diff --git a/_CoqProject b/_CoqProject index bdd1e49cef0bf97b722e2eb78b4bc6073f521fe1..e85ee72a66801eacbffcbde49139561c66d03e8c 100644 --- a/_CoqProject +++ b/_CoqProject @@ -76,7 +76,7 @@ theories/program_logic/language.v theories/program_logic/ectx_language.v theories/program_logic/ectxi_language.v theories/program_logic/ectx_lifting.v -theories/program_logic/ownp.v +#theories/program_logic/ownp.v theories/program_logic/total_lifting.v theories/program_logic/total_ectx_lifting.v theories/program_logic/atomic.v diff --git a/theories/heap_lang/adequacy.v b/theories/heap_lang/adequacy.v index 1b7dfabb92db6399fb7d7ba33ffcecb1a42d5e7e..d477c462f601cfb92af3c3e36288f0c5ec840d53 100644 --- a/theories/heap_lang/adequacy.v +++ b/theories/heap_lang/adequacy.v @@ -17,8 +17,8 @@ Definition heap_adequacy Σ `{heapPreG Σ} s e σ φ : (∀ `{heapG Σ}, WP e @ s; ⊤ {{ v, ⌜φ v⌠}}%I) → adequate s e σ (λ v _, φ v). Proof. - intros Hwp; eapply (wp_adequacy _ _); iIntros (?) "". + intros Hwp; eapply (wp_adequacy _ _); iIntros (??) "". iMod (gen_heap_init σ) as (?) "Hh". - iModIntro. iExists gen_heap_ctx. iFrame "Hh". + iModIntro. iExists (fun σ _ => gen_heap_ctx σ). iFrame "Hh". iApply (Hwp (HeapG _ _ _)). Qed. diff --git a/theories/heap_lang/lang.v b/theories/heap_lang/lang.v index ad92c97cec6a727775f2c4bd1299c7c63bc02aca..a5ae44a3b3b8fcb17690cf31235c0bf06cad1648 100644 --- a/theories/heap_lang/lang.v +++ b/theories/heap_lang/lang.v @@ -108,7 +108,7 @@ Inductive val := Bind Scope val_scope with val. -Inductive observation := prophecy_observation_todo. +Definition observation := Empty val. Fixpoint of_val (v : val) : expr := match v with diff --git a/theories/heap_lang/lifting.v b/theories/heap_lang/lifting.v index aed8e60024a740b94c971ce5f1b30394ba83d61a..3f2f29dd41b0d57004978d8b11a8768a7adc3a05 100644 --- a/theories/heap_lang/lifting.v +++ b/theories/heap_lang/lifting.v @@ -14,7 +14,7 @@ Class heapG Σ := HeapG { Instance heapG_irisG `{heapG Σ} : irisG heap_lang Σ := { iris_invG := heapG_invG; - state_interp := gen_heap_ctx + state_interp σ κs := gen_heap_ctx σ }. (** Override the notations so that scopes and coercions work out *) @@ -112,6 +112,7 @@ Proof. iApply wp_lift_pure_det_head_step; [eauto|intros; inv_head_step; eauto|]. iModIntro; iNext; iIntros "!> /= {$He}". by iApply wp_value. Qed. + Lemma twp_fork s E e Φ : WP e @ s; ⊤ [{ _, True }] -∗ Φ (LitV LitUnit) -∗ WP Fork e @ s; E [{ Φ }]. Proof. @@ -126,8 +127,8 @@ Lemma wp_alloc s E e v : {{{ True }}} Alloc e @ s; E {{{ l, RET LitV (LitLoc l); l ↦ v }}}. Proof. iIntros (<- Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>"; iSplit; first by eauto. - iNext; iIntros (κ v2 σ2 efs Hstep); inv_head_step. + iIntros (σ1 κs) "Hσ !>"; iSplit; first by eauto. + iNext; iIntros (κ κs' v2 σ2 efs [Hstep ->]); inv_head_step. iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. @@ -136,8 +137,8 @@ Lemma twp_alloc s E e v : [[{ True }]] Alloc e @ s; E [[{ l, RET LitV (LitLoc l); l ↦ v }]]. Proof. iIntros (<- Φ) "_ HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>"; iSplit; first by eauto. - iIntros (κ v2 σ2 efs Hstep); inv_head_step. + iIntros (σ1 κs) "Hσ !>"; iSplit; first by eauto. + iIntros (κ κs' v2 σ2 efs [Hstep ->]); inv_head_step. iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. @@ -146,18 +147,18 @@ Lemma wp_load s E l q v : {{{ â–· l ↦{q} v }}} Load (Lit (LitLoc l)) @ s; E {{{ RET v; l ↦{q} v }}}. Proof. iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iIntros (σ1 κs) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. - iNext; iIntros (κ v2 σ2 efs Hstep); inv_head_step. + iNext; iIntros (κ κs' v2 σ2 efs [Hstep ->]); inv_head_step. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma twp_load s E l q v : [[{ l ↦{q} v }]] Load (Lit (LitLoc l)) @ s; E [[{ RET v; l ↦{q} v }]]. Proof. iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iIntros (σ1 κs) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. - iIntros (κ v2 σ2 efs Hstep); inv_head_step. + iIntros (κ κs' v2 σ2 efs [Hstep ->]); inv_head_step. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. @@ -167,8 +168,8 @@ Lemma wp_store s E l v' e v : Proof. iIntros (<- Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. - iSplit; first by eauto 6. iNext; iIntros (κ v2 σ2 efs Hstep); inv_head_step. + iIntros (σ1 κs) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iSplit; first by eauto 6. iNext; iIntros (κ κs' v2 σ2 efs [Hstep ->]); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. by iApply "HΦ". Qed. @@ -178,8 +179,8 @@ Lemma twp_store s E l v' e v : Proof. iIntros (<- Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. - iSplit; first by eauto 6. iIntros (κ v2 σ2 efs Hstep); inv_head_step. + iIntros (σ1 κs) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iSplit; first by eauto 6. iIntros (κ κs' v2 σ2 efs [Hstep ->]); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. by iApply "HΦ". Qed. @@ -191,8 +192,8 @@ Lemma wp_cas_fail s E l q v' e1 v1 e2 : Proof. iIntros (<- [v2 <-] ?? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. - iSplit; first by eauto. iNext; iIntros (κ v2' σ2 efs Hstep); inv_head_step. + iIntros (σ1 κs) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iSplit; first by eauto. iNext; iIntros (κ κs' v2' σ2 efs [Hstep ->]); inv_head_step. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma twp_cas_fail s E l q v' e1 v1 e2 : @@ -202,8 +203,8 @@ Lemma twp_cas_fail s E l q v' e1 v1 e2 : Proof. iIntros (<- [v2 <-] ?? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. - iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step. + iIntros (σ1 κs) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iSplit; first by eauto. iIntros (κ κs' v2' σ2 efs [Hstep ->]); inv_head_step. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. @@ -214,8 +215,8 @@ Lemma wp_cas_suc s E l e1 v1 e2 v2 : Proof. iIntros (<- <- ? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. - iSplit; first by eauto. iNext; iIntros (κ v2' σ2 efs Hstep); inv_head_step. + iIntros (σ1 κs) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iSplit; first by eauto. iNext; iIntros (κ κs' v2' σ2 efs [Hstep ->]); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. by iApply "HΦ". Qed. @@ -226,8 +227,8 @@ Lemma twp_cas_suc s E l e1 v1 e2 v2 : Proof. iIntros (<- <- ? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. - iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step. + iIntros (σ1 κs) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iSplit; first by eauto. iIntros (κ κs' v2' σ2 efs [Hstep ->]); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. by iApply "HΦ". Qed. @@ -239,8 +240,8 @@ Lemma wp_faa s E l i1 e2 i2 : Proof. iIntros (<- Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. - iSplit; first by eauto. iNext; iIntros (κ v2' σ2 efs Hstep); inv_head_step. + iIntros (σ1 κs) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iSplit; first by eauto. iNext; iIntros (κ κs' v2' σ2 efs [Hstep ->]); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. by iApply "HΦ". Qed. @@ -251,8 +252,8 @@ Lemma twp_faa s E l i1 e2 i2 : Proof. iIntros (<- Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. - iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step. + iIntros (σ1 κs) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iSplit; first by eauto. iIntros (κ κs' v2' σ2 efs [Hstep ->]); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. by iApply "HΦ". Qed. diff --git a/theories/heap_lang/proofmode.v b/theories/heap_lang/proofmode.v index e2324fd403309de1cc3c35b452bb0fdd9f2d83ba..de11f87f6cfecfa5a34e78de0a0b728908c71dae 100644 --- a/theories/heap_lang/proofmode.v +++ b/theories/heap_lang/proofmode.v @@ -40,6 +40,7 @@ Proof. rewrite envs_entails_eq=> ??? HΔ'. rewrite into_laterN_env_sound /=. rewrite HΔ' -lifting.wp_pure_step_later //. Qed. + Lemma tac_twp_pure `{heapG Σ} Δ s E e1 e2 φ Φ : PureExec φ e1 e2 → φ → diff --git a/theories/heap_lang/total_adequacy.v b/theories/heap_lang/total_adequacy.v index 838357376916c83fcea20449fd99a06af8436533..7cb9e7932a783d75a3eee270efce3a174f327e24 100644 --- a/theories/heap_lang/total_adequacy.v +++ b/theories/heap_lang/total_adequacy.v @@ -4,12 +4,15 @@ From iris.heap_lang Require Import proofmode notation. From iris.proofmode Require Import tactics. Set Default Proof Using "Type". +(* TODO (MR) re-introduce lemma after we prove twp_total *) +(* Definition heap_total Σ `{heapPreG Σ} s e σ φ : (∀ `{heapG Σ}, WP e @ s; ⊤ [{ v, ⌜φ v⌠}]%I) → sn erased_step ([e], σ). Proof. - intros Hwp; eapply (twp_total _ _); iIntros (?) "". + intros Hwp; eapply (twp_total _ _) with (κs := []); iIntros (?) "". iMod (gen_heap_init σ) as (?) "Hh". - iModIntro. iExists gen_heap_ctx; iFrame. + iModIntro. iExists (fun σ _ => gen_heap_ctx σ); iFrame. iApply (Hwp (HeapG _ _ _)). Qed. +*) diff --git a/theories/program_logic/adequacy.v b/theories/program_logic/adequacy.v index 43d9dddf2d1a688783e219fc38724bcfde9e2d2e..b5e3cf8569a52fac3e231493bcff9b2bcdb1ac5e 100644 --- a/theories/program_logic/adequacy.v +++ b/theories/program_logic/adequacy.v @@ -66,50 +66,50 @@ Implicit Types P Q : iProp Σ. Implicit Types Φ : val Λ → iProp Σ. Implicit Types Φs : list (val Λ → iProp Σ). -Notation world' E σ := (wsat ∗ ownE E ∗ state_interp σ)%I (only parsing). -Notation world σ := (world' ⊤ σ) (only parsing). +Notation world' E σ κs := (wsat ∗ ownE E ∗ state_interp σ κs)%I (only parsing). +Notation world σ κs := (world' ⊤ σ κs) (only parsing). Notation wptp s t := ([∗ list] ef ∈ t, WP ef @ s; ⊤ {{ _, True }})%I. -Lemma wp_step s E e1 σ1 κ e2 σ2 efs Φ : +Lemma wp_step s E e1 σ1 κ κs e2 σ2 efs Φ : prim_step e1 σ1 κ e2 σ2 efs → - world' E σ1 ∗ WP e1 @ s; E {{ Φ }} - ==∗ â–· |==> â—‡ (world' E σ2 ∗ WP e2 @ s; E {{ Φ }} ∗ wptp s efs). + world' E σ1 (cons_obs κ κs) ∗ WP e1 @ s; E {{ Φ }} + ==∗ â–· |==> â—‡ (world' E σ2 κs ∗ WP e2 @ s; E {{ Φ }} ∗ wptp s efs). Proof. rewrite {1}wp_unfold /wp_pre. iIntros (?) "[(Hw & HE & Hσ) H]". rewrite (val_stuck e1 σ1 κ e2 σ2 efs) // uPred_fupd_eq. - iMod ("H" $! σ1 with "Hσ [Hw HE]") as ">(Hw & HE & _ & H)"; first by iFrame. - iMod ("H" $! κ e2 σ2 efs with "[//] [$Hw $HE]") as ">(Hw & HE & H)". + iMod ("H" $! σ1 _ with "Hσ [Hw HE]") as ">(Hw & HE & _ & H)"; first by iFrame. + iMod ("H" $! κ κs e2 σ2 efs with "[//] [$Hw $HE]") as ">(Hw & HE & H)". iIntros "!> !>". by iMod ("H" with "[$Hw $HE]") as ">($ & $ & $)". Qed. -(* should we be able to say that κs = κ :: κs'? *) -Lemma wptp_step s e1 t1 t2 κ σ1 σ2 Φ : +Lemma wptp_step s e1 t1 t2 κ κs σ1 σ2 Φ : step (e1 :: t1,σ1) κ (t2, σ2) → - world σ1 ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 + world σ1 (cons_obs κ κs) ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 ==∗ ∃ e2 t2', - ⌜t2 = e2 :: t2'⌠∗ â–· |==> â—‡ (world σ2 ∗ WP e2 @ s; ⊤ {{ Φ }} ∗ wptp s t2'). + ⌜t2 = e2 :: t2'⌠∗ â–· |==> â—‡ (world σ2 κs ∗ WP e2 @ s; ⊤ {{ Φ }} ∗ wptp s t2'). Proof. iIntros (Hstep) "(HW & He & Ht)". destruct Hstep as [e1' σ1' e2' σ2' efs [|? t1'] t2' ?? Hstep]; simplify_eq/=. - - iExists e2', (t2' ++ efs); iSplitR; first by eauto. + - iExists e2', (t2' ++ efs). iSplitR; first by eauto. iFrame "Ht". iApply wp_step; eauto with iFrame. - iExists e, (t1' ++ e2' :: t2' ++ efs); iSplitR; first eauto. iDestruct "Ht" as "($ & He' & $)". iFrame "He". iApply wp_step; eauto with iFrame. Qed. -Lemma wptp_steps s n e1 t1 κs t2 σ1 σ2 Φ : +Lemma wptp_steps s n e1 t1 κs κs' t2 σ1 σ2 Φ : nsteps n (e1 :: t1, σ1) κs (t2, σ2) → - world σ1 ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 ⊢ + world σ1 (κs ++ κs') ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 ⊢ Nat.iter (S n) (λ P, |==> â–· P) (∃ e2 t2', - ⌜t2 = e2 :: t2'⌠∗ world σ2 ∗ WP e2 @ s; ⊤ {{ Φ }} ∗ wptp s t2'). + ⌜t2 = e2 :: t2'⌠∗ world σ2 κs' ∗ WP e2 @ s; ⊤ {{ Φ }} ∗ wptp s t2'). Proof. - revert e1 t1 κs t2 σ1 σ2; simpl; induction n as [|n IH]=> e1 t1 κs t2 σ1 σ2 /=. + revert e1 t1 κs κs' t2 σ1 σ2; simpl; induction n as [|n IH]=> e1 t1 κs κs' t2 σ1 σ2 /=. { inversion_clear 1; iIntros "?"; eauto 10. } iIntros (Hsteps) "H". inversion_clear Hsteps as [|?? [t1' σ1']]. - iMod (wptp_step with "H") as (e1' t1'') "[% H]"; first eauto; simplify_eq. - iModIntro; iNext; iMod "H" as ">?". by iApply IH. + rewrite /cons_obs. rewrite <- app_assoc. + iMod (wptp_step with "H") as (e1' t1'') "[% H]"; first by eauto; simplify_eq. + subst. iModIntro; iNext; iMod "H" as ">H". by iApply IH. Qed. Lemma bupd_iter_laterN_mono n P Q `{!Plain Q} : @@ -125,9 +125,11 @@ Proof. by rewrite bupd_frame_l {1}(later_intro R) -later_sep IH. Qed. -Lemma wptp_result s n e1 t1 κs v2 t2 σ1 σ2 φ : +Lemma wptp_result s n e1 t1 κs κs' v2 t2 σ1 σ2 φ : nsteps n (e1 :: t1, σ1) κs (of_val v2 :: t2, σ2) → - world σ1 ∗ WP e1 @ s; ⊤ {{ v, ∀ σ, state_interp σ ={⊤,∅}=∗ ⌜φ v σ⌠}} ∗ wptp s t1 + world σ1 (κs ++ κs') ∗ + WP e1 @ s; ⊤ {{ v, ∀ σ, state_interp σ κs' ={⊤,∅}=∗ ⌜φ v σ⌠}} ∗ + wptp s t1 ⊢ â–·^(S (S n)) ⌜φ v2 σ2âŒ. Proof. intros. rewrite wptp_steps // laterN_later. apply: bupd_iter_laterN_mono. @@ -137,8 +139,8 @@ Proof. iMod ("H" with "Hσ [$]") as ">(_ & _ & $)". Qed. -Lemma wp_safe E e σ Φ : - world' E σ -∗ WP e @ E {{ Φ }} ==∗ â–· ⌜is_Some (to_val e) ∨ reducible e σâŒ. +Lemma wp_safe E e σ κs Φ : + world' E σ κs -∗ WP e @ E {{ Φ }} ==∗ â–· ⌜is_Some (to_val e) ∨ reducible e σâŒ. Proof. rewrite wp_unfold /wp_pre. iIntros "(Hw&HE&Hσ) H". destruct (to_val e) as [v|] eqn:?. @@ -147,9 +149,9 @@ Proof. iIntros "!> !> !%". by right. Qed. -Lemma wptp_safe n e1 κs e2 t1 t2 σ1 σ2 Φ : +Lemma wptp_safe n e1 κs κs' e2 t1 t2 σ1 σ2 Φ : nsteps n (e1 :: t1, σ1) κs (t2, σ2) → e2 ∈ t2 → - world σ1 ∗ WP e1 {{ Φ }} ∗ wptp NotStuck t1 + world σ1 (κs ++ κs') ∗ WP e1 {{ Φ }} ∗ wptp NotStuck t1 ⊢ â–·^(S (S n)) ⌜is_Some (to_val e2) ∨ reducible e2 σ2âŒ. Proof. intros ? He2. rewrite wptp_steps // laterN_later. apply: bupd_iter_laterN_mono. @@ -159,9 +161,9 @@ Proof. - iMod (wp_safe with "Hw [Htp]") as "$". by iApply (big_sepL_elem_of with "Htp"). Qed. -Lemma wptp_invariance s n e1 κs e2 t1 t2 σ1 σ2 φ Φ : +Lemma wptp_invariance s n e1 κs κs' e2 t1 t2 σ1 σ2 φ Φ : nsteps n (e1 :: t1, σ1) κs (t2, σ2) → - (state_interp σ2 ={⊤,∅}=∗ ⌜φâŒ) ∗ world σ1 ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 + (state_interp σ2 κs' ={⊤,∅}=∗ ⌜φâŒ) ∗ world σ1 (κs ++ κs') ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 ⊢ â–·^(S (S n)) ⌜φâŒ. Proof. intros ?. rewrite wptp_steps // bupd_iter_frame_l laterN_later. @@ -173,68 +175,70 @@ Qed. End adequacy. Theorem wp_strong_adequacy Σ Λ `{invPreG Σ} s e σ φ : - (∀ `{Hinv : invG Σ}, - (|={⊤}=> ∃ stateI : state Λ → iProp Σ, - let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in - stateI σ ∗ WP e @ s; ⊤ {{ v, ∀ σ, stateI σ ={⊤,∅}=∗ ⌜φ v σ⌠}})%I) → + (∀ `{Hinv : invG Σ} κs, + (|={⊤}=> ∃ stateI : state Λ → list (observation Λ) → iProp Σ, + let _ : irisG Λ Σ := IrisG _ _ _ Hinv stateI in + stateI σ κs ∗ WP e @ s; ⊤ {{ v, ∀ σ, stateI σ [] ={⊤,∅}=∗ ⌜φ v σ⌠}})%I) → adequate s e σ φ. Proof. intros Hwp; split. - intros t2 σ2 v2 [n [κs ?]]%erased_steps_nsteps. eapply (soundness (M:=iResUR Σ) _ (S (S n))). - iMod wsat_alloc as (Hinv) "[Hw HE]". specialize (Hwp _). + iMod wsat_alloc as (Hinv) "[Hw HE]". specialize (Hwp _ κs). rewrite {1}uPred_fupd_eq in Hwp; iMod (Hwp with "[$Hw $HE]") as ">(Hw & HE & Hwp)". iDestruct "Hwp" as (Istate) "[HI Hwp]". - iApply (@wptp_result _ _ (IrisG _ _ Hinv Istate)); eauto with iFrame. + iApply (@wptp_result _ _ (IrisG _ _ _ Hinv Istate) _ _ _ _ _ []); last first. + rewrite app_nil_r. all: eauto with iFrame. - destruct s; last done. intros t2 σ2 e2 _ [n [κs ?]]%erased_steps_nsteps ?. eapply (soundness (M:=iResUR Σ) _ (S (S n))). - iMod wsat_alloc as (Hinv) "[Hw HE]". specialize (Hwp _). + iMod wsat_alloc as (Hinv) "[Hw HE]". specialize (Hwp _ κs). rewrite uPred_fupd_eq in Hwp; iMod (Hwp with "[$Hw $HE]") as ">(Hw & HE & Hwp)". iDestruct "Hwp" as (Istate) "[HI Hwp]". - iApply (@wptp_safe _ _ (IrisG _ _ Hinv Istate)); eauto with iFrame. + iApply (@wptp_safe _ _ (IrisG _ _ _ Hinv Istate) _ _ _ []); last first. + rewrite app_nil_r. all: eauto with iFrame. Qed. Theorem wp_adequacy Σ Λ `{invPreG Σ} s e σ φ : - (∀ `{Hinv : invG Σ}, - (|={⊤}=> ∃ stateI : state Λ → iProp Σ, - let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in - stateI σ ∗ WP e @ s; ⊤ {{ v, ⌜φ v⌠}})%I) → + (∀ `{Hinv : invG Σ} κs, + (|={⊤}=> ∃ stateI : state Λ → list (observation Λ) → iProp Σ, + let _ : irisG Λ Σ := IrisG _ _ _ Hinv stateI in + stateI σ κs ∗ WP e @ s; ⊤ {{ v, ⌜φ v⌠}})%I) → adequate s e σ (λ v _, φ v). Proof. - intros Hwp. apply (wp_strong_adequacy Σ _)=> Hinv. + intros Hwp. apply (wp_strong_adequacy Σ _)=> Hinv κs. iMod Hwp as (stateI) "[Hσ H]". iExists stateI. iIntros "{$Hσ} !>". iApply (wp_wand with "H"). iIntros (v ? σ') "_". iMod (fupd_intro_mask' ⊤ ∅) as "_"; auto. Qed. Theorem wp_invariance Σ Λ `{invPreG Σ} s e σ1 t2 σ2 φ : - (∀ `{Hinv : invG Σ}, - (|={⊤}=> ∃ stateI : state Λ → iProp Σ, - let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in - stateI σ1 ∗ WP e @ s; ⊤ {{ _, True }} ∗ (stateI σ2 ={⊤,∅}=∗ ⌜φâŒ))%I) → + (∀ `{Hinv : invG Σ} κs κs', + (|={⊤}=> ∃ stateI : state Λ → list (observation Λ) → iProp Σ, + let _ : irisG Λ Σ := IrisG _ _ _ Hinv stateI in + stateI σ1 (κs ++ κs') ∗ WP e @ s; ⊤ {{ _, True }} ∗ (stateI σ2 κs' ={⊤,∅}=∗ ⌜φâŒ))%I) → rtc erased_step ([e], σ1) (t2, σ2) → φ. Proof. intros Hwp [n [κs ?]]%erased_steps_nsteps. eapply (soundness (M:=iResUR Σ) _ (S (S n))). - iMod wsat_alloc as (Hinv) "[Hw HE]". specialize (Hwp _). + iMod wsat_alloc as (Hinv) "[Hw HE]". specialize (Hwp _ κs []). rewrite {1}uPred_fupd_eq in Hwp; iMod (Hwp with "[$Hw $HE]") as ">(Hw & HE & Hwp)". iDestruct "Hwp" as (Istate) "(HIstate & Hwp & Hclose)". - iApply (@wptp_invariance _ _ (IrisG _ _ Hinv Istate)); eauto with iFrame. + iApply (@wptp_invariance _ _ (IrisG _ _ _ Hinv Istate)); eauto with iFrame. Qed. (* An equivalent version that does not require finding [fupd_intro_mask'], but can be confusing to use. *) Corollary wp_invariance' Σ Λ `{invPreG Σ} s e σ1 t2 σ2 φ : - (∀ `{Hinv : invG Σ}, - (|={⊤}=> ∃ stateI : state Λ → iProp Σ, - let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in - stateI σ1 ∗ WP e @ s; ⊤ {{ _, True }} ∗ (stateI σ2 -∗ ∃ E, |={⊤,E}=> ⌜φâŒ))%I) → + (∀ `{Hinv : invG Σ} κs κs', + (|={⊤}=> ∃ stateI : state Λ → list (observation Λ) → iProp Σ, + let _ : irisG Λ Σ := IrisG _ _ _ Hinv stateI in + stateI σ1 κs ∗ WP e @ s; ⊤ {{ _, True }} ∗ (stateI σ2 κs' -∗ ∃ E, |={⊤,E}=> ⌜φâŒ))%I) → rtc erased_step ([e], σ1) (t2, σ2) → φ. Proof. intros Hwp. eapply wp_invariance; first done. - intros Hinv. iMod (Hwp Hinv) as (stateI) "(? & ? & Hφ)". + intros Hinv κs κs'. iMod (Hwp Hinv) as (stateI) "(? & ? & Hφ)". iModIntro. iExists stateI. iFrame. iIntros "Hσ". iDestruct ("Hφ" with "Hσ") as (E) ">Hφ". iMod (fupd_intro_mask') as "_"; last by iModIntro. solve_ndisj. diff --git a/theories/program_logic/ectx_language.v b/theories/program_logic/ectx_language.v index 45741b260416bab5bbf0a5fc4903b51273de674e..475b7836d13cc305dfa2d300a5f710dd277ba6e3 100644 --- a/theories/program_logic/ectx_language.v +++ b/theories/program_logic/ectx_language.v @@ -16,7 +16,7 @@ Section ectx_language_mixin. Context (empty_ectx : ectx). Context (comp_ectx : ectx → ectx → ectx). Context (fill : ectx → expr → expr). - Context (head_step : expr → state → option observation -> expr → state → list expr → Prop). + Context (head_step : expr → state → option observation → expr → state → list expr → Prop). Record EctxLanguageMixin := { mixin_to_of_val v : to_val (of_val v) = Some v; @@ -55,7 +55,7 @@ Structure ectxLanguage := EctxLanguage { empty_ectx : ectx; comp_ectx : ectx → ectx → ectx; fill : ectx → expr → expr; - head_step : expr → state → option observation -> expr → state → list expr → Prop; + head_step : expr → state → option observation → expr → state → list expr → Prop; ectx_language_mixin : EctxLanguageMixin of_val to_val empty_ectx comp_ectx fill head_step @@ -210,7 +210,7 @@ Section ectx_language. Lemma det_head_step_pure_exec (P : Prop) e1 e2 : (∀ σ, P → head_reducible e1 σ) → (∀ σ1 κ e2' σ2 efs, - P → head_step e1 σ1 κ e2' σ2 efs → κ = None /\ σ1 = σ2 ∧ e2=e2' ∧ efs = []) → + P → head_step e1 σ1 κ e2' σ2 efs → κ = None ∧ σ1 = σ2 ∧ e2=e2' ∧ efs = []) → PureExec P e1 e2. Proof. intros Hp1 Hp2. split. diff --git a/theories/program_logic/ectx_lifting.v b/theories/program_logic/ectx_lifting.v index 524741d60b6857a26d1d6bd8fafbe65e839ae86c..f1d2cdb2434ee19579335edb6e43152ce0d51dcc 100644 --- a/theories/program_logic/ectx_lifting.v +++ b/theories/program_logic/ectx_lifting.v @@ -16,43 +16,43 @@ Hint Resolve head_stuck_stuck. Lemma wp_lift_head_step_fupd {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E,∅}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E,∅}=∗ ⌜head_reducible e1 σ1⌠∗ - ∀ κ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={∅,∅,E}â–·=∗ - state_interp σ2 ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ∀ κ κs' e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={∅,∅,E}â–·=∗ + state_interp σ2 κs' ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - iIntros (?) "H". iApply wp_lift_step_fupd=>//. iIntros (σ1) "Hσ". + iIntros (?) "H". iApply wp_lift_step_fupd=>//. iIntros (σ1 κs) "Hσ". iMod ("H" with "Hσ") as "[% H]"; iModIntro. - iSplit; first by destruct s; eauto. iIntros (κ e2 σ2 efs) "%". + iSplit; first by destruct s; eauto. iIntros (κ κs' e2 σ2 efs [Hstep ->]). iApply "H"; eauto. Qed. Lemma wp_lift_head_step {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E,∅}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E,∅}=∗ ⌜head_reducible e1 σ1⌠∗ - â–· ∀ κ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={∅,E}=∗ - state_interp σ2 ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + â–· ∀ κ κs' e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={∅,E}=∗ + state_interp σ2 κs' ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - iIntros (?) "H". iApply wp_lift_head_step_fupd; [done|]. iIntros (?) "?". - iMod ("H" with "[$]") as "[$ H]". iIntros "!>" (κ e2 σ2 efs ?) "!> !>". by iApply "H". + iIntros (?) "H". iApply wp_lift_head_step_fupd; [done|]. iIntros (??) "?". + iMod ("H" with "[$]") as "[$ H]". iIntros "!>" (κ κs' e2 σ2 efs ?) "!> !>". by iApply "H". Qed. Lemma wp_lift_head_stuck E Φ e : to_val e = None → sub_redexes_are_values e → - (∀ σ, state_interp σ ={E,∅}=∗ ⌜head_stuck e σâŒ) + (∀ σ κs, state_interp σ κs ={E,∅}=∗ ⌜head_stuck e σâŒ) ⊢ WP e @ E ?{{ Φ }}. Proof. iIntros (??) "H". iApply wp_lift_stuck; first done. - iIntros (σ) "Hσ". iMod ("H" with "Hσ") as "%". by auto. + iIntros (σ κs) "Hσ". iMod ("H" with "Hσ") as "%". by auto. Qed. Lemma wp_lift_pure_head_step {s E E' Φ} e1 : (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 κ e2 σ2 efs, head_step e1 σ1 κ e2 σ2 efs → κ = None /\ σ1 = σ2) → + (∀ σ1 κ e2 σ2 efs, head_step e1 σ1 κ e2 σ2 efs → κ = None ∧ σ1 = σ2) → (|={E,E'}â–·=> ∀ κ e2 efs σ, ⌜head_step e1 σ κ e2 σ efs⌠→ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. @@ -70,72 +70,73 @@ Lemma wp_lift_pure_head_stuck E Φ e : WP e @ E ?{{ Φ }}%I. Proof using Hinh. iIntros (?? Hstuck). iApply wp_lift_head_stuck; [done|done|]. - iIntros (σ) "_". iMod (fupd_intro_mask' E ∅) as "_"; first set_solver. + iIntros (σ κs) "_". iMod (fupd_intro_mask' E ∅) as "_"; first set_solver. by auto. Qed. Lemma wp_lift_atomic_head_step_fupd {s E1 E2 Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E1}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E1}=∗ ⌜head_reducible e1 σ1⌠∗ - ∀ κ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={E1,E2}â–·=∗ - state_interp σ2 ∗ + ∀ κ κs' e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={E1,E2}â–·=∗ + state_interp σ2 κs' ∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E1 {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_step_fupd; [done|]. - iIntros (σ1) "Hσ1". iMod ("H" with "Hσ1") as "[% H]"; iModIntro. - iSplit; first by destruct s; auto. iIntros (κ e2 σ2 efs) "%". + iIntros (σ1 κs) "Hσ1". iMod ("H" with "Hσ1") as "[% H]"; iModIntro. + iSplit; first by destruct s; auto. iIntros (κ κs' e2 σ2 efs [Hstep ->]). iApply "H"; eauto. Qed. Lemma wp_lift_atomic_head_step {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E}=∗ ⌜head_reducible e1 σ1⌠∗ - â–· ∀ κ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={E}=∗ - state_interp σ2 ∗ + â–· ∀ κ κs' e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={E}=∗ + state_interp σ2 κs' ∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_step; eauto. - iIntros (σ1) "Hσ1". iMod ("H" with "Hσ1") as "[% H]"; iModIntro. - iSplit; first by destruct s; auto. iNext. iIntros (κ e2 σ2 efs) "%". + iIntros (σ1 κs) "Hσ1". iMod ("H" with "Hσ1") as "[% H]"; iModIntro. + iSplit; first by destruct s; auto. iNext. iIntros (κ κs' e2 σ2 efs [Hstep ->]). iApply "H"; eauto. Qed. Lemma wp_lift_atomic_head_step_no_fork_fupd {s E1 E2 Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E1}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E1}=∗ ⌜head_reducible e1 σ1⌠∗ - ∀ κ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={E1,E2}â–·=∗ - ⌜efs = []⌠∗ state_interp σ2 ∗ from_option Φ False (to_val e2)) + ∀ κ κs' e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={E1,E2}â–·=∗ + ⌜efs = []⌠∗ state_interp σ2 κs' ∗ from_option Φ False (to_val e2)) ⊢ WP e1 @ s; E1 {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_head_step_fupd; [done|]. - iIntros (σ1) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]"; iModIntro. - iIntros (κ v2 σ2 efs) "%". iMod ("H" $! κ v2 σ2 efs with "[# //]") as "H". + iIntros (σ1 κs) "Hσ1". iMod ("H" $! σ1 κs with "Hσ1") as "[$ H]"; iModIntro. + iIntros (κ κs' v2 σ2 efs [Hstep ->]). + iMod ("H" $! κ κs' v2 σ2 efs with "[# //]") as "H". iIntros "!> !>". iMod "H" as "(% & $ & $)"; subst; auto. Qed. Lemma wp_lift_atomic_head_step_no_fork {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E}=∗ ⌜head_reducible e1 σ1⌠∗ - â–· ∀ κ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={E}=∗ - ⌜efs = []⌠∗ state_interp σ2 ∗ from_option Φ False (to_val e2)) + â–· ∀ κ κs' e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={E}=∗ + ⌜efs = []⌠∗ state_interp σ2 κs' ∗ from_option Φ False (to_val e2)) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_head_step; eauto. - iIntros (σ1) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]"; iModIntro. - iNext; iIntros (κ v2 σ2 efs) "%". - iMod ("H" $! κ v2 σ2 efs with "[# //]") as "(% & $ & $)"; subst; auto. + iIntros (σ1 κs) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]"; iModIntro. + iNext; iIntros (κ κs' v2 σ2 efs Hstep). + iMod ("H" $! κ κs' v2 σ2 efs with "[# //]") as "(% & $ & $)". subst; auto. Qed. Lemma wp_lift_pure_det_head_step {s E E' Φ} e1 e2 efs : (∀ σ1, head_reducible e1 σ1) → (∀ σ1 κ e2' σ2 efs', - head_step e1 σ1 κ e2' σ2 efs' → κ = None /\ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs') → + head_step e1 σ1 κ e2' σ2 efs' → κ = None ∧ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs') → (|={E,E'}â–·=> WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. @@ -147,7 +148,7 @@ Lemma wp_lift_pure_det_head_step_no_fork {s E E' Φ} e1 e2 : to_val e1 = None → (∀ σ1, head_reducible e1 σ1) → (∀ σ1 κ e2' σ2 efs', - head_step e1 σ1 κ e2' σ2 efs' → κ = None /\ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → + head_step e1 σ1 κ e2' σ2 efs' → κ = None ∧ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → (|={E,E'}â–·=> WP e2 @ s; E {{ Φ }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. intros. rewrite -(wp_lift_pure_det_step e1 e2 []) /= ?right_id; eauto. @@ -158,7 +159,7 @@ Lemma wp_lift_pure_det_head_step_no_fork' {s E Φ} e1 e2 : to_val e1 = None → (∀ σ1, head_reducible e1 σ1) → (∀ σ1 κ e2' σ2 efs', - head_step e1 σ1 κ e2' σ2 efs' → κ = None /\ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → + head_step e1 σ1 κ e2' σ2 efs' → κ = None ∧ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → â–· WP e2 @ s; E {{ Φ }} ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. intros. rewrite -[(WP e1 @ s; _ {{ _ }})%I]wp_lift_pure_det_head_step_no_fork //. diff --git a/theories/program_logic/ectxi_language.v b/theories/program_logic/ectxi_language.v index fb932b863dd64eb353f8bc6e9cc775c17d3aa18a..727425b119a2a1ec304bc2203132f4a9e5d64828 100644 --- a/theories/program_logic/ectxi_language.v +++ b/theories/program_logic/ectxi_language.v @@ -31,7 +31,7 @@ Section ectxi_language_mixin. Context (of_val : val → expr). Context (to_val : expr → option val). Context (fill_item : ectx_item → expr → expr). - Context (head_step : expr → state → option observation -> expr → state → list expr → Prop). + Context (head_step : expr → state → option observation → expr → state → list expr → Prop). Record EctxiLanguageMixin := { mixin_to_of_val v : to_val (of_val v) = Some v; @@ -59,7 +59,7 @@ Structure ectxiLanguage := EctxiLanguage { of_val : val → expr; to_val : expr → option val; fill_item : ectx_item → expr → expr; - head_step : expr → state → option observation -> expr → state → list expr → Prop; + head_step : expr → state → option observation → expr → state → list expr → Prop; ectxi_language_mixin : EctxiLanguageMixin of_val to_val fill_item head_step diff --git a/theories/program_logic/language.v b/theories/program_logic/language.v index e08663e64df2fd1105aefc34f1e9e7d1394a64e1..0f575b4bff92cef2e9757a86c3f951547adc092b 100644 --- a/theories/program_logic/language.v +++ b/theories/program_logic/language.v @@ -5,7 +5,7 @@ Section language_mixin. Context {expr val state observation : Type}. Context (of_val : val → expr). Context (to_val : expr → option val). - (** We annotate the reduction relation with observations [k], which we will use in the definition + (** We annotate the reduction relation with observations [κ], which we will use in the definition of weakest preconditions to keep track of creating and resolving prophecy variables. *) Context (prim_step : expr → state → option observation → expr → state → list expr → Prop). @@ -100,28 +100,24 @@ Section language. prim_step e1 σ1 κ e2 σ2 efs → step Ï1 κ Ï2. - Inductive nsteps : nat -> cfg Λ → list (observation Λ) → cfg Λ → Prop := + (* TODO (MR) introduce notation ::? for cons_obs and suggest for inclusion to stdpp? *) + Definition cons_obs {A} (x : option A) (xs : list A) := + option_list x ++ xs. + + Inductive nsteps : nat → cfg Λ → list (observation Λ) → cfg Λ → Prop := | nsteps_refl Ï : nsteps 0 Ï [] Ï | nsteps_l n Ï1 Ï2 Ï3 κ κs : step Ï1 κ Ï2 → nsteps n Ï2 κs Ï3 → - nsteps (S n) Ï1 (option_list κ ++ κs) Ï3. - - (* Inductive steps : cfg Λ → list (observation Λ) → cfg Λ → Prop := - | steps_refl Ï : - steps Ï [] Ï - | steps_l Ï1 Ï2 Ï3 κ κs : - step Ï1 κ Ï2 → - steps Ï2 κs Ï3 → - steps Ï1 (option_list κ ++ κs) Ï3. *) + nsteps (S n) Ï1 (cons_obs κ κs) Ï3. Definition erased_step (Ï1 Ï2 : cfg Λ) := exists κ, step Ï1 κ Ï2. Hint Constructors step nsteps. Lemma erased_steps_nsteps Ï1 Ï2 : - rtc erased_step Ï1 Ï2 -> + rtc erased_step Ï1 Ï2 → ∃ n κs, nsteps n Ï1 κs Ï2. Proof. induction 1; firstorder; eauto. @@ -173,7 +169,7 @@ Section language. pure_exec_safe σ : P → reducible e1 σ; pure_exec_puredet σ1 κ e2' σ2 efs : - P → prim_step e1 σ1 κ e2' σ2 efs → κ = None /\ σ1 = σ2 ∧ e2 = e2' ∧ efs = []; + P → prim_step e1 σ1 κ e2' σ2 efs → κ = None ∧ σ1 = σ2 ∧ e2 = e2' ∧ efs = []; }. Lemma hoist_pred_pure_exec (P : Prop) (e1 e2 : expr Λ) : diff --git a/theories/program_logic/lifting.v b/theories/program_logic/lifting.v index 58595f0bfcfcadb4e6fc9c0f732b16093d843b36..9cb243ed0dd5f44c36ed2957e104c172b2a91fed 100644 --- a/theories/program_logic/lifting.v +++ b/theories/program_logic/lifting.v @@ -13,42 +13,43 @@ Implicit Types Φ : val Λ → iProp Σ. Lemma wp_lift_step_fupd s E Φ e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E,∅}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E,∅}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - ∀ κ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={∅,∅,E}â–·=∗ - state_interp σ2 ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ∀ κ κs' e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={∅,∅,E}â–·=∗ + state_interp σ2 κs' ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - rewrite wp_unfold /wp_pre=>->. iIntros "H" (σ1) "Hσ". - iMod ("H" with "Hσ") as "(%&H)". iModIntro. iSplit. by destruct s. done. + rewrite wp_unfold /wp_pre=>->. iIntros "H" (σ1 κs) "Hσ". + iMod ("H" with "Hσ") as "(%&H)". iModIntro. iSplit. by destruct s. + iIntros (????? [? ->]). iApply "H". eauto. Qed. Lemma wp_lift_stuck E Φ e : to_val e = None → - (∀ σ, state_interp σ ={E,∅}=∗ ⌜stuck e σâŒ) + (∀ σ κs, state_interp σ κs ={E,∅}=∗ ⌜stuck e σâŒ) ⊢ WP e @ E ?{{ Φ }}. Proof. - rewrite wp_unfold /wp_pre=>->. iIntros "H" (σ1) "Hσ". + rewrite wp_unfold /wp_pre=>->. iIntros "H" (σ1 κs) "Hσ". iMod ("H" with "Hσ") as %[? Hirr]. iModIntro. iSplit; first done. - iIntros (κ e2 σ2 efs) "% !> !>". by case: (Hirr κ e2 σ2 efs). + iIntros (κ ? e2 σ2 efs [? ->]). by case: (Hirr κ e2 σ2 efs). Qed. (** Derived lifting lemmas. *) Lemma wp_lift_step s E Φ e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E,∅}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E,∅}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - â–· ∀ κ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={∅,E}=∗ - state_interp σ2 ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + â–· ∀ κ κs' e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={∅,E}=∗ + state_interp σ2 κs' ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - iIntros (?) "H". iApply wp_lift_step_fupd; [done|]. iIntros (?) "Hσ". + iIntros (?) "H". iApply wp_lift_step_fupd; [done|]. iIntros (??) "Hσ". iMod ("H" with "Hσ") as "[$ H]". iIntros "!> * % !>". by iApply "H". Qed. Lemma wp_lift_pure_step `{Inhabited (state Λ)} s E E' Φ e1 : (∀ σ1, if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → - (∀ κ σ1 e2 σ2 efs, prim_step e1 σ1 κ e2 σ2 efs → κ = None /\ σ1 = σ2) → + (∀ κ σ1 e2 σ2 efs, prim_step e1 σ1 κ e2 σ2 efs → κ = None ∧ σ1 = σ2) → (|={E,E'}â–·=> ∀ κ e2 efs σ, ⌜prim_step e1 σ κ e2 σ efs⌠→ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. @@ -56,11 +57,11 @@ Proof. iIntros (Hsafe Hstep) "H". iApply wp_lift_step. { specialize (Hsafe inhabitant). destruct s; last done. by eapply reducible_not_val. } - iIntros (σ1) "Hσ". iMod "H". + iIntros (σ1 κs) "Hσ". iMod "H". iMod fupd_intro_mask' as "Hclose"; last iModIntro; first by set_solver. iSplit. { iPureIntro. destruct s; done. } - iNext. iIntros (κ e2 σ2 efs ?). - destruct (Hstep κ σ1 e2 σ2 efs); auto; subst. + iNext. iIntros (κ κs' e2 σ2 efs [Hstep' ->]). + destruct (Hstep κ σ1 e2 σ2 efs); auto; subst; clear Hstep. iMod "Hclose" as "_". iFrame "Hσ". iMod "H". iApply "H"; auto. Qed. @@ -71,7 +72,7 @@ Proof. iIntros (Hstuck) "_". iApply wp_lift_stuck. - destruct(to_val e) as [v|] eqn:He; last done. rewrite -He. by case: (Hstuck inhabitant). - - iIntros (σ) "_". iMod (fupd_intro_mask' E ∅) as "_". + - iIntros (σ κs) "_". iMod (fupd_intro_mask' E ∅) as "_". by set_solver. by auto. Qed. @@ -79,18 +80,18 @@ Qed. use the generic lemmas here. *) Lemma wp_lift_atomic_step_fupd {s E1 E2 Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E1}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E1}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - ∀ κ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={E1,E2}â–·=∗ - state_interp σ2 ∗ + ∀ κ κs' e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={E1,E2}â–·=∗ + state_interp σ2 κs' ∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E1 {{ Φ }}. Proof. - iIntros (?) "H". iApply (wp_lift_step_fupd s E1 _ e1)=>//; iIntros (σ1) "Hσ1". + iIntros (?) "H". iApply (wp_lift_step_fupd s E1 _ e1)=>//; iIntros (σ1 κs) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]". iMod (fupd_intro_mask' E1 ∅) as "Hclose"; first set_solver. - iIntros "!>" (κ e2 σ2 efs ?). iMod "Hclose" as "_". - iMod ("H" $! κ e2 σ2 efs with "[#]") as "H"; [done|]. + iIntros "!>" (κ κs' e2 σ2 efs ?). iMod "Hclose" as "_". + iMod ("H" $! κ κs' e2 σ2 efs with "[#]") as "H"; [done|]. iMod (fupd_intro_mask' E2 ∅) as "Hclose"; [set_solver|]. iIntros "!> !>". iMod "Hclose" as "_". iMod "H" as "($ & HΦ & $)". destruct (to_val e2) eqn:?; last by iExFalso. @@ -99,21 +100,22 @@ Qed. Lemma wp_lift_atomic_step {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - â–· ∀ κ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={E}=∗ - state_interp σ2 ∗ + â–· ∀ κ κs' e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={E}=∗ + state_interp σ2 κs' ∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_step_fupd; [done|]. - iIntros (?) "?". iMod ("H" with "[$]") as "[$ H]". iIntros "!> * % !> !>". + iIntros (??) "?". iMod ("H" with "[$]") as "[$ H]". + iIntros "!> *". iIntros ([Hstep ->]) "!> !>". by iApply "H". Qed. Lemma wp_lift_pure_det_step `{Inhabited (state Λ)} {s E E' Φ} e1 e2 efs : (∀ σ1, if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → - (∀ σ1 κ e2' σ2 efs', prim_step e1 σ1 κ e2' σ2 efs' → κ = None /\ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs')→ + (∀ σ1 κ e2' σ2 efs', prim_step e1 σ1 κ e2' σ2 efs' → κ = None ∧ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs')→ (|={E,E'}â–·=> WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. diff --git a/theories/program_logic/ownp.v b/theories/program_logic/ownp.v index a87b07f1d8215a4d962b4d4b52b6a06611176007..ed98eccfa4c09e30eaac82698ed0a42198bf6fe2 100644 --- a/theories/program_logic/ownp.v +++ b/theories/program_logic/ownp.v @@ -5,65 +5,67 @@ From iris.algebra Require Import auth. From iris.proofmode Require Import tactics classes. Set Default Proof Using "Type". -Class ownPG' (Λstate : Type) (Σ : gFunctors) := OwnPG { +Class ownPG' (Λstate Λobservation: Type) (Σ : gFunctors) := OwnPG { ownP_invG : invG Σ; - ownP_inG :> inG Σ (authR (optionUR (exclR (leibnizC Λstate)))); + ownP_inG :> inG Σ (authR (optionUR (exclR (prodC (leibnizC Λstate) (leibnizC (list Λobservation)))))); ownP_name : gname; }. -Notation ownPG Λ Σ := (ownPG' (state Λ) Σ). +Notation ownPG Λ Σ := (ownPG' (state Λ) (observation Λ) Σ). -Instance ownPG_irisG `{ownPG' Λstate Σ} : irisG' Λstate Σ := { +Instance ownPG_irisG `{ownPG' Λstate Λobservation Σ} : irisG' Λstate Λobservation Σ := { iris_invG := ownP_invG; - state_interp σ := own ownP_name (â— (Excl' (σ:leibnizC Λstate))) + state_interp σ κs := own ownP_name (â— (Excl' ((σ:leibnizC Λstate), (κs:leibnizC (list Λobservation))))) }. Global Opaque iris_invG. -Definition ownPΣ (Λstate : Type) : gFunctors := +Definition ownPΣ (Λstate Λobservation : Type) : gFunctors := #[invΣ; - GFunctor (authUR (optionUR (exclR (leibnizC Λstate))))]. + GFunctor (authUR (optionUR (exclR (prodC (leibnizC Λstate) (leibnizC (list Λobservation))))))]. -Class ownPPreG' (Λstate : Type) (Σ : gFunctors) : Set := IrisPreG { +Class ownPPreG' (Λstate Λobservation : Type) (Σ : gFunctors) : Set := IrisPreG { ownPPre_invG :> invPreG Σ; - ownPPre_inG :> inG Σ (authR (optionUR (exclR (leibnizC Λstate)))) + ownPPre_inG :> inG Σ (authR (optionUR (exclR (prodC (leibnizC Λstate) (leibnizC (list Λobservation)))))) }. -Notation ownPPreG Λ Σ := (ownPPreG' (state Λ) Σ). +Notation ownPPreG Λ Σ := (ownPPreG' (state Λ) (observation Λ) Σ). -Instance subG_ownPΣ {Λstate Σ} : subG (ownPΣ Λstate) Σ → ownPPreG' Λstate Σ. +Instance subG_ownPΣ {Λstate Λobservation Σ} : subG (ownPΣ Λstate Λobservation) Σ → ownPPreG' Λstate Λobservation Σ. Proof. solve_inG. Qed. (** Ownership *) -Definition ownP `{ownPG' Λstate Σ} (σ : Λstate) : iProp Σ := - own ownP_name (â—¯ (Excl' σ)). +Definition ownP `{ownPG' Λstate Λobservation Σ} (σ : Λstate) (κs : list Λobservation) : iProp Σ := + own ownP_name (â—¯ (Excl' (σ, κs))). Typeclasses Opaque ownP. Instance: Params (@ownP) 3. (* Adequacy *) Theorem ownP_adequacy Σ `{ownPPreG Λ Σ} s e σ φ : - (∀ `{ownPG Λ Σ}, ownP σ ⊢ WP e @ s; ⊤ {{ v, ⌜φ v⌠}}) → + (∀ `{ownPG Λ Σ} κs, ownP σ κs ⊢ WP e @ s; ⊤ {{ v, ⌜φ v⌠}}) → adequate s e σ (λ v _, φ v). Proof. intros Hwp. apply (wp_adequacy Σ _). - iIntros (?). iMod (own_alloc (â— (Excl' (σ : leibnizC _)) â‹… â—¯ (Excl' σ))) + iIntros (? κs). iMod (own_alloc (â— (Excl' (σ : leibnizC _, κs : leibnizC _)) â‹… â—¯ (Excl' (σ, κs)))) as (γσ) "[Hσ Hσf]"; first done. - iModIntro. iExists (λ σ, own γσ (â— (Excl' (σ:leibnizC _)))). iFrame "Hσ". - iApply (Hwp (OwnPG _ _ _ _ γσ)). by rewrite /ownP. + iModIntro. iExists (λ σ κs, own γσ (â— (Excl' (σ:leibnizC _, κs:leibnizC _)))). iFrame "Hσ". + iApply (Hwp (OwnPG _ _ _ _ _ γσ)). by rewrite /ownP. Qed. Theorem ownP_invariance Σ `{ownPPreG Λ Σ} s e σ1 t2 σ2 φ : - (∀ `{ownPG Λ Σ}, - ownP σ1 ={⊤}=∗ WP e @ s; ⊤ {{ _, True }} ∗ |={⊤,∅}=> ∃ σ', ownP σ' ∧ ⌜φ σ'âŒ) → + (∀ `{ownPG Λ Σ} κs, + ownP σ1 κs ={⊤}=∗ WP e @ s; ⊤ {{ _, True }} ∗ |={⊤,∅}=> ∃ σ' κs', ownP σ' κs' ∧ ⌜φ σ'âŒ) → rtc erased_step ([e], σ1) (t2, σ2) → φ σ2. Proof. intros Hwp Hsteps. eapply (wp_invariance Σ Λ s e σ1 t2 σ2 _)=> //. - iIntros (?). iMod (own_alloc (â— (Excl' (σ1 : leibnizC _)) â‹… â—¯ (Excl' σ1))) + iIntros (? κs κs'). + iMod (own_alloc (â— (Excl' ((σ1 : leibnizC _, κs ++ κs' : leibnizC _))) â‹… â—¯ (Excl' (σ1, κs ++ κs')))) as (γσ) "[Hσ Hσf]"; first done. - iExists (λ σ, own γσ (â— (Excl' (σ:leibnizC _)))). iFrame "Hσ". - iMod (Hwp (OwnPG _ _ _ _ γσ) with "[Hσf]") as "[$ H]"; first by rewrite /ownP. - iIntros "!> Hσ". iMod "H" as (σ2') "[Hσf %]". rewrite/ownP. - iDestruct (own_valid_2 with "Hσ Hσf") - as %[->%Excl_included%leibniz_equiv _]%auth_valid_discrete_2; auto. + iExists (λ σ κs', own γσ (â— (Excl' (σ:leibnizC _, κs':leibnizC _)))). iFrame "Hσ". + iMod (Hwp (OwnPG _ _ _ _ _ γσ) with "[Hσf]") as "[$ H]"; first by rewrite /ownP. + iIntros "!> Hσ". iMod "H" as (σ2' κs'') "[Hσf %]". rewrite/ownP. + iDestruct (own_valid_2 with "Hσ Hσf") as %[Hp _]%auth_valid_discrete_2. + pose proof (Excl_included _ _ Hp) as Hp'. apply leibniz_equiv in Hp'. inversion Hp'; subst. auto. + (* TODO (MR) inline this proof in introduction pattern? *) Qed. @@ -74,34 +76,36 @@ Section lifting. Implicit Types e : expr Λ. Implicit Types Φ : val Λ → iProp Σ. - Lemma ownP_eq σ1 σ2 : state_interp σ1 -∗ ownP σ2 -∗ ⌜σ1 = σ2âŒ. + Lemma ownP_eq σ1 σ2 κs1 κs2 : state_interp σ1 κs1 -∗ ownP σ2 κs2 -∗ ⌜σ1 = σ2 ∧ κs1 = κs2âŒ. Proof. iIntros "Hσ1 Hσ2"; rewrite/ownP. - by iDestruct (own_valid_2 with "Hσ1 Hσ2") - as %[->%Excl_included%leibniz_equiv _]%auth_valid_discrete_2. + iDestruct (own_valid_2 with "Hσ1 Hσ2") + as %[Hp _]%auth_valid_discrete_2. + pose proof (Excl_included _ _ Hp) as Hp'. apply leibniz_equiv in Hp'. inversion Hp'; subst. auto. + (* TODO (MR) inline this proof in introduction pattern? *) Qed. - Lemma ownP_twice σ1 σ2 : ownP σ1 ∗ ownP σ2 ⊢ False. + Lemma ownP_twice σ1 σ2 κs1 κs2 : ownP σ1 κs1 ∗ ownP σ2 κs2 ⊢ False. Proof. rewrite /ownP -own_op own_valid. by iIntros (?). Qed. - Global Instance ownP_timeless σ : Timeless (@ownP (state Λ) Σ _ σ). + Global Instance ownP_timeless σ κs : Timeless (@ownP (state Λ) (observation Λ) Σ _ σ κs). Proof. rewrite /ownP; apply _. Qed. Lemma ownP_lift_step s E Φ e1 : - (|={E,∅}=> ∃ σ1, ⌜if s is NotStuck then reducible e1 σ1 else to_val e1 = None⌠∗ â–· ownP σ1 ∗ - â–· ∀ κ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠-∗ ownP σ2 + (|={E,∅}=> ∃ σ1 κs, ⌜if s is NotStuck then reducible e1 σ1 else to_val e1 = None⌠∗ â–· ownP σ1 κs ∗ + â–· ∀ κ κs' e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠-∗ ownP σ2 κs' ={∅,E}=∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros "H". destruct (to_val e1) as [v|] eqn:EQe1. - apply of_to_val in EQe1 as <-. iApply fupd_wp. - iMod "H" as (σ1) "[Hred _]"; iDestruct "Hred" as %Hred. + iMod "H" as (σ1 κs) "[Hred _]"; iDestruct "Hred" as %Hred. destruct s; last done. apply reducible_not_val in Hred. move: Hred; by rewrite to_of_val. - - iApply wp_lift_step; [done|]; iIntros (σ1) "Hσ". - iMod "H" as (σ1' ?) "[>Hσf H]". iDestruct (ownP_eq with "Hσ Hσf") as %->. - iModIntro; iSplit; [by destruct s|]; iNext; iIntros (κ e2 σ2 efs Hstep). + - iApply wp_lift_step; [done|]; iIntros (σ1 κs) "Hσ". + iMod "H" as (σ1' κs' ?) "[>Hσf H]". iDestruct (ownP_eq with "Hσ Hσf") as %[-> ->]. + iModIntro; iSplit; [by destruct s|]; iNext; iIntros (κ κs'' e2 σ2 efs [Hstep ->]). rewrite /ownP; iMod (own_update_2 with "Hσ Hσf") as "[Hσ Hσf]". - { by apply auth_update, option_local_update, - (exclusive_local_update _ (Excl σ2)). } + { apply auth_update. apply option_local_update. + (exclusive_local_update _ (Excl (σ2, _))). } iFrame "Hσ". iApply ("H" with "[]"); eauto. Qed. @@ -115,12 +119,12 @@ Section lifting. by rewrite to_of_val in Hnv. - iApply wp_lift_stuck; [done|]. iIntros (σ1) "Hσ". iMod "H" as (σ1') "(% & >Hσf)". - by iDestruct (ownP_eq with "Hσ Hσf") as %->. + by iDestruct (ownP_eq with "Hσ Hσf") as %→. Qed. Lemma ownP_lift_pure_step `{Inhabited (state Λ)} s E Φ e1 : (∀ σ1, if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → - (∀ σ1 κ e2 σ2 efs, prim_step e1 σ1 κ e2 σ2 efs → κ = None /\ σ1 = σ2) → + (∀ σ1 κ e2 σ2 efs, prim_step e1 σ1 κ e2 σ2 efs → κ = None ∧ σ1 = σ2) → (â–· ∀ κ e2 efs σ, ⌜prim_step e1 σ κ e2 σ efs⌠→ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. @@ -160,7 +164,7 @@ Section lifting. Proof. iIntros (? Hdet) "[Hσ1 Hσ2]"; iApply ownP_lift_atomic_step; try done. iFrame; iNext; iIntros (κ e2' σ2' efs') "% Hσ2'". - edestruct Hdet as (->&Hval&->). done. by rewrite Hval; iApply "Hσ2". + edestruct Hdet as (→&Hval&→). done. by rewrite Hval; iApply "Hσ2". Qed. Lemma ownP_lift_atomic_det_step_no_fork {s E e1} σ1 v2 σ2 : @@ -175,17 +179,17 @@ Section lifting. Lemma ownP_lift_pure_det_step `{Inhabited (state Λ)} {s E Φ} e1 e2 efs : (∀ σ1, if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → - (∀ σ1 κ e2' σ2 efs', prim_step e1 σ1 κ e2' σ2 efs' → κ = None /\ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs')→ + (∀ σ1 κ e2' σ2 efs', prim_step e1 σ1 κ e2' σ2 efs' → κ = None ∧ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs')→ â–· (WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤{{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (? Hpuredet) "?"; iApply ownP_lift_pure_step=>//. - naive_solver. by iNext; iIntros (κ e' efs' σ (->&_&->&->)%Hpuredet). + naive_solver. by iNext; iIntros (κ e' efs' σ (→&_&→&→)%Hpuredet). Qed. Lemma ownP_lift_pure_det_step_no_fork `{Inhabited (state Λ)} {s E Φ} e1 e2 : (∀ σ1, if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → - (∀ σ1 κ e2' σ2 efs', prim_step e1 σ1 κ e2' σ2 efs' → κ = None /\ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → + (∀ σ1 κ e2' σ2 efs', prim_step e1 σ1 κ e2' σ2 efs' → κ = None ∧ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → â–· WP e2 @ s; E {{ Φ }} ⊢ WP e1 @ s; E {{ Φ }}. Proof. intros. rewrite -(wp_lift_pure_det_step e1 e2 []) ?big_sepL_nil ?right_id; eauto. @@ -226,7 +230,7 @@ Section ectx_lifting. Lemma ownP_lift_pure_head_step s E Φ e1 : (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 κ e2 σ2 efs, head_step e1 σ1 κ e2 σ2 efs → κ = None /\ σ1 = σ2) → + (∀ σ1 κ e2 σ2 efs, head_step e1 σ1 κ e2 σ2 efs → κ = None ∧ σ1 = σ2) → (â–· ∀ κ e2 efs σ, ⌜head_step e1 σ κ e2 σ efs⌠→ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. @@ -271,7 +275,7 @@ Section ectx_lifting. Lemma ownP_lift_pure_det_head_step {s E Φ} e1 e2 efs : (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 κ e2' σ2 efs', head_step e1 σ1 κ e2' σ2 efs' → κ = None /\ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs') → + (∀ σ1 κ e2' σ2 efs', head_step e1 σ1 κ e2' σ2 efs' → κ = None ∧ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs') → â–· (WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. @@ -281,7 +285,7 @@ Section ectx_lifting. Lemma ownP_lift_pure_det_head_step_no_fork {s E Φ} e1 e2 : (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 κ e2' σ2 efs', head_step e1 σ1 κ e2' σ2 efs' → κ = None /\ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → + (∀ σ1 κ e2' σ2 efs', head_step e1 σ1 κ e2' σ2 efs' → κ = None ∧ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → â–· WP e2 @ s; E {{ Φ }} ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. iIntros (??) "H". iApply ownP_lift_pure_det_step_no_fork; eauto. diff --git a/theories/program_logic/total_adequacy.v b/theories/program_logic/total_adequacy.v index 3757b771e64b0e0e56fd32a8aab37a8bb166a5c0..5493688cfed2a497d7d148e7c0c06a0372311eac 100644 --- a/theories/program_logic/total_adequacy.v +++ b/theories/program_logic/total_adequacy.v @@ -12,15 +12,15 @@ Implicit Types e : expr Λ. Definition twptp_pre (twptp : list (expr Λ) → iProp Σ) (t1 : list (expr Λ)) : iProp Σ := - (∀ t2 σ1 σ2, ⌜erased_step (t1,σ1) (t2,σ2)⌠-∗ - state_interp σ1 ={⊤}=∗ state_interp σ2 ∗ twptp t2)%I. + (∀ t2 σ1 κ κs κs' σ2, ⌜step (t1,σ1) κ (t2,σ2) ∧ κs = cons_obs κ κs'⌠-∗ + state_interp σ1 κs ={⊤}=∗ state_interp σ2 κs' ∗ twptp t2)%I. Lemma twptp_pre_mono (twptp1 twptp2 : list (expr Λ) → iProp Σ) : (<pers> (∀ t, twptp1 t -∗ twptp2 t) → ∀ t, twptp_pre twptp1 t -∗ twptp_pre twptp2 t)%I. Proof. iIntros "#H"; iIntros (t) "Hwp". rewrite /twptp_pre. - iIntros (t2 σ1 σ2) "Hstep Hσ". iMod ("Hwp" with "[$] [$]") as "[$ ?]". + iIntros (t2 σ1 κ κs κs' σ2) "Hstep Hσ". iMod ("Hwp" with "[$] [$]") as "[$ ?]". by iApply "H". Qed. @@ -50,8 +50,8 @@ Instance twptp_Permutation : Proper ((≡ₚ) ==> (⊢)) twptp. Proof. iIntros (t1 t1' Ht) "Ht1". iRevert (t1' Ht); iRevert (t1) "Ht1". iApply twptp_ind; iIntros "!#" (t1) "IH"; iIntros (t1' Ht). - rewrite twptp_unfold /twptp_pre. iIntros (t2 σ1 σ2 Hstep) "Hσ". - destruct (erased_step_Permutation t1' t1 t2 σ1 σ2) as (t2'&?&?); try done. + rewrite twptp_unfold /twptp_pre. iIntros (t2 σ1 κ κs κs' σ2 [Hstep ->]) "Hσ". + destruct (step_Permutation t1' t1 t2 κ σ1 σ2) as (t2'&?&?); try done. iMod ("IH" $! t2' with "[% //] Hσ") as "[$ [IH _]]". by iApply "IH". Qed. @@ -61,21 +61,21 @@ Proof. iApply twptp_ind; iIntros "!#" (t1) "IH1". iIntros (t2) "H2". iRevert (t1) "IH1"; iRevert (t2) "H2". iApply twptp_ind; iIntros "!#" (t2) "IH2". iIntros (t1) "IH1". - rewrite twptp_unfold /twptp_pre. iIntros (t1'' σ1 σ2 Hstep) "Hσ1". - destruct Hstep as [κ [e1 σ1' e2 σ2' efs' t1' t2' ?? Hstep]]; simplify_eq/=. + rewrite twptp_unfold /twptp_pre. iIntros (t1'' σ1 κ κs κs' σ2 [Hstep ->]) "Hσ1". + destruct Hstep as [e1 σ1' e2 σ2' efs' t1' t2' ?? Hstep]; simplify_eq/=. apply app_eq_inv in H as [(t&?&?)|(t&?&?)]; subst. - destruct t as [|e1' ?]; simplify_eq/=. - + iMod ("IH2" with "[%] Hσ1") as "[$ [IH2 _]]". eexists. - { by eapply step_atomic with (t1:=[]). } + + iMod ("IH2" with "[%] Hσ1") as "[$ [IH2 _]]". + { split. by eapply step_atomic with (t1:=[]). reflexivity. } iModIntro. rewrite -{2}(left_id_L [] (++) (e2 :: _)). iApply "IH2". by setoid_rewrite (right_id_L [] (++)). - + iMod ("IH1" with "[%] Hσ1") as "[$ [IH1 _]]"; first by eexists; econstructor. + + iMod ("IH1" with "[%] Hσ1") as "[$ [IH1 _]]"; first by split; econstructor. iAssert (twptp t2) with "[IH2]" as "Ht2". { rewrite twptp_unfold. iApply (twptp_pre_mono with "[] IH2"). iIntros "!# * [_ ?] //". } iModIntro. rewrite -assoc_L (comm _ t2) !cons_middle !assoc_L. by iApply "IH1". - - iMod ("IH2" with "[%] Hσ1") as "[$ [IH2 _]]"; first by eexists; econstructor. + - iMod ("IH2" with "[%] Hσ1") as "[$ [IH2 _]]"; first by split; econstructor. iModIntro. rewrite -assoc. by iApply "IH2". Qed. @@ -84,8 +84,8 @@ Proof. iIntros "He". remember (⊤ : coPset) as E eqn:HE. iRevert (HE). iRevert (e E Φ) "He". iApply twp_ind. iIntros "!#" (e E Φ); iIntros "IH" (->). - rewrite twptp_unfold /twptp_pre /twp_pre. iIntros (t1' σ1' σ2' Hstep) "Hσ1". - destruct Hstep as [κ [e1 σ1 e2 σ2 efs [|? t1] t2 ?? Hstep]]; + rewrite twptp_unfold /twptp_pre /twp_pre. iIntros (t1' σ1' κ κs κs' σ2' [Hstep ->]) "Hσ1". + destruct Hstep as [e1 σ1 e2 σ2 efs [|? t1] t2 ?? Hstep]; simplify_eq/=; try discriminate_list. destruct (to_val e1) as [v|] eqn:He1. { apply val_stuck in Hstep; naive_solver. } @@ -93,30 +93,35 @@ Proof. iMod ("IH" with "[% //]") as "[$ [[IH _] IHfork]]"; iModIntro. iApply (twptp_app [_] with "[IH]"); first by iApply "IH". clear. iInduction efs as [|e efs] "IH"; simpl. - { rewrite twptp_unfold /twptp_pre. iIntros (t2 σ1 σ2 [κ Hstep]). + { rewrite twptp_unfold /twptp_pre. iIntros (t2 σ1 κ κs κs' σ2 [Hstep ->]). destruct Hstep; simplify_eq/=; discriminate_list. } iDestruct "IHfork" as "[[IH' _] IHfork]". iApply (twptp_app [_] with "[IH']"); [by iApply "IH'"|by iApply "IH"]. Qed. -Notation world σ := (wsat ∗ ownE ⊤ ∗ state_interp σ)%I. +Notation world σ κs := (wsat ∗ ownE ⊤ ∗ state_interp σ κs)%I. -Lemma twptp_total σ t : world σ -∗ twptp t -∗ â–· ⌜sn erased_step (t, σ)âŒ. +(* TODO (MR) prove twtp_total *) +(* +Lemma twptp_total σ κs t : world σ κs -∗ twptp t -∗ â–· ⌜sn erased_step (t, σ)âŒ. Proof. - iIntros "Hw Ht". iRevert (σ) "Hw". iRevert (t) "Ht". - iApply twptp_ind; iIntros "!#" (t) "IH"; iIntros (σ) "(Hw&HE&Hσ)". - iApply (pure_mono _ _ (Acc_intro _)). iIntros ([t' σ'] Hstep). + iIntros "Hw Ht". iRevert (σ κs) "Hw". iRevert (t) "Ht". + iApply twptp_ind; iIntros "!#" (t) "IH"; iIntros (σ κs) "(Hw&HE&Hσ)". + iApply (pure_mono _ _ (Acc_intro _)). rewrite /twptp_pre uPred_fupd_eq /uPred_fupd_def. iMod ("IH" with "[% //] Hσ [$Hw $HE]") as ">(Hw & HE & Hσ & [IH _])". iApply "IH". by iFrame. Qed. +*) End adequacy. -Theorem twp_total Σ Λ `{invPreG Σ} s e σ Φ : +(* TODO (MR) prove twp_total *) +(* +Theorem twp_total Σ Λ `{invPreG Σ} s e σ κs Φ : (∀ `{Hinv : invG Σ}, - (|={⊤}=> ∃ stateI : state Λ → iProp Σ, - let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in - stateI σ ∗ WP e @ s; ⊤ [{ Φ }])%I) → + (|={⊤}=> ∃ stateI : state Λ → list (observation Λ) -> iProp Σ, + let _ : irisG Λ Σ := IrisG _ _ _ Hinv stateI in + stateI σ κs ∗ WP e @ s; ⊤ [{ Φ }])%I) → sn erased_step ([e], σ). (* i.e. ([e], σ) is strongly normalizing *) Proof. intros Hwp. @@ -124,6 +129,7 @@ Proof. iMod wsat_alloc as (Hinv) "[Hw HE]". specialize (Hwp Hinv). rewrite uPred_fupd_eq in Hwp; iMod (Hwp with "[$Hw $HE]") as ">(Hw & HE & Hwp)". iDestruct "Hwp" as (Istate) "[HI Hwp]". - iApply (@twptp_total _ _ (IrisG _ _ Hinv Istate) with "[$Hw $HE $HI]"). - by iApply (@twp_twptp _ _ (IrisG _ _ Hinv Istate)). + iApply (@twptp_total _ _ (IrisG _ _ _ Hinv Istate) with "[$Hw $HE $HI]"). + by iApply (@twp_twptp _ _ (IrisG _ _ _ Hinv Istate)). Qed. +*) diff --git a/theories/program_logic/total_ectx_lifting.v b/theories/program_logic/total_ectx_lifting.v index 7b8775d818965c8fa35b7e6684f3abb220d5a124..451a37657c24dfa945c207fff953486c4fa43b60 100644 --- a/theories/program_logic/total_ectx_lifting.v +++ b/theories/program_logic/total_ectx_lifting.v @@ -14,21 +14,21 @@ Hint Resolve head_prim_reducible head_reducible_prim_step. Lemma twp_lift_head_step {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E,∅}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E,∅}=∗ ⌜head_reducible e1 σ1⌠∗ - ∀ κ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={∅,E}=∗ - state_interp σ2 ∗ WP e2 @ s; E [{ Φ }] ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) + ∀ κ κs' e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={∅,E}=∗ + state_interp σ2 κs' ∗ WP e2 @ s; E [{ Φ }] ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof. - iIntros (?) "H". iApply (twp_lift_step _ E)=>//. iIntros (σ1) "Hσ". + iIntros (?) "H". iApply (twp_lift_step _ E)=>//. iIntros (σ1 κs) "Hσ". iMod ("H" $! σ1 with "Hσ") as "[% H]"; iModIntro. - iSplit; [destruct s; auto|]. iIntros (κ e2 σ2 efs) "%". + iSplit; [destruct s; auto|]. iIntros (κ κs' e2 σ2 efs [Hstep ->]). iApply "H". by eauto. Qed. Lemma twp_lift_pure_head_step {s E Φ} e1 : (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 κ e2 σ2 efs, head_step e1 σ1 κ e2 σ2 efs → κ = None /\ σ1 = σ2) → + (∀ σ1 κ e2 σ2 efs, head_step e1 σ1 κ e2 σ2 efs → κ = None ∧ σ1 = σ2) → (|={E}=> ∀ κ e2 efs σ, ⌜head_step e1 σ κ e2 σ efs⌠→ WP e2 @ s; E [{ Φ }] ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) ⊢ WP e1 @ s; E [{ Φ }]. @@ -39,36 +39,36 @@ Qed. Lemma twp_lift_atomic_head_step {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E}=∗ ⌜head_reducible e1 σ1⌠∗ - ∀ κ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={E}=∗ - state_interp σ2 ∗ + ∀ κ κs' e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={E}=∗ + state_interp σ2 κs'∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof. iIntros (?) "H". iApply twp_lift_atomic_step; eauto. - iIntros (σ1) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[% H]"; iModIntro. - iSplit; first by destruct s; auto. iIntros (κ e2 σ2 efs) "%". iApply "H"; eauto. + iIntros (σ1 κs) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[% H]"; iModIntro. + iSplit; first by destruct s; auto. iIntros (κ κs' e2 σ2 efs [Hstep ->]). iApply "H"; eauto. Qed. Lemma twp_lift_atomic_head_step_no_fork {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E}=∗ ⌜head_reducible e1 σ1⌠∗ - ∀ κ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={E}=∗ - ⌜efs = []⌠∗ state_interp σ2 ∗ from_option Φ False (to_val e2)) + ∀ κ κs' e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={E}=∗ + ⌜efs = []⌠∗ state_interp σ2 κs' ∗ from_option Φ False (to_val e2)) ⊢ WP e1 @ s; E [{ Φ }]. Proof. iIntros (?) "H". iApply twp_lift_atomic_head_step; eauto. - iIntros (σ1) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]"; iModIntro. - iIntros (κ v2 σ2 efs) "%". - iMod ("H" $! κ v2 σ2 efs with "[# //]") as "(% & $ & $)"; subst; auto. + iIntros (σ1 κs) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]"; iModIntro. + iIntros (κ κs' v2 σ2 efs [Hstep ->]). + iMod ("H" $! κ κs' v2 σ2 efs with "[# //]") as "(% & $ & $)"; subst; auto. Qed. Lemma twp_lift_pure_det_head_step {s E Φ} e1 e2 efs : (∀ σ1, head_reducible e1 σ1) → (∀ σ1 κ e2' σ2 efs', - head_step e1 σ1 κ e2' σ2 efs' → κ = None /\ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs') → + head_step e1 σ1 κ e2' σ2 efs' → κ = None ∧ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs') → (|={E}=> WP e2 @ s; E [{ Φ }] ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof using Hinh. eauto using twp_lift_pure_det_step. Qed. @@ -77,7 +77,7 @@ Lemma twp_lift_pure_det_head_step_no_fork {s E Φ} e1 e2 : to_val e1 = None → (∀ σ1, head_reducible e1 σ1) → (∀ σ1 κ e2' σ2 efs', - head_step e1 σ1 κ e2' σ2 efs' → κ = None /\ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → + head_step e1 σ1 κ e2' σ2 efs' → κ = None ∧ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → WP e2 @ s; E [{ Φ }] ⊢ WP e1 @ s; E [{ Φ }]. Proof using Hinh. intros. rewrite -(twp_lift_pure_det_step e1 e2 []) /= ?right_id; eauto. diff --git a/theories/program_logic/total_lifting.v b/theories/program_logic/total_lifting.v index ad5d3a86192f5b7b714d78fe98ae82277e814c83..628d92592331f64fdd544ab6e57bd62b638a295f 100644 --- a/theories/program_logic/total_lifting.v +++ b/theories/program_logic/total_lifting.v @@ -13,14 +13,15 @@ Implicit Types Φ : val Λ → iProp Σ. Lemma twp_lift_step s E Φ e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E,∅}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E,∅}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - ∀ κ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={∅,E}=∗ - state_interp σ2 ∗ WP e2 @ s; E [{ Φ }] ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) + ∀ κ κs' e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={∅,E}=∗ + state_interp σ2 κs' ∗ WP e2 @ s; E [{ Φ }] ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof. by rewrite twp_unfold /twp_pre=> ->. Qed. (** Derived lifting lemmas. *) + Lemma twp_lift_pure_step `{Inhabited (state Λ)} s E Φ e1 : (∀ σ1, reducible e1 σ1) → (∀ σ1 κ e2 σ2 efs, prim_step e1 σ1 κ e2 σ2 efs → κ = None /\ σ1 = σ2) → @@ -30,9 +31,9 @@ Lemma twp_lift_pure_step `{Inhabited (state Λ)} s E Φ e1 : Proof. iIntros (Hsafe Hstep) "H". iApply twp_lift_step. { eapply reducible_not_val, (Hsafe inhabitant). } - iIntros (σ1) "Hσ". iMod "H". + iIntros (σ1 κs) "Hσ". iMod "H". iMod fupd_intro_mask' as "Hclose"; last iModIntro; first set_solver. - iSplit; [by destruct s|]; iIntros (κ e2 σ2 efs ?). + iSplit; [by destruct s|]; iIntros (κ κs' e2 σ2 efs [Hstep' ->]). destruct (Hstep σ1 κ e2 σ2 efs); auto; subst. iMod "Hclose" as "_". iFrame "Hσ". iApply "H"; auto. Qed. @@ -41,18 +42,18 @@ Qed. use the generic lemmas here. *) Lemma twp_lift_atomic_step {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E}=∗ + (∀ σ1 κs, state_interp σ1 κs ={E}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - ∀ κ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={E}=∗ - state_interp σ2 ∗ + ∀ κ κs' e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={E}=∗ + state_interp σ2 κs' ∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof. - iIntros (?) "H". iApply (twp_lift_step _ E _ e1)=>//; iIntros (σ1) "Hσ1". + iIntros (?) "H". iApply (twp_lift_step _ E _ e1)=>//; iIntros (σ1 κs) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]". iMod (fupd_intro_mask' E ∅) as "Hclose"; first set_solver. - iIntros "!>" (κ e2 σ2 efs) "%". iMod "Hclose" as "_". - iMod ("H" $! κ e2 σ2 efs with "[#]") as "($ & HΦ & $)"; first by eauto. + iIntros "!>" (κ κs' e2 σ2 efs) "%". iMod "Hclose" as "_". + iMod ("H" $! κ κs' e2 σ2 efs with "[#]") as "($ & HΦ & $)"; first by eauto. destruct (to_val e2) eqn:?; last by iExFalso. iApply twp_value; last done. by apply of_to_val. Qed. @@ -76,4 +77,5 @@ Proof. iIntros ([??] Hφ) "HWP". iApply (twp_lift_pure_det_step with "[HWP]"); [eauto|naive_solver|auto]. Qed. + End lifting. diff --git a/theories/program_logic/total_weakestpre.v b/theories/program_logic/total_weakestpre.v index fd96dd7373ef8fe637c5b806a1b2ba6262ace8b4..89e7a844ebe69f43735487ff641bb72e1fd384e7 100644 --- a/theories/program_logic/total_weakestpre.v +++ b/theories/program_logic/total_weakestpre.v @@ -9,10 +9,10 @@ Definition twp_pre `{irisG Λ Σ} (s : stuckness) coPset → expr Λ → (val Λ → iProp Σ) → iProp Σ := λ E e1 Φ, match to_val e1 with | Some v => |={E}=> Φ v - | None => ∀ σ1, - state_interp σ1 ={E,∅}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - ∀ κ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={∅,E}=∗ - state_interp σ2 ∗ wp E e2 Φ ∗ + | None => ∀ σ1 κs, + state_interp σ1 κs ={E,∅}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ + ∀ κ κs' e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={∅,E}=∗ + state_interp σ2 κs' ∗ wp E e2 Φ ∗ [∗ list] ef ∈ efs, wp ⊤ ef (λ _, True) end%I. @@ -23,8 +23,8 @@ Lemma twp_pre_mono `{irisG Λ Σ} s Proof. iIntros "#H"; iIntros (E e1 Φ) "Hwp". rewrite /twp_pre. destruct (to_val e1) as [v|]; first done. - iIntros (σ1) "Hσ". iMod ("Hwp" with "Hσ") as "($ & Hwp)"; iModIntro. - iIntros (κ e2 σ2 efs) "Hstep". + iIntros (σ1 κs) "Hσ". iMod ("Hwp" with "Hσ") as "($ & Hwp)"; iModIntro. + iIntros (κ κs' e2 σ2 efs) "Hstep". iMod ("Hwp" with "Hstep") as "($ & Hwp & Hfork)"; iModIntro; iSplitL "Hwp". - by iApply "H". - iApply (@big_sepL_impl with "[$Hfork]"); iIntros "!#" (k e _) "Hwp". @@ -44,7 +44,7 @@ Proof. iApply twp_pre_mono. iIntros "!#" (E e Φ). iApply ("H" $! (E,e,Φ)). - intros wp Hwp n [[E1 e1] Φ1] [[E2 e2] Φ2] [[?%leibniz_equiv ?%leibniz_equiv] ?]; simplify_eq/=. - rewrite /uncurry3 /twp_pre. do 18 (f_equiv || done). by apply Hwp, pair_ne. + rewrite /uncurry3 /twp_pre. do 22 (f_equiv || done). by apply Hwp, pair_ne. Qed. Definition twp_def `{irisG Λ Σ} (s : stuckness) (E : coPset) @@ -105,9 +105,9 @@ Proof. iIntros "!#" (e E1 Φ) "IH"; iIntros (E2 Ψ HE) "HΦ". rewrite !twp_unfold /twp_pre. destruct (to_val e) as [v|] eqn:?. { iApply ("HΦ" with "[> -]"). by iApply (fupd_mask_mono E1 _). } - iIntros (σ1) "Hσ". iMod (fupd_intro_mask' E2 E1) as "Hclose"; first done. + iIntros (σ1 κs) "Hσ". iMod (fupd_intro_mask' E2 E1) as "Hclose"; first done. iMod ("IH" with "[$]") as "[% IH]". - iModIntro; iSplit; [by destruct s1, s2|]. iIntros (κ e2 σ2 efs Hstep). + iModIntro; iSplit; [by destruct s1, s2|]. iIntros (κ κs' e2 σ2 efs Hstep). iMod ("IH" with "[//]") as "($ & IH & IHefs)"; auto. iMod "Hclose" as "_"; iModIntro. iSplitR "IHefs". - iDestruct "IH" as "[IH _]". iApply ("IH" with "[//] HΦ"). @@ -119,7 +119,7 @@ Lemma fupd_twp s E e Φ : (|={E}=> WP e @ s; E [{ Φ }]) -∗ WP e @ s; E [{ Φ Proof. rewrite twp_unfold /twp_pre. iIntros "H". destruct (to_val e) as [v|] eqn:?. { by iMod "H". } - iIntros (σ1) "Hσ1". iMod "H". by iApply "H". + iIntros (σ1 κs) "Hσ1". iMod "H". by iApply "H". Qed. Lemma twp_fupd s E e Φ : WP e @ s; E [{ v, |={E}=> Φ v }] -∗ WP e @ s; E [{ Φ }]. Proof. iIntros "H". iApply (twp_strong_mono with "H"); auto. Qed. @@ -130,8 +130,8 @@ Proof. iIntros "H". rewrite !twp_unfold /twp_pre /=. destruct (to_val e) as [v|] eqn:He. { by iDestruct "H" as ">>> $". } - iIntros (σ1) "Hσ". iMod "H". iMod ("H" $! σ1 with "Hσ") as "[$ H]". - iModIntro. iIntros (κ e2 σ2 efs Hstep). + iIntros (σ1 κs) "Hσ". iMod "H". iMod ("H" $! σ1 with "Hσ") as "[$ H]". + iModIntro. iIntros (κ κs' e2 σ2 efs [Hstep ->]). iMod ("H" with "[//]") as "(Hphy & H & $)". destruct s. - rewrite !twp_unfold /twp_pre. destruct (to_val e2) as [v2|] eqn:He2. + iDestruct "H" as ">> $". by iFrame. @@ -152,12 +152,12 @@ Proof. rewrite /twp_pre. destruct (to_val e) as [v|] eqn:He. { apply of_to_val in He as <-. iApply fupd_twp. by iApply "HΦ". } rewrite twp_unfold /twp_pre fill_not_val //. - iIntros (σ1) "Hσ". iMod ("IH" with "[$]") as "[% IH]". iModIntro; iSplit. + iIntros (σ1 κs) "Hσ". iMod ("IH" with "[$]") as "[% IH]". iModIntro; iSplit. { iPureIntro. unfold reducible in *. destruct s; naive_solver eauto using fill_step. } - iIntros (κ e2 σ2 efs Hstep). + iIntros (κ κs' e2 σ2 efs [Hstep ->]). destruct (fill_step_inv e σ1 κ e2 σ2 efs) as (e2'&->&?); auto. - iMod ("IH" $! κ e2' σ2 efs with "[//]") as "($ & IH & IHfork)". + iMod ("IH" $! κ κs' e2' σ2 efs with "[//]") as "($ & IH & IHfork)". iModIntro; iSplitR "IHfork". - iDestruct "IH" as "[IH _]". by iApply "IH". - by setoid_rewrite and_elim_r. @@ -173,10 +173,10 @@ Proof. { iModIntro. apply of_to_val in He as <-. rewrite !twp_unfold. iApply (twp_pre_mono with "[] IH"). by iIntros "!#" (E e Φ') "[_ ?]". } rewrite /twp_pre fill_not_val //. - iIntros (σ1) "Hσ". iMod ("IH" with "[$]") as "[% IH]". iModIntro; iSplit. + iIntros (σ1 κs) "Hσ". iMod ("IH" with "[$]") as "[% IH]". iModIntro; iSplit. { destruct s; eauto using reducible_fill. } - iIntros (κ e2 σ2 efs Hstep). - iMod ("IH" $! κ (K e2) σ2 efs with "[]") as "($ & IH & IHfork)"; eauto using fill_step. + iIntros (κ κs' e2 σ2 efs [Hstep ->]). + iMod ("IH" $! κ κs' (K e2) σ2 efs with "[]") as "($ & IH & IHfork)"; eauto using fill_step. iModIntro; iSplitR "IHfork". - iDestruct "IH" as "[IH _]". by iApply "IH". - by setoid_rewrite and_elim_r. @@ -186,8 +186,8 @@ Lemma twp_wp s E e Φ : WP e @ s; E [{ Φ }] -∗ WP e @ s; E {{ Φ }}. Proof. iIntros "H". iLöb as "IH" forall (E e Φ). rewrite wp_unfold twp_unfold /wp_pre /twp_pre. destruct (to_val e) as [v|]=>//. - iIntros (σ1) "Hσ". iMod ("H" with "Hσ") as "[$ H]". iIntros "!>". - iIntros (κ e2 σ2 efs) "Hstep". iMod ("H" with "Hstep") as "($ & H & Hfork)". + iIntros (σ1 κs) "Hσ". iMod ("H" with "Hσ") as "[$ H]". iIntros "!>". + iIntros (κ κs' e2 σ2 efs) "Hstep". iMod ("H" with "Hstep") as "($ & H & Hfork)". iApply step_fupd_intro; [set_solver+|]. iNext. iSplitL "H". by iApply "IH". iApply (@big_sepL_impl with "[$Hfork]"). iIntros "!#" (k e' _) "H". by iApply "IH". diff --git a/theories/program_logic/weakestpre.v b/theories/program_logic/weakestpre.v index 5bacf60b44c91528c17b9f1601f2fd75f1caf466..7370591dba8ec647a52825c4856d19c8da07fffb 100644 --- a/theories/program_logic/weakestpre.v +++ b/theories/program_logic/weakestpre.v @@ -5,11 +5,11 @@ From iris.proofmode Require Import base tactics classes. Set Default Proof Using "Type". Import uPred. -Class irisG' (Λstate : Type) (Σ : gFunctors) := IrisG { +Class irisG' (Λstate Λobservation : Type) (Σ : gFunctors) := IrisG { iris_invG :> invG Σ; - state_interp : Λstate -> (*list (option Λobservations) → *) iProp Σ; + state_interp : Λstate → list Λobservation → iProp Σ; }. -Notation irisG Λ Σ := (irisG' (state Λ) Σ). +Notation irisG Λ Σ := (irisG' (state Λ) (observation Λ) Σ). Global Opaque iris_invG. Definition wp_pre `{irisG Λ Σ} (s : stuckness) @@ -17,11 +17,11 @@ Definition wp_pre `{irisG Λ Σ} (s : stuckness) coPset -c> expr Λ -c> (val Λ -c> iProp Σ) -c> iProp Σ := λ E e1 Φ, match to_val e1 with | Some v => |={E}=> Φ v - | None => ∀ σ1, - state_interp σ1 ={E,∅}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - ∀ κ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={∅,∅,E}â–·=∗ - state_interp σ2 ∗ wp E e2 Φ ∗ - [∗ list] ef ∈ efs, wp ⊤ ef (λ _, True) + | None => ∀ σ1 κs, + state_interp σ1 κs ={E,∅}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ + ∀ κ (κs' : list (observation Λ)) e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs ∧ κs = cons_obs κ κs'⌠={∅,∅,E}â–·=∗ + state_interp σ2 κs' ∗ wp E e2 Φ ∗ + [∗ list] ef ∈ efs, wp ⊤ ef (λ _, True) end%I. Local Instance wp_pre_contractive `{irisG Λ Σ} s : Contractive (wp_pre s). @@ -57,7 +57,7 @@ Proof. (* FIXME: figure out a way to properly automate this proof *) (* FIXME: reflexivity, as being called many times by f_equiv and f_contractive is very slow here *) - do 20 (f_contractive || f_equiv). apply IH; first lia. + do 24 (f_contractive || f_equiv). apply IH; first lia. intros v. eapply dist_le; eauto with omega. Qed. Global Instance wp_proper s E e : @@ -79,9 +79,9 @@ Proof. rewrite !wp_unfold /wp_pre. destruct (to_val e) as [v|] eqn:?. { iApply ("HΦ" with "[> -]"). by iApply (fupd_mask_mono E1 _). } - iIntros (σ1) "Hσ". iMod (fupd_intro_mask' E2 E1) as "Hclose"; first done. + iIntros (σ1 κs) "Hσ". iMod (fupd_intro_mask' E2 E1) as "Hclose"; first done. iMod ("H" with "[$]") as "[% H]". - iModIntro. iSplit; [by destruct s1, s2|]. iIntros (κ e2 σ2 efs Hstep). + iModIntro. iSplit; [by destruct s1, s2|]. iIntros (κ κs' e2 σ2 efs Hstep). iMod ("H" with "[//]") as "H". iIntros "!> !>". iMod "H" as "($ & H & Hefs)". iMod "Hclose" as "_". iModIntro. iSplitR "Hefs". - iApply ("IH" with "[//] H HΦ"). @@ -93,7 +93,7 @@ Lemma fupd_wp s E e Φ : (|={E}=> WP e @ s; E {{ Φ }}) ⊢ WP e @ s; E {{ Φ }} Proof. rewrite wp_unfold /wp_pre. iIntros "H". destruct (to_val e) as [v|] eqn:?. { by iMod "H". } - iIntros (σ1) "Hσ1". iMod "H". by iApply "H". + iIntros (σ1 κs) "Hσ1". iMod "H". by iApply "H". Qed. Lemma wp_fupd s E e Φ : WP e @ s; E {{ v, |={E}=> Φ v }} ⊢ WP e @ s; E {{ Φ }}. Proof. iIntros "H". iApply (wp_strong_mono s s E with "H"); auto. Qed. @@ -104,8 +104,8 @@ Proof. iIntros "H". rewrite !wp_unfold /wp_pre. destruct (to_val e) as [v|] eqn:He. { by iDestruct "H" as ">>> $". } - iIntros (σ1) "Hσ". iMod "H". iMod ("H" $! σ1 with "Hσ") as "[$ H]". - iModIntro. iIntros (κ e2 σ2 efs Hstep). + iIntros (σ1 κs) "Hσ". iMod "H". iMod ("H" $! σ1 with "Hσ") as "[$ H]". + iModIntro. iIntros (κ κs' e2 σ2 efs [Hstep ->]). iMod ("H" with "[//]") as "H". iIntros "!>!>". iMod "H" as "(Hphy & H & $)". destruct s. - rewrite !wp_unfold /wp_pre. destruct (to_val e2) as [v2|] eqn:He2. + iDestruct "H" as ">> $". by iFrame. @@ -120,8 +120,8 @@ Lemma wp_step_fupd s E1 E2 e P Φ : (|={E1,E2}â–·=> P) -∗ WP e @ s; E2 {{ v, P ={E1}=∗ Φ v }} -∗ WP e @ s; E1 {{ Φ }}. Proof. rewrite !wp_unfold /wp_pre. iIntros (-> ?) "HR H". - iIntros (σ1) "Hσ". iMod "HR". iMod ("H" with "[$]") as "[$ H]". - iIntros "!>" (κ e2 σ2 efs Hstep). iMod ("H" $! κ e2 σ2 efs with "[% //]") as "H". + iIntros (σ1 κs) "Hσ". iMod "HR". iMod ("H" with "[$]") as "[$ H]". + iIntros "!>" (κ κs' e2 σ2 efs Hstep). iMod ("H" $! κ κs' e2 σ2 efs with "[% //]") as "H". iIntros "!>!>". iMod "H" as "($ & H & $)". iMod "HR". iModIntro. iApply (wp_strong_mono s s E2 with "H"); [done..|]. iIntros (v) "H". by iApply "H". @@ -134,12 +134,12 @@ Proof. destruct (to_val e) as [v|] eqn:He. { apply of_to_val in He as <-. by iApply fupd_wp. } rewrite wp_unfold /wp_pre fill_not_val //. - iIntros (σ1) "Hσ". iMod ("H" with "[$]") as "[% H]". iModIntro; iSplit. + iIntros (σ1 κs) "Hσ". iMod ("H" with "[$]") as "[% H]". iModIntro; iSplit. { iPureIntro. destruct s; last done. unfold reducible in *. naive_solver eauto using fill_step. } - iIntros (κ e2 σ2 efs Hstep). + iIntros (κ κs' e2 σ2 efs [Hstep ->]). destruct (fill_step_inv e σ1 κ e2 σ2 efs) as (e2'&->&?); auto. - iMod ("H" $! κ e2' σ2 efs with "[//]") as "H". iIntros "!>!>". + iMod ("H" $! κ κs' e2' σ2 efs with "[//]") as "H". iIntros "!>!>". iMod "H" as "($ & H & $)". by iApply "IH". Qed. @@ -150,10 +150,10 @@ Proof. destruct (to_val e) as [v|] eqn:He. { apply of_to_val in He as <-. by rewrite !wp_unfold /wp_pre. } rewrite fill_not_val //. - iIntros (σ1) "Hσ". iMod ("H" with "[$]") as "[% H]". iModIntro; iSplit. + iIntros (σ1 κs) "Hσ". iMod ("H" with "[$]") as "[% H]". iModIntro; iSplit. { destruct s; eauto using reducible_fill. } - iIntros (κ e2 σ2 efs Hstep). - iMod ("H" $! κ (K e2) σ2 efs with "[]") as "H"; [by eauto using fill_step|]. + iIntros (κ κs' e2 σ2 efs [Hstep ->]). + iMod ("H" $! κ κs' (K e2) σ2 efs with "[]") as "H"; [by eauto using fill_step|]. iIntros "!>!>". iMod "H" as "($ & H & $)". by iApply "IH". Qed.