From 20996da6726f7b3a0b8bb64e21ccad563dfc9801 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Fri, 16 Aug 2019 15:53:44 +0200 Subject: [PATCH] Type `siProp` for "plain" step-indexed propositions. --- _CoqProject | 1 + theories/si_logic/siprop.v | 296 +++++++++++++++++++++++++++++++++++++ 2 files changed, 297 insertions(+) create mode 100644 theories/si_logic/siprop.v diff --git a/_CoqProject b/_CoqProject index e361d046c..788949bd1 100644 --- a/_CoqProject +++ b/_CoqProject @@ -41,6 +41,7 @@ theories/algebra/namespace_map.v theories/algebra/lib/excl_auth.v theories/algebra/lib/frac_auth.v theories/algebra/lib/ufrac_auth.v +theories/si_logic/siprop.v theories/bi/notation.v theories/bi/interface.v theories/bi/derived_connectives.v diff --git a/theories/si_logic/siprop.v b/theories/si_logic/siprop.v new file mode 100644 index 000000000..d265fe417 --- /dev/null +++ b/theories/si_logic/siprop.v @@ -0,0 +1,296 @@ +From iris.algebra Require Export ofe. +From iris.bi Require Import notation. + +Record siProp := SiProp { + siProp_holds :> nat → Prop; + siProp_closed n1 n2 : siProp_holds n1 → n2 ≤ n1 → siProp_holds n2 +}. +Arguments siProp_holds : simpl never. +Add Printing Constructor siProp. +Delimit Scope siProp_scope with SI. +Bind Scope siProp_scope with siProp. + +Section cofe. + Inductive siProp_equiv' (P Q : siProp) : Prop := + { siProp_in_equiv : ∀ n, P n ↔ Q n }. + Instance siProp_equiv : Equiv siProp := siProp_equiv'. + Inductive siProp_dist' (n : nat) (P Q : siProp) : Prop := + { siProp_in_dist : ∀ n', n' ≤ n → P n' ↔ Q n' }. + Instance siProp_dist : Dist siProp := siProp_dist'. + Definition siProp_ofe_mixin : OfeMixin siProp. + Proof. + split. + - intros P Q; split. + + by intros HPQ n; split=> i ?; apply HPQ. + + intros HPQ; split=> n; apply HPQ with n; auto. + - intros n; split. + + by intros P; split=> i. + + by intros P Q HPQ; split=> i ?; symmetry; apply HPQ. + + intros P Q Q' HP HQ; split=> i ?. + by trans (Q i);[apply HP|apply HQ]. + - intros n P Q HPQ; split=> i ?; apply HPQ; auto. + Qed. + Canonical Structure siPropC : ofeT := OfeT siProp siProp_ofe_mixin. + + Program Definition siProp_compl : Compl siPropC := λ c, + {| siProp_holds n := c n n |}. + Next Obligation. + intros c n1 n2 ??; simpl in *. + apply (chain_cauchy c n2 n1); eauto using siProp_closed. + Qed. + Global Program Instance siProp_cofe : Cofe siPropC := {| compl := siProp_compl |}. + Next Obligation. + intros n c; split=>i ?; symmetry; apply (chain_cauchy c i n); auto. + Qed. +End cofe. + +(** logical entailement *) +Inductive siProp_entails (P Q : siProp) : Prop := + { siProp_in_entails : ∀ n, P n → Q n }. +Hint Resolve siProp_closed : siProp_def. + +(** logical connectives *) +Program Definition siProp_pure_def (φ : Prop) : siProp := + {| siProp_holds n := φ |}. +Solve Obligations with done. +Definition siProp_pure_aux : seal (@siProp_pure_def). by eexists. Qed. +Definition siProp_pure := unseal siProp_pure_aux. +Definition siProp_pure_eq : + @siProp_pure = @siProp_pure_def := seal_eq siProp_pure_aux. + +Program Definition siProp_and_def (P Q : siProp) : siProp := + {| siProp_holds n := P n ∧ Q n |}. +Solve Obligations with naive_solver eauto 2 with siProp_def. +Definition siProp_and_aux : seal (@siProp_and_def). by eexists. Qed. +Definition siProp_and := unseal siProp_and_aux. +Definition siProp_and_eq: @siProp_and = @siProp_and_def := seal_eq siProp_and_aux. + +Program Definition siProp_or_def (P Q : siProp) : siProp := + {| siProp_holds n := P n ∨ Q n |}. +Solve Obligations with naive_solver eauto 2 with siProp_def. +Definition siProp_or_aux : seal (@siProp_or_def). by eexists. Qed. +Definition siProp_or := unseal siProp_or_aux. +Definition siProp_or_eq: @siProp_or = @siProp_or_def := seal_eq siProp_or_aux. + +Program Definition siProp_impl_def (P Q : siProp) : siProp := + {| siProp_holds n := ∀ n', n' ≤ n → P n' → Q n' |}. +Next Obligation. intros P Q [|n1] [|n2]; auto with lia. Qed. +Definition siProp_impl_aux : seal (@siProp_impl_def). by eexists. Qed. +Definition siProp_impl := unseal siProp_impl_aux. +Definition siProp_impl_eq : + @siProp_impl = @siProp_impl_def := seal_eq siProp_impl_aux. + +Program Definition siProp_forall_def {A} (Ψ : A → siProp) : siProp := + {| siProp_holds n := ∀ a, Ψ a n |}. +Solve Obligations with naive_solver eauto 2 with siProp_def. +Definition siProp_forall_aux : seal (@siProp_forall_def). by eexists. Qed. +Definition siProp_forall {A} := unseal siProp_forall_aux A. +Definition siProp_forall_eq : + @siProp_forall = @siProp_forall_def := seal_eq siProp_forall_aux. + +Program Definition siProp_exist_def {A} (Ψ : A → siProp) : siProp := + {| siProp_holds n := ∃ a, Ψ a n |}. +Solve Obligations with naive_solver eauto 2 with siProp_def. +Definition siProp_exist_aux : seal (@siProp_exist_def). by eexists. Qed. +Definition siProp_exist {A} := unseal siProp_exist_aux A. +Definition siProp_exist_eq: @siProp_exist = @siProp_exist_def := seal_eq siProp_exist_aux. + +Program Definition siProp_internal_eq_def {A : ofeT} (a1 a2 : A) : siProp := + {| siProp_holds n := a1 ≡{n}≡ a2 |}. +Solve Obligations with naive_solver eauto 2 using (dist_le (A:=A)). +Definition siProp_internal_eq_aux : seal (@siProp_internal_eq_def). by eexists. Qed. +Definition siProp_internal_eq {A} := unseal siProp_internal_eq_aux A. +Definition siProp_internal_eq_eq: + @siProp_internal_eq = @siProp_internal_eq_def := seal_eq siProp_internal_eq_aux. + +Program Definition siProp_later_def (P : siProp) : siProp := + {| siProp_holds n := match n return _ with 0 => True | S n' => P n' end |}. +Next Obligation. intros P [|n1] [|n2]; eauto using siProp_closed with lia. Qed. +Definition siProp_later_aux : seal (@siProp_later_def). by eexists. Qed. +Definition siProp_later := unseal siProp_later_aux. +Definition siProp_later_eq : + @siProp_later = @siProp_later_def := seal_eq siProp_later_aux. + +(** Primitive logical rules. + These are not directly usable later because they do not refer to the BI + connectives. *) +Module siProp_primitive. +Definition unseal_eqs := + (siProp_pure_eq, siProp_and_eq, siProp_or_eq, siProp_impl_eq, siProp_forall_eq, + siProp_exist_eq, siProp_internal_eq_eq, siProp_later_eq). +Ltac unseal := rewrite !unseal_eqs /=. + +Section primitive. +Arguments siProp_holds !_ _ /. + +Notation "P ⊢ Q" := (siProp_entails P Q) + (at level 99, Q at level 200, right associativity). +Notation "'True'" := (siProp_pure True) : siProp_scope. +Notation "'False'" := (siProp_pure False) : siProp_scope. +Notation "'⌜' φ 'âŒ'" := (siProp_pure φ%type%stdpp) : siProp_scope. +Infix "∧" := siProp_and : siProp_scope. +Infix "∨" := siProp_or : siProp_scope. +Infix "→" := siProp_impl : siProp_scope. +Notation "∀ x .. y , P" := (siProp_forall (λ x, .. (siProp_forall (λ y, P%SI)) ..)) : siProp_scope. +Notation "∃ x .. y , P" := (siProp_exist (λ x, .. (siProp_exist (λ y, P%SI)) ..)) : siProp_scope. +Notation "x ≡ y" := (siProp_internal_eq x y) : siProp_scope. +Notation "â–· P" := (siProp_later P) (at level 20, right associativity) : siProp_scope. + +(** Below there follow the primitive laws for [siProp]. There are no derived laws +in this file. *) + +(** Entailment *) +Lemma entails_po : PreOrder siProp_entails. +Proof. + split. + - intros P; by split=> i. + - intros P Q Q' HP HQ; split=> i ?; by apply HQ, HP. +Qed. +Lemma entails_anti_symm : AntiSymm (≡) siProp_entails. +Proof. intros P Q HPQ HQP; split=> n; by split; [apply HPQ|apply HQP]. Qed. +Lemma equiv_spec P Q : (P ≡ Q) ↔ (P ⊢ Q) ∧ (Q ⊢ P). +Proof. + split. + - intros HPQ; split; split=> i; apply HPQ. + - intros [??]. by apply entails_anti_symm. +Qed. + +(** Non-expansiveness and setoid morphisms *) +Lemma pure_ne n : Proper (iff ==> dist n) siProp_pure. +Proof. intros φ1 φ2 Hφ. by unseal. Qed. +Lemma and_ne : NonExpansive2 siProp_and. +Proof. + intros n P P' HP Q Q' HQ; unseal; split=> n' ?. + split; (intros [??]; split; [by apply HP|by apply HQ]). +Qed. +Lemma or_ne : NonExpansive2 siProp_or. +Proof. + intros n P P' HP Q Q' HQ; split=> n' ?. + unseal; split; (intros [?|?]; [left; by apply HP|right; by apply HQ]). +Qed. +Lemma impl_ne : NonExpansive2 siProp_impl. +Proof. + intros n P P' HP Q Q' HQ; split=> n' ?. + unseal; split; intros HPQ n'' ??; apply HQ, HPQ, HP; auto with lia. +Qed. +Lemma forall_ne A n : + Proper (pointwise_relation _ (dist n) ==> dist n) (@siProp_forall A). +Proof. + by intros Ψ1 Ψ2 HΨ; unseal; split=> n' x; split; intros HP a; apply HΨ. +Qed. +Lemma exist_ne A n : + Proper (pointwise_relation _ (dist n) ==> dist n) (@siProp_exist A). +Proof. + intros Ψ1 Ψ2 HΨ. + unseal; split=> n' ?; split; intros [a ?]; exists a; by apply HΨ. +Qed. +Lemma later_contractive : Contractive siProp_later. +Proof. + unseal; intros [|n] P Q HPQ; split=> -[|n'] ? //=; try lia. + apply HPQ; lia. +Qed. +Lemma internal_eq_ne (A : ofeT) : NonExpansive2 (@siProp_internal_eq A). +Proof. + intros n x x' Hx y y' Hy; split=> n' z; unseal; split; intros; simpl in *. + - by rewrite -(dist_le _ _ _ _ Hx) -?(dist_le _ _ _ _ Hy); auto. + - by rewrite (dist_le _ _ _ _ Hx) ?(dist_le _ _ _ _ Hy); auto. +Qed. + +(** Introduction and elimination rules *) +Lemma pure_intro (φ : Prop) P : φ → P ⊢ ⌜ φ âŒ. +Proof. intros ?. unseal; by split. Qed. +Lemma pure_elim' (φ : Prop) P : (φ → True ⊢ P) → ⌜ φ ⌠⊢ P. +Proof. unseal=> HP; split=> n ?. by apply HP. Qed. +Lemma pure_forall_2 {A} (φ : A → Prop) : (∀ a, ⌜ φ a âŒ) ⊢ ⌜ ∀ a, φ a âŒ. +Proof. by unseal. Qed. + +Lemma and_elim_l P Q : P ∧ Q ⊢ P. +Proof. unseal; by split=> n [??]. Qed. +Lemma and_elim_r P Q : P ∧ Q ⊢ Q. +Proof. unseal; by split=> n [??]. Qed. +Lemma and_intro P Q R : (P ⊢ Q) → (P ⊢ R) → P ⊢ Q ∧ R. +Proof. intros HQ HR; unseal; split=> n ?; by split; [apply HQ|apply HR]. Qed. + +Lemma or_intro_l P Q : P ⊢ P ∨ Q. +Proof. unseal; split=> n ?; left; auto. Qed. +Lemma or_intro_r P Q : Q ⊢ P ∨ Q. +Proof. unseal; split=> n ?; right; auto. Qed. +Lemma or_elim P Q R : (P ⊢ R) → (Q ⊢ R) → P ∨ Q ⊢ R. +Proof. intros HP HQ. unseal; split=> n [?|?]. by apply HP. by apply HQ. Qed. + +Lemma impl_intro_r P Q R : (P ∧ Q ⊢ R) → P ⊢ Q → R. +Proof. + unseal=> HQ; split=> n ? n' ??. + apply HQ; naive_solver eauto using siProp_closed. +Qed. +Lemma impl_elim_l' P Q R : (P ⊢ Q → R) → P ∧ Q ⊢ R. +Proof. unseal=> HP; split=> n [??]. apply HP with n; auto. Qed. + +Lemma forall_intro {A} P (Ψ : A → siProp) : (∀ a, P ⊢ Ψ a) → P ⊢ ∀ a, Ψ a. +Proof. unseal; intros HPΨ; split=> n ? a; by apply HPΨ. Qed. +Lemma forall_elim {A} {Ψ : A → siProp} a : (∀ a, Ψ a) ⊢ Ψ a. +Proof. unseal; split=> n HP; apply HP. Qed. + +Lemma exist_intro {A} {Ψ : A → siProp} a : Ψ a ⊢ ∃ a, Ψ a. +Proof. unseal; split=> n ?; by exists a. Qed. +Lemma exist_elim {A} (Φ : A → siProp) Q : (∀ a, Φ a ⊢ Q) → (∃ a, Φ a) ⊢ Q. +Proof. unseal; intros HΨ; split=> n [a ?]; by apply HΨ with a. Qed. + +(** Equality *) +Lemma internal_eq_refl {A : ofeT} P (a : A) : P ⊢ (a ≡ a). +Proof. unseal; by split=> n ? /=. Qed. +Lemma internal_eq_rewrite {A : ofeT} a b (Ψ : A → siProp) : + NonExpansive Ψ → a ≡ b ⊢ Ψ a → Ψ b. +Proof. + intros Hnonexp. unseal; split=> n Hab n' ? HΨ. eapply Hnonexp with n a; auto. +Qed. + +Lemma fun_ext {A} {B : A → ofeT} (f g : discrete_fun B) : (∀ x, f x ≡ g x) ⊢ f ≡ g. +Proof. by unseal. Qed. +Lemma sig_eq {A : ofeT} (P : A → Prop) (x y : sig P) : `x ≡ `y ⊢ x ≡ y. +Proof. by unseal. Qed. +Lemma discrete_eq_1 {A : ofeT} (a b : A) : Discrete a → a ≡ b ⊢ ⌜a ≡ bâŒ. +Proof. unseal=> ?. split=> n. by apply (discrete_iff n). Qed. + +Lemma prop_ext_2 P Q : ((P → Q) ∧ (Q → P)) ⊢ P ≡ Q. +Proof. + unseal; split=> n /= HPQ. split=> n' ?. + move: HPQ=> [] /(_ n') ? /(_ n'). naive_solver. +Qed. + +(** Later *) +Lemma later_eq_1 {A : ofeT} (x y : A) : Next x ≡ Next y ⊢ â–· (x ≡ y). +Proof. by unseal. Qed. +Lemma later_eq_2 {A : ofeT} (x y : A) : â–· (x ≡ y) ⊢ Next x ≡ Next y. +Proof. by unseal. Qed. + +Lemma later_mono P Q : (P ⊢ Q) → â–· P ⊢ â–· Q. +Proof. unseal=> HP; split=>-[|n]; [done|apply HP; eauto using cmra_validN_S]. Qed. +Lemma later_intro P : P ⊢ â–· P. +Proof. unseal; split=> -[|n] /= HP; eauto using siProp_closed. Qed. + +Lemma later_forall_2 {A} (Φ : A → siProp) : (∀ a, â–· Φ a) ⊢ â–· ∀ a, Φ a. +Proof. unseal; by split=> -[|n]. Qed. +Lemma later_exist_false {A} (Φ : A → siProp) : + (â–· ∃ a, Φ a) ⊢ â–· False ∨ (∃ a, â–· Φ a). +Proof. unseal; split=> -[|[|n]] /=; eauto. Qed. +Lemma later_false_em P : â–· P ⊢ â–· False ∨ (â–· False → P). +Proof. + unseal; split=> -[|n] /= HP; [by left|right]. + intros [|n'] ?; eauto using siProp_closed with lia. +Qed. + +(** Consistency/soundness statement *) +Lemma pure_soundness φ : (True ⊢ ⌜ φ âŒ) → φ. +Proof. unseal=> -[H]. by apply (H 0). Qed. + +Lemma internal_eq_soundness {A : ofeT} (x y : A) : (True ⊢ x ≡ y) → x ≡ y. +Proof. unseal=> -[H]. apply equiv_dist=> n. by apply (H n). Qed. + +Lemma later_soundness P : (True ⊢ â–· P) → (True ⊢ P). +Proof. + unseal=> -[HP]; split=> n _. apply siProp_closed with n; last done. + by apply (HP (S n)). +Qed. +End primitive. +End siProp_primitive. -- GitLab