine (uPredI M) | 0. -Proof. intros P. rewrite /Affine. by apply bi.pure_intro. Qed. +Lemma and_elim_l P Q : P ∧ Q ⊢ P. +Proof. by unseal; split=> n x ? [??]. Qed. +Lemma and_elim_r P Q : P ∧ Q ⊢ Q. +Proof. by unseal; split=> n x ? [??]. Qed. +Lemma and_intro P Q R : (P ⊢ Q) → (P ⊢ R) → P ⊢ Q ∧ R. +Proof. intros HQ HR; unseal; split=> n x ??; by split; [apply HQ|apply HR]. Qed. + +Lemma or_intro_l P Q : P ⊢ P ∨ Q. +Proof. unseal; split=> n x ??; left; auto. Qed. +Lemma or_intro_r P Q : Q ⊢ P ∨ Q. +Proof. unseal; split=> n x ??; right; auto. Qed. +Lemma or_elim P Q R : (P ⊢ R) → (Q ⊢ R) → P ∨ Q ⊢ R. +Proof. intros HP HQ; unseal; split=> n x ? [?|?]. by apply HP. by apply HQ. Qed. + +Lemma impl_intro_r P Q R : (P ∧ Q ⊢ R) → P ⊢ Q → R. +Proof. + unseal; intros HQ; split=> n x ?? n' x' ????. apply HQ; + naive_solver eauto using uPred_mono, cmra_included_includedN. +Qed. +Lemma impl_elim_l' P Q R : (P ⊢ Q → R) → P ∧ Q ⊢ R. +Proof. unseal; intros HP ; split=> n x ? [??]; apply HP with n x; auto. Qed. -Global Instance uPred_plainly_exist_1 : BiPlainlyExist (uPredSI M). -Proof. unfold BiPlainlyExist. by unseal. Qed. +Lemma forall_intro {A} P (Ψ : A → uPred M): (∀ a, P ⊢ Ψ a) → P ⊢ ∀ a, Ψ a. +Proof. unseal; intros HPΨ; split=> n x ?? a; by apply HPΨ. Qed. +Lemma forall_elim {A} {Ψ : A → uPred M} a : (∀ a, Ψ a) ⊢ Ψ a. +Proof. unseal; split=> n x ? HP; apply HP. Qed. -(** Limits *) -Lemma entails_lim (cP cQ : chain (uPredC M)) : - (∀ n, cP n ⊢ cQ n) → compl cP ⊢ compl cQ. +Lemma exist_intro {A} {Ψ : A → uPred M} a : Ψ a ⊢ ∃ a, Ψ a. +Proof. unseal; split=> n x ??; by exists a. Qed. +Lemma exist_elim {A} (Φ : A → uPred M) Q : (∀ a, Φ a ⊢ Q) → (∃ a, Φ a) ⊢ Q. +Proof. unseal; intros HΦΨ; split=> n x ? [a ?]; by apply HΦΨ with a. Qed. + +(** BI connectives *) +Lemma sep_mono P P' Q Q' : (P ⊢ Q) → (P' ⊢ Q') → P ∗ P' ⊢ Q ∗ Q'. Proof. - intros Hlim; split=> n m ? HP. - eapply uPred_holds_ne, Hlim, HP; eauto using conv_compl. + intros HQ HQ'; unseal. + split; intros n' x ? (x1&x2&?&?&?); exists x1,x2; ofe_subst x; + eauto 7 using cmra_validN_op_l, cmra_validN_op_r, uPred_in_entails. +Qed. +Lemma True_sep_1 P : P ⊢ True ∗ P. +Proof. + unseal; split; intros n x ??. exists (core x), x. by rewrite cmra_core_l. +Qed. +Lemma True_sep_2 P : True ∗ P ⊢ P. +Proof. + unseal; split; intros n x ? (x1&x2&?&_&?); ofe_subst; + eauto using uPred_mono, cmra_includedN_r. +Qed. +Lemma sep_comm' P Q : P ∗ Q ⊢ Q ∗ P. +Proof. + unseal; split; intros n x ? (x1&x2&?&?&?); exists x2, x1; by rewrite (comm op). +Qed. +Lemma sep_assoc' P Q R : (P ∗ Q) ∗ R ⊢ P ∗ (Q ∗ R). +Proof. + unseal; split; intros n x ? (x1&x2&Hx&(y1&y2&Hy&?&?)&?). + exists y1, (y2 â‹… x2); split_and?; auto. + + by rewrite (assoc op) -Hy -Hx. + + by exists y2, x2. +Qed. +Lemma wand_intro_r P Q R : (P ∗ Q ⊢ R) → P ⊢ Q -∗ R. +Proof. + unseal=> HPQR; split=> n x ?? n' x' ???; apply HPQR; auto. + exists x, x'; split_and?; auto. + eapply uPred_mono with n x; eauto using cmra_validN_op_l. +Qed. +Lemma wand_elim_l' P Q R : (P ⊢ Q -∗ R) → P ∗ Q ⊢ R. +Proof. + unseal =>HPQR. split; intros n x ? (?&?&?&?&?). ofe_subst. + eapply HPQR; eauto using cmra_validN_op_l. +Qed. + +(** Persistently *) +Lemma persistently_mono P Q : (P ⊢ Q) → â–¡ P ⊢ â–¡ Q. +Proof. intros HP; unseal; split=> n x ? /=. by apply HP, cmra_core_validN. Qed. +Lemma persistently_elim P : â–¡ P ⊢ P. +Proof. + unseal; split=> n x ? /=. + eauto using uPred_mono, @cmra_included_core, cmra_included_includedN. +Qed. +Lemma persistently_idemp_2 P : â–¡ P ⊢ â–¡ â–¡ P. +Proof. unseal; split=> n x ?? /=. by rewrite cmra_core_idemp. Qed. + +Lemma persistently_forall_2 {A} (Ψ : A → uPred M) : (∀ a, â–¡ Ψ a) ⊢ (â–¡ ∀ a, Ψ a). +Proof. by unseal. Qed. +Lemma persistently_exist_1 {A} (Ψ : A → uPred M) : (â–¡ ∃ a, Ψ a) ⊢ (∃ a, â–¡ Ψ a). +Proof. by unseal. Qed. + +Lemma persistently_and_sep_l_1 P Q : â–¡ P ∧ Q ⊢ P ∗ Q. +Proof. + unseal; split=> n x ? [??]; exists (core x), x; simpl in *. + by rewrite cmra_core_l. +Qed. + +(** Plainly *) +Lemma plainly_mono P Q : (P ⊢ Q) → â– P ⊢ â– Q. +Proof. intros HP; unseal; split=> n x ? /=. apply HP, ucmra_unit_validN. Qed. +Lemma plainly_elim_persistently P : â– P ⊢ â–¡ P. +Proof. unseal; split; simpl; eauto using uPred_mono, @ucmra_unit_leastN. Qed. +Lemma plainly_idemp_2 P : â– P ⊢ â– â– P. +Proof. unseal; split=> n x ?? //. Qed. + +Lemma plainly_forall_2 {A} (Ψ : A → uPred M) : (∀ a, ■Ψ a) ⊢ (■∀ a, Ψ a). +Proof. by unseal. Qed. +Lemma plainly_exist_1 {A} (Ψ : A → uPred M) : (■∃ a, Ψ a) ⊢ (∃ a, ■Ψ a). +Proof. by unseal. Qed. + +Lemma prop_ext P Q : â– ((P -∗ Q) ∧ (Q -∗ P)) ⊢ P ≡ Q. +Proof. + unseal; split=> n x ? /= HPQ. split=> n' x' ??. + move: HPQ=> [] /(_ n' x'); rewrite !left_id=> ?. + move=> /(_ n' x'); rewrite !left_id=> ?. naive_solver. +Qed. + +(* The following two laws are very similar, and indeed they hold not just for â–¡ + and â– , but for any modality defined as `M P n x := ∀ y, R x y → P n y`. *) +Lemma persistently_impl_plainly P Q : (â– P → â–¡ Q) ⊢ â–¡ (â– P → Q). +Proof. + unseal; split=> /= n x ? HPQ n' x' ????. + eapply uPred_mono with n' (core x)=>//; [|by apply cmra_included_includedN]. + apply (HPQ n' x); eauto using cmra_validN_le. +Qed. + +Lemma plainly_impl_plainly P Q : (â– P → â– Q) ⊢ â– (â– P → Q). +Proof. + unseal; split=> /= n x ? HPQ n' x' ????. + eapply uPred_mono with n' ε=>//; [|by apply cmra_included_includedN]. + apply (HPQ n' x); eauto using cmra_validN_le. +Qed. + +(** Later *) +Lemma later_mono P Q : (P ⊢ Q) → â–· P ⊢ â–· Q. +Proof. + unseal=> HP; split=>-[|n] x ??; [done|apply HP; eauto using cmra_validN_S]. +Qed. +Lemma later_intro P : P ⊢ â–· P. +Proof. + unseal; split=> -[|n] /= x ? HP; first done. + apply uPred_mono with (S n) x; eauto using cmra_validN_S. +Qed. +Lemma later_forall_2 {A} (Φ : A → uPred M) : (∀ a, â–· Φ a) ⊢ â–· ∀ a, Φ a. +Proof. unseal; by split=> -[|n] x. Qed. +Lemma later_exist_false {A} (Φ : A → uPred M) : + (â–· ∃ a, Φ a) ⊢ â–· False ∨ (∃ a, â–· Φ a). +Proof. unseal; split=> -[|[|n]] x /=; eauto. Qed. +Lemma later_sep_1 P Q : â–· (P ∗ Q) ⊢ â–· P ∗ â–· Q. +Proof. + unseal; split=> n x ?. + destruct n as [|n]; simpl. + { by exists x, (core x); rewrite cmra_core_r. } + intros (x1&x2&Hx&?&?); destruct (cmra_extend n x x1 x2) + as (y1&y2&Hx'&Hy1&Hy2); eauto using cmra_validN_S; simpl in *. + exists y1, y2; split; [by rewrite Hx'|by rewrite Hy1 Hy2]. +Qed. +Lemma later_sep_2 P Q : â–· P ∗ â–· Q ⊢ â–· (P ∗ Q). +Proof. + unseal; split=> n x ?. + destruct n as [|n]; simpl; [done|intros (x1&x2&Hx&?&?)]. + exists x1, x2; eauto using dist_S. +Qed. + +Lemma later_false_em P : â–· P ⊢ â–· False ∨ (â–· False → P). +Proof. + unseal; split=> -[|n] x ? /= HP; [by left|right]. + intros [|n'] x' ????; eauto using uPred_mono, cmra_included_includedN. +Qed. + +Lemma later_persistently_1 P : â–· â–¡ P ⊢ â–¡ â–· P. +Proof. by unseal. Qed. +Lemma later_persistently_2 P : â–¡ â–· P ⊢ â–· â–¡ P. +Proof. by unseal. Qed. +Lemma later_plainly_1 P : â–· â– P ⊢ â– â–· P. +Proof. by unseal. Qed. +Lemma later_plainly_2 P : â– â–· P ⊢ â–· â– P. +Proof. by unseal. Qed. + +(** Internal equality *) +Lemma internal_eq_refl {A : ofeT} P (a : A) : P ⊢ (a ≡ a). +Proof. unseal; by split=> n x ??; simpl. Qed. +Lemma internal_eq_rewrite {A : ofeT} a b (Ψ : A → uPred M) : + NonExpansive Ψ → a ≡ b ⊢ Ψ a → Ψ b. +Proof. intros HΨ. unseal; split=> n x ?? n' x' ??? Ha. by apply HΨ with n a. Qed. + +Lemma fun_ext `{B : A → ofeT} (g1 g2 : ofe_fun B) : + (∀ i, g1 i ≡ g2 i) ⊢ g1 ≡ g2. +Proof. by unseal. Qed. +Lemma sig_eq {A : ofeT} (P : A → Prop) (x y : sigC P) : + proj1_sig x ≡ proj1_sig y ⊢ x ≡ y. +Proof. by unseal. Qed. + +Lemma later_eq_1 {A : ofeT} (x y : A) : Next x ≡ Next y ⊢ â–· (x ≡ y). +Proof. by unseal. Qed. +Lemma later_eq_2 {A : ofeT} (x y : A) : â–· (x ≡ y) ⊢ Next x ≡ Next y. +Proof. by unseal. Qed. + +Lemma discrete_eq_1 {A : ofeT} (a b : A) : Discrete a → a ≡ b ⊢ ⌜a ≡ bâŒ. +Proof. + unseal=> ?. split=> n x ?. by apply (discrete_iff n). +Qed. + +(** Basic update modality *) +Lemma bupd_intro P : P ⊢ |==> P. +Proof. + unseal. split=> n x ? HP k yf ?; exists x; split; first done. + apply uPred_mono with n x; eauto using cmra_validN_op_l. +Qed. +Lemma bupd_mono P Q : (P ⊢ Q) → (|==> P) ⊢ |==> Q. +Proof. + unseal. intros HPQ; split=> n x ? HP k yf ??. + destruct (HP k yf) as (x'&?&?); eauto. + exists x'; split; eauto using uPred_in_entails, cmra_validN_op_l. +Qed. +Lemma bupd_trans P : (|==> |==> P) ⊢ |==> P. +Proof. unseal; split; naive_solver. Qed. +Lemma bupd_frame_r P R : (|==> P) ∗ R ⊢ |==> P ∗ R. +Proof. + unseal; split; intros n x ? (x1&x2&Hx&HP&?) k yf ??. + destruct (HP k (x2 â‹… yf)) as (x'&?&?); eauto. + { by rewrite assoc -(dist_le _ _ _ _ Hx); last lia. } + exists (x' â‹… x2); split; first by rewrite -assoc. + exists x', x2. eauto using uPred_mono, cmra_validN_op_l, cmra_validN_op_r. +Qed. +Lemma bupd_plainly P : (|==> â– P) ⊢ P. +Proof. + unseal; split => n x Hnx /= Hng. + destruct (Hng n ε) as [? [_ Hng']]; try rewrite right_id; auto. + eapply uPred_mono; eauto using ucmra_unit_leastN. Qed. -(* Own *) +(** Own *) Lemma ownM_op (a1 a2 : M) : uPred_ownM (a1 â‹… a2) ⊣⊢ uPred_ownM a1 ∗ uPred_ownM a2. Proof. - rewrite /bi_sep /=; unseal. split=> n x ?; split. + unseal; split=> n x ?; split. - intros [z ?]; exists a1, (a2 â‹… z); split; [by rewrite (assoc op)|]. split. by exists (core a1); rewrite cmra_core_r. by exists z. - intros (y1&y2&Hx&[z1 Hy1]&[z2 Hy2]); exists (z1 â‹… z2). by rewrite (assoc op _ z1) -(comm op z1) (assoc op z1) -(assoc op _ a2) (comm op z1) -Hy1 -Hy2. Qed. -Lemma persistently_ownM_core (a : M) : uPred_ownM a ⊢ <pers> uPred_ownM (core a). +Lemma persistently_ownM_core (a : M) : uPred_ownM a ⊢ â–¡ uPred_ownM (core a). Proof. - rewrite /bi_persistently /=. unseal. - split=> n x Hx /=. by apply cmra_core_monoN. + split=> n x /=; unseal; intros Hx. simpl. by apply cmra_core_monoN. Qed. -Lemma ownM_unit : bi_emp_valid (uPred_ownM (ε:M)). +Lemma ownM_unit P : P ⊢ (uPred_ownM ε). Proof. unseal; split=> n x ??; by exists x; rewrite left_id. Qed. -Lemma later_ownM (a : M) : â–· uPred_ownM a ⊢ ∃ b, uPred_ownM b ∧ â–· (a ≡ b). +Lemma later_ownM a : â–· uPred_ownM a ⊢ ∃ b, uPred_ownM b ∧ â–· (a ≡ b). Proof. - rewrite /bi_and /sbi_later /bi_exist /sbi_internal_eq /=; unseal. - split=> -[|n] x /= ? Hax; first by eauto using ucmra_unit_leastN. + unseal; split=> -[|n] x /= ? Hax; first by eauto using ucmra_unit_leastN. destruct Hax as [y ?]. destruct (cmra_extend n x a y) as (a'&y'&Hx&?&?); auto using cmra_validN_S. exists a'. rewrite Hx. eauto using cmra_includedN_l. Qed. -(* Valid *) -Lemma discrete_valid {A : cmraT} `{!CmraDiscrete A} (a : A) : - ✓ a ⊣⊢ (⌜✓ a⌠: uPred M). -Proof. unseal. split=> n x _. by rewrite /= -cmra_discrete_valid_iff. Qed. +Lemma bupd_ownM_updateP x (Φ : M → Prop) : + x ~~>: Φ → uPred_ownM x ⊢ |==> ∃ y, ⌜Φ y⌠∧ uPred_ownM y. +Proof. + unseal=> Hup; split=> n x2 ? [x3 Hx] k yf ??. + destruct (Hup k (Some (x3 â‹… yf))) as (y&?&?); simpl in *. + { rewrite /= assoc -(dist_le _ _ _ _ Hx); auto. } + exists (y â‹… x3); split; first by rewrite -assoc. + exists y; eauto using cmra_includedN_l. +Qed. + +(** Valid *) Lemma ownM_valid (a : M) : uPred_ownM a ⊢ ✓ a. Proof. unseal; split=> n x Hv [a' ?]; ofe_subst; eauto using cmra_validN_op_l. Qed. -Lemma cmra_valid_intro {A : cmraT} (a : A) : - ✓ a → bi_emp_valid (PROP:=uPredI M) (✓ a). +Lemma cmra_valid_intro {A : cmraT} P (a : A) : ✓ a → P ⊢ (✓ a). Proof. unseal=> ?; split=> n x ? _ /=; by apply cmra_valid_validN. Qed. -Lemma cmra_valid_elim {A : cmraT} (a : A) : ¬ ✓{0} a → ✓ a ⊢ (False : uPred M). -Proof. - intros Ha. unseal. split=> n x ??; apply Ha, cmra_validN_le with n; auto. -Qed. -Lemma plainly_cmra_valid_1 {A : cmraT} (a : A) : ✓ a ⊢ â– (✓ a : uPred M). +Lemma cmra_valid_elim {A : cmraT} (a : A) : ¬ ✓{0} a → ✓ a ⊢ False. +Proof. unseal=> Ha; split=> n x ??; apply Ha, cmra_validN_le with n; auto. Qed. +Lemma plainly_cmra_valid_1 {A : cmraT} (a : A) : ✓ a ⊢ ■✓ a. Proof. by unseal. Qed. -Lemma cmra_valid_weaken {A : cmraT} (a b : A) : ✓ (a â‹… b) ⊢ (✓ a : uPred M). +Lemma cmra_valid_weaken {A : cmraT} (a b : A) : ✓ (a â‹… b) ⊢ ✓ a. Proof. unseal; split=> n x _; apply cmra_validN_op_l. Qed. -Lemma prod_validI {A B : cmraT} (x : A * B) : ✓ x ⊣⊢ (✓ x.1 ∧ ✓ x.2 : uPred M). +Lemma prod_validI {A B : cmraT} (x : A * B) : ✓ x ⊣⊢ ✓ x.1 ∧ ✓ x.2. Proof. by unseal. Qed. Lemma option_validI {A : cmraT} (mx : option A) : ✓ mx ⊣⊢ match mx with Some x => ✓ x | None => True : uPred M end. Proof. unseal. by destruct mx. Qed. -Lemma ofe_fun_validI `{B : A → ucmraT} (g : ofe_fun B) : - (✓ g : uPred M) ⊣⊢ ∀ i, ✓ g i. -Proof. by uPred.unseal. Qed. +Lemma discrete_valid {A : cmraT} `{!CmraDiscrete A} (a : A) : ✓ a ⊣⊢ ⌜✓ aâŒ. +Proof. unseal; split=> n x _. by rewrite /= -cmra_discrete_valid_iff. Qed. -Lemma bupd_ownM_updateP x (Φ : M → Prop) : - x ~~>: Φ → uPred_ownM x ==∗ ∃ y, ⌜Φ y⌠∧ uPred_ownM y. -Proof. - intros Hup. unseal. split=> n x2 ? [x3 Hx] k yf ??. - destruct (Hup k (Some (x3 â‹… yf))) as (y&?&?); simpl in *. - { rewrite /= assoc -(dist_le _ _ _ _ Hx); auto. } - exists (y â‹… x3); split; first by rewrite -assoc. - exists y; eauto using cmra_includedN_l. -Qed. -End uPred. -End uPred. +Lemma ofe_fun_validI `{B : A → ucmraT} (g : ofe_fun B) : ✓ g ⊣⊢ ∀ i, ✓ g i. +Proof. by unseal. Qed. + +End primitive. +End uPred_primitive. diff --git a/theories/bi/derived_connectives.v b/theories/bi/derived_connectives.v index 5857b235ef63233b2be00f2a7b77d64a8f883221..6cfef117eaa8da5d775c4c0dd27e382240238ff5 100644 --- a/theories/bi/derived_connectives.v +++ b/theories/bi/derived_connectives.v @@ -11,7 +11,7 @@ Definition bi_wand_iff {PROP : bi} (P Q : PROP) : PROP := ((P -∗ Q) ∧ (Q -∗ P))%I. Arguments bi_wand_iff {_} _%I _%I : simpl never. Instance: Params (@bi_wand_iff) 1. -Infix "∗-∗" := bi_wand_iff (at level 95, no associativity) : bi_scope. +Infix "∗-∗" := bi_wand_iff : bi_scope. Class Persistent {PROP : bi} (P : PROP) := persistent : P ⊢ <pers> P. Arguments Persistent {_} _%I : simpl never. @@ -23,8 +23,7 @@ Definition bi_affinely {PROP : bi} (P : PROP) : PROP := (emp ∧ P)%I. Arguments bi_affinely {_} _%I : simpl never. Instance: Params (@bi_affinely) 1. Typeclasses Opaque bi_affinely. -Notation "'<affine>' P" := (bi_affinely P) - (at level 20, right associativity) : bi_scope. +Notation "'<affine>' P" := (bi_affinely P) : bi_scope. Class Affine {PROP : bi} (Q : PROP) := affine : Q ⊢ emp. Arguments Affine {_} _%I : simpl never. @@ -43,8 +42,7 @@ Definition bi_absorbingly {PROP : bi} (P : PROP) : PROP := (True ∗ P)%I. Arguments bi_absorbingly {_} _%I : simpl never. Instance: Params (@bi_absorbingly) 1. Typeclasses Opaque bi_absorbingly. -Notation "'<absorb>' P" := (bi_absorbingly P) - (at level 20, right associativity) : bi_scope. +Notation "'<absorb>' P" := (bi_absorbingly P) : bi_scope. Class Absorbing {PROP : bi} (P : PROP) := absorbing : <absorb> P ⊢ P. Arguments Absorbing {_} _%I : simpl never. @@ -56,35 +54,28 @@ Definition bi_persistently_if {PROP : bi} (p : bool) (P : PROP) : PROP := Arguments bi_persistently_if {_} !_ _%I /. Instance: Params (@bi_persistently_if) 2. Typeclasses Opaque bi_persistently_if. -Notation "'<pers>?' p P" := (bi_persistently_if p P) - (at level 20, p at level 9, P at level 20, - right associativity, format "'<pers>?' p P") : bi_scope. +Notation "'<pers>?' p P" := (bi_persistently_if p P) : bi_scope. Definition bi_affinely_if {PROP : bi} (p : bool) (P : PROP) : PROP := (if p then <affine> P else P)%I. Arguments bi_affinely_if {_} !_ _%I /. Instance: Params (@bi_affinely_if) 2. Typeclasses Opaque bi_affinely_if. -Notation "'<affine>?' p P" := (bi_affinely_if p P) - (at level 20, p at level 9, P at level 20, - right associativity, format "'<affine>?' p P") : bi_scope. +Notation "'<affine>?' p P" := (bi_affinely_if p P) : bi_scope. Definition bi_intuitionistically {PROP : bi} (P : PROP) : PROP := (<affine> <pers> P)%I. Arguments bi_intuitionistically {_} _%I : simpl never. Instance: Params (@bi_intuitionistically) 1. Typeclasses Opaque bi_intuitionistically. -Notation "â–¡ P" := (bi_intuitionistically P)%I - (at level 20, right associativity) : bi_scope. +Notation "â–¡ P" := (bi_intuitionistically P) : bi_scope. Definition bi_intuitionistically_if {PROP : bi} (p : bool) (P : PROP) : PROP := (if p then â–¡ P else P)%I. Arguments bi_intuitionistically_if {_} !_ _%I /. Instance: Params (@bi_intuitionistically_if) 2. Typeclasses Opaque bi_intuitionistically_if. -Notation "'â–¡?' p P" := (bi_intuitionistically_if p P) - (at level 20, p at level 9, P at level 20, - right associativity, format "'â–¡?' p P") : bi_scope. +Notation "'â–¡?' p P" := (bi_intuitionistically_if p P) : bi_scope. Fixpoint bi_hexist {PROP : bi} {As} : himpl As PROP → PROP := match As return himpl As PROP → PROP with @@ -101,14 +92,12 @@ Definition sbi_laterN {PROP : sbi} (n : nat) (P : PROP) : PROP := Nat.iter n sbi_later P. Arguments sbi_laterN {_} !_%nat_scope _%I. Instance: Params (@sbi_laterN) 2. -Notation "â–·^ n P" := (sbi_laterN n P) - (at level 20, n at level 9, P at level 20, format "â–·^ n P") : bi_scope. -Notation "â–·? p P" := (sbi_laterN (Nat.b2n p) P) - (at level 20, p at level 9, P at level 20, format "â–·? p P") : bi_scope. +Notation "â–·^ n P" := (sbi_laterN n P) : bi_scope. +Notation "â–·? p P" := (sbi_laterN (Nat.b2n p) P) : bi_scope. Definition sbi_except_0 {PROP : sbi} (P : PROP) : PROP := (â–· False ∨ P)%I. Arguments sbi_except_0 {_} _%I : simpl never. -Notation "â—‡ P" := (sbi_except_0 P) (at level 20, right associativity) : bi_scope. +Notation "â—‡ P" := (sbi_except_0 P) : bi_scope. Instance: Params (@sbi_except_0) 1. Typeclasses Opaque sbi_except_0. diff --git a/theories/bi/derived_laws_bi.v b/theories/bi/derived_laws_bi.v index 123e83c1a2c44940e1f65b6006af634ce875bbaf..2abcd87d22c8d2ab010cc29ff00c653d213fc254 100644 --- a/theories/bi/derived_laws_bi.v +++ b/theories/bi/derived_laws_bi.v @@ -531,7 +531,7 @@ Lemma pure_wand_forall φ P `{!Absorbing P} : (⌜φ⌠-∗ P) ⊣⊢ (∀ _ : Proof. apply (anti_symm _). - apply forall_intro=> Hφ. - by rewrite -(left_id emp%I _ (_ -∗ _)%I) (pure_intro emp%I φ) // wand_elim_r. + by rewrite -(left_id emp%I _ (_ -∗ _)%I) (pure_intro φ emp%I) // wand_elim_r. - apply wand_intro_l, wand_elim_l', pure_elim'=> Hφ. apply wand_intro_l. rewrite (forall_elim Hφ) comm. by apply absorbing. Qed. diff --git a/theories/bi/interface.v b/theories/bi/interface.v index 71ebd6a09ad190859391a68457fefba11b0f0018..fb475c79d14e0cff196709c17b32e39bb2af41c0 100644 --- a/theories/bi/interface.v +++ b/theories/bi/interface.v @@ -1,19 +1,7 @@ From iris.algebra Require Export ofe. +From iris.bi Require Export notation. Set Primitive Projections. -Reserved Notation "P ⊢ Q" (at level 99, Q at level 200, right associativity). -Reserved Notation "P '⊢@{' PROP } Q" (at level 99, Q at level 200, right associativity). -Reserved Notation "('⊢@{' PROP } )" (at level 99). -Reserved Notation "P ⊣⊢ Q" (at level 95, no associativity). -Reserved Notation "P '⊣⊢@{' PROP } Q" (at level 95, no associativity). -Reserved Notation "('⊣⊢@{' PROP } )" (at level 95). -Reserved Notation "'emp'". -Reserved Notation "'⌜' φ 'âŒ'" (at level 1, φ at level 200, format "⌜ φ âŒ"). -Reserved Notation "P ∗ Q" (at level 80, right associativity). -Reserved Notation "P -∗ Q" (at level 99, Q at level 200, right associativity). -Reserved Notation "'<pers>' P" (at level 20, right associativity). -Reserved Notation "â–· P" (at level 20, right associativity). - Section bi_mixin. Context {PROP : Type} `{Dist PROP, Equiv PROP}. Context (bi_entails : PROP → PROP → Prop). @@ -77,7 +65,7 @@ Section bi_mixin. bi_mixin_persistently_ne : NonExpansive bi_persistently; (** Higher-order logic *) - bi_mixin_pure_intro P (φ : Prop) : φ → P ⊢ ⌜ φ âŒ; + bi_mixin_pure_intro (φ : Prop) P : φ → P ⊢ ⌜ φ âŒ; bi_mixin_pure_elim' (φ : Prop) P : (φ → True ⊢ P) → ⌜ φ ⌠⊢ P; (* This is actually derivable if we assume excluded middle in Coq, via [(∀ a, φ a) ∨ (∃ a, ¬φ a)]. *) @@ -195,7 +183,6 @@ Instance: Params (@bi_sep) 1. Instance: Params (@bi_wand) 1. Instance: Params (@bi_persistently) 1. -Delimit Scope bi_scope with I. Arguments bi_car : simpl never. Arguments bi_dist : simpl never. Arguments bi_equiv : simpl never. @@ -347,7 +334,7 @@ Global Instance persistently_ne : NonExpansive (@bi_persistently PROP). Proof. eapply bi_mixin_persistently_ne, bi_bi_mixin. Qed. (* Higher-order logic *) -Lemma pure_intro P (φ : Prop) : φ → P ⊢ ⌜ φ âŒ. +Lemma pure_intro (φ : Prop) P : φ → P ⊢ ⌜ φ âŒ. Proof. eapply bi_mixin_pure_intro, bi_bi_mixin. Qed. Lemma pure_elim' (φ : Prop) P : (φ → True ⊢ P) → ⌜ φ ⌠⊢ P. Proof. eapply bi_mixin_pure_elim', bi_bi_mixin. Qed. diff --git a/theories/bi/notation.v b/theories/bi/notation.v new file mode 100644 index 0000000000000000000000000000000000000000..40cae68177a0b10cf4163433846e12f91924d7c5 --- /dev/null +++ b/theories/bi/notation.v @@ -0,0 +1,45 @@ +(** Just reserve the notation. *) +Reserved Notation "P ⊢ Q" (at level 99, Q at level 200, right associativity). +Reserved Notation "P '⊢@{' PROP } Q" (at level 99, Q at level 200, right associativity). +Reserved Notation "('⊢@{' PROP } )" (at level 99). +Reserved Notation "P ⊣⊢ Q" (at level 95, no associativity). +Reserved Notation "P '⊣⊢@{' PROP } Q" (at level 95, no associativity). +Reserved Notation "('⊣⊢@{' PROP } )" (at level 95). +Reserved Notation "'emp'". +Reserved Notation "'⌜' φ 'âŒ'" (at level 1, φ at level 200, format "⌜ φ âŒ"). +Reserved Notation "P ∗ Q" (at level 80, right associativity). +Reserved Notation "P -∗ Q" (at level 99, Q at level 200, right associativity). + +Reserved Notation "'<pers>' P" (at level 20, right associativity). +Reserved Notation "'<pers>?' p P" (at level 20, p at level 9, P at level 20, + right associativity, format "'<pers>?' p P"). + +Reserved Notation "â–· P" (at level 20, right associativity). +Reserved Notation "â–·? p P" (at level 20, p at level 9, P at level 20, + format "â–·? p P"). +Reserved Notation "â–·^ n P" (at level 20, n at level 9, P at level 20, + format "â–·^ n P"). + +Reserved Infix "∗-∗" (at level 95, no associativity). + +Reserved Notation "'<affine>' P" (at level 20, right associativity). +Reserved Notation "'<affine>?' p P" (at level 20, p at level 9, P at level 20, + right associativity, format "'<affine>?' p P"). + +Reserved Notation "'<absorb>' P" (at level 20, right associativity). + +Reserved Notation "â–¡ P" (at level 20, right associativity). +Reserved Notation "'â–¡?' p P" (at level 20, p at level 9, P at level 20, + right associativity, format "'â–¡?' p P"). + +Reserved Notation "â—‡ P" (at level 20, right associativity). + +Reserved Notation "â– P" (at level 20, right associativity). +Reserved Notation "â– ? p P" (at level 20, p at level 9, P at level 20, + right associativity, format "â– ? p P"). + +Reserved Notation "|==> Q" (at level 99, Q at level 200, format "|==> Q"). +Reserved Notation "P ==∗ Q" (at level 99, Q at level 200, format "P ==∗ Q"). + +(** Define the scope *) +Delimit Scope bi_scope with I. diff --git a/theories/bi/plainly.v b/theories/bi/plainly.v index 7f15fee347ba612055377ed20a23602d1074e986..012d646ea19d91bd7f199e6bb0353a3a13016518 100644 --- a/theories/bi/plainly.v +++ b/theories/bi/plainly.v @@ -5,8 +5,7 @@ Import interface.bi derived_laws_bi.bi derived_laws_sbi.bi. Class Plainly (A : Type) := plainly : A → A. Hint Mode Plainly ! : typeclass_instances. Instance: Params (@plainly) 2. -Notation "â– P" := (plainly P)%I - (at level 20, right associativity) : bi_scope. +Notation "â– P" := (plainly P) : bi_scope. (* Mixins allow us to create instances easily without having to use Program *) Record BiPlainlyMixin (PROP : sbi) `(Plainly PROP) := { @@ -96,9 +95,7 @@ Arguments plainly_if {_ _} !_ _%I /. Instance: Params (@plainly_if) 2. Typeclasses Opaque plainly_if. -Notation "â– ? p P" := (plainly_if p P)%I - (at level 20, p at level 9, P at level 20, - right associativity, format "â– ? p P") : bi_scope. +Notation "â– ? p P" := (plainly_if p P) : bi_scope. (* Derived laws *) Section plainly_derived. @@ -167,7 +164,7 @@ Proof. - by rewrite plainly_elim_persistently persistently_pure. - apply pure_elim'=> Hφ. trans (∀ x : False, â– True : PROP)%I; [by apply forall_intro|]. - rewrite plainly_forall_2. by rewrite -(pure_intro _ φ). + rewrite plainly_forall_2. by rewrite -(pure_intro φ). Qed. Lemma plainly_forall {A} (Ψ : A → PROP) : â– (∀ a, Ψ a) ⊣⊢ ∀ a, â– (Ψ a). Proof. diff --git a/theories/bi/updates.v b/theories/bi/updates.v index 43462afefd41d4f74b2c4dececac823d3e62c42b..3a47ebd5f9bc9990338b8b454c7e1d33a0eff07c 100644 --- a/theories/bi/updates.v +++ b/theories/bi/updates.v @@ -7,12 +7,9 @@ Class BUpd (PROP : Type) : Type := bupd : PROP → PROP. Instance : Params (@bupd) 2. Hint Mode BUpd ! : typeclass_instances. -Notation "|==> Q" := (bupd Q) - (at level 99, Q at level 200, format "|==> Q") : bi_scope. -Notation "P ==∗ Q" := (P ⊢ |==> Q) - (at level 99, Q at level 200, only parsing) : stdpp_scope. -Notation "P ==∗ Q" := (P -∗ |==> Q)%I - (at level 99, Q at level 200, format "P ==∗ Q") : bi_scope. +Notation "|==> Q" := (bupd Q) : bi_scope. +Notation "P ==∗ Q" := (P ⊢ |==> Q) (only parsing) : stdpp_scope. +Notation "P ==∗ Q" := (P -∗ |==> Q)%I : bi_scope. Class FUpd (PROP : Type) : Type := fupd : coPset → coPset → PROP → PROP. Instance: Params (@fupd) 4. diff --git a/theories/proofmode/class_instances_sbi.v b/theories/proofmode/class_instances_sbi.v index 37c079bcb3e69f319c83781356f158a29a534c38..0d00294122fce3ab6e7f1f0e3941ff0cba334fe5 100644 --- a/theories/proofmode/class_instances_sbi.v +++ b/theories/proofmode/class_instances_sbi.v @@ -354,7 +354,7 @@ Global Instance into_forall_wand_pure φ P Q : Proof. rewrite /FromPureT /FromPure /IntoForall=> -[φ' [-> <-]] /=. apply forall_intro=>? /=. - by rewrite -(pure_intro True%I) // /bi_affinely right_id emp_wand. + by rewrite -(pure_intro _ True%I) // /bi_affinely right_id emp_wand. Qed. Global Instance into_forall_plainly `{BiPlainly PROP} {A} P (Φ : A → PROP) :