diff --git a/theories/base_logic/derived.v b/theories/base_logic/derived.v index b15ba0355e35f7999af0f38c93ff77809c049989..679db07daf2433af296e6fd92e04d7485510425a 100644 --- a/theories/base_logic/derived.v +++ b/theories/base_logic/derived.v @@ -33,6 +33,7 @@ Class TimelessP {M} (P : uPred M) := timelessP : ▷ P ⊢ ◇ P. Arguments timelessP {_} _ {_}. Class PersistentP {M} (P : uPred M) := persistentP : P ⊢ □ P. +Hint Mode PersistentP - ! : typeclass_instances. Arguments persistentP {_} _ {_}. Module uPred. diff --git a/theories/base_logic/lib/own.v b/theories/base_logic/lib/own.v index 70130e8260ea2f7ecaebad4ceb0be5054bbfee12..8bc9ca71aa115c2084790b5d94d28a5b920089a3 100644 --- a/theories/base_logic/lib/own.v +++ b/theories/base_logic/lib/own.v @@ -104,7 +104,7 @@ Proof. apply wand_intro_r. by rewrite -own_op own_valid. Qed. Lemma own_valid_3 γ a1 a2 a3 : own γ a1 -∗ own γ a2 -∗ own γ a3 -∗ ✓ (a1 ⋅ a2 ⋅ a3). Proof. do 2 apply wand_intro_r. by rewrite -!own_op own_valid. Qed. Lemma own_valid_r γ a : own γ a ⊢ own γ a ∗ ✓ a. -Proof. apply (uPred.always_entails_r _ _). apply own_valid. Qed. +Proof. apply: uPred.always_entails_r. apply own_valid. Qed. Lemma own_valid_l γ a : own γ a ⊢ ✓ a ∗ own γ a. Proof. by rewrite comm -own_valid_r. Qed.