diff --git a/theories/bi/big_op.v b/theories/bi/big_op.v index 15bf8ab76e12c994f29a6121adb40b1e3421c2cd..477105c84aa61c7e293ebb5250780fe555f0f606 100644 --- a/theories/bi/big_op.v +++ b/theories/bi/big_op.v @@ -89,7 +89,7 @@ Section sep_list. Proper (Forall2 (⊢) ==> (⊢)) (big_opL (@bi_sep M) (λ _ P, P)). Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed. - Lemma big_sepL_emp l : ([∗ list] k↦y ∈ l, emp) ⊣⊢ (emp : PROP). + Lemma big_sepL_emp l : ([∗ list] k↦y ∈ l, emp) ⊣⊢@{PROP} emp. Proof. by rewrite big_opL_unit. Qed. Lemma big_sepL_lookup_acc Φ l i x : diff --git a/theories/bi/derived_laws_bi.v b/theories/bi/derived_laws_bi.v index d9ed36cb0e1e092c593b06f6879c5d4585877ef6..0143774a780fe4062f5c425254d7027085597568 100644 --- a/theories/bi/derived_laws_bi.v +++ b/theories/bi/derived_laws_bi.v @@ -21,8 +21,8 @@ Implicit Types A : Type. Hint Extern 100 (NonExpansive _) => solve_proper. (* Force implicit argument PROP *) -Notation "P ⊢ Q" := (@bi_entails PROP P%I Q%I). -Notation "P ⊣⊢ Q" := (equiv (A:=bi_car PROP) P%I Q%I). +Notation "P ⊢ Q" := (P ⊢@{PROP} Q). +Notation "P ⊣⊢ Q" := (P ⊣⊢@{PROP} Q). (* Derived stuff about the entailment *) Global Instance entails_anti_sym : AntiSymm (⊣⊢) (@bi_entails PROP). @@ -629,9 +629,9 @@ Proof. rewrite /bi_affinely. apply (anti_symm _); auto. Qed. Lemma absorbing_absorbingly P `{!Absorbing P} : <absorb> P ⊣⊢ P. Proof. by apply (anti_symm _), absorbingly_intro. Qed. -Lemma True_affine_all_affine P : Affine (True%I : PROP) → Affine P. +Lemma True_affine_all_affine P : Affine (PROP:=PROP) True → Affine P. Proof. rewrite /Affine=> <-; auto. Qed. -Lemma emp_absorbing_all_absorbing P : Absorbing (emp%I : PROP) → Absorbing P. +Lemma emp_absorbing_all_absorbing P : Absorbing (PROP:=PROP) emp → Absorbing P. Proof. intros. rewrite /Absorbing -{2}(left_id emp%I _ P). by rewrite -(absorbing emp) absorbingly_sep_l left_id. @@ -1257,7 +1257,7 @@ Section persistent_bi_absorbing. End persistent_bi_absorbing. (* Affine instances *) -Global Instance emp_affine_l : Affine (emp%I : PROP). +Global Instance emp_affine_l : Affine (PROP:=PROP) emp. Proof. by rewrite /Affine. Qed. Global Instance and_affine_l P Q : Affine P → Affine (P ∧ Q). Proof. rewrite /Affine=> ->; auto. Qed. @@ -1280,7 +1280,7 @@ Global Instance intuitionistically_affine P : Affine (â–¡ P). Proof. rewrite /bi_intuitionistically. apply _. Qed. (* Absorbing instances *) -Global Instance pure_absorbing φ : Absorbing (⌜φâŒ%I : PROP). +Global Instance pure_absorbing φ : Absorbing (PROP:=PROP) ⌜φâŒ. Proof. by rewrite /Absorbing absorbingly_pure. Qed. Global Instance and_absorbing P Q : Absorbing P → Absorbing Q → Absorbing (P ∧ Q). Proof. intros. by rewrite /Absorbing absorbingly_and_1 !absorbing. Qed. @@ -1324,9 +1324,9 @@ Global Instance persistently_if_absorbing P p : Proof. intros; destruct p; simpl; apply _. Qed. (* Persistence instances *) -Global Instance pure_persistent φ : Persistent (⌜φâŒ%I : PROP). +Global Instance pure_persistent φ : Persistent (PROP:=PROP) ⌜φâŒ. Proof. by rewrite /Persistent persistently_pure. Qed. -Global Instance emp_persistent : Persistent (emp%I : PROP). +Global Instance emp_persistent : Persistent (PROP:=PROP) emp. Proof. rewrite /Persistent. apply persistently_emp_intro. Qed. Global Instance and_persistent P Q : Persistent P → Persistent Q → Persistent (P ∧ Q). diff --git a/theories/bi/derived_laws_sbi.v b/theories/bi/derived_laws_sbi.v index db012d4bcff9a35a262f4685b2a97641733d8281..147a2f7397a2f27020d323b553c3a675d13c27ed 100644 --- a/theories/bi/derived_laws_sbi.v +++ b/theories/bi/derived_laws_sbi.v @@ -13,8 +13,8 @@ Implicit Types Ps : list PROP. Implicit Types A : Type. (* Force implicit argument PROP *) -Notation "P ⊢ Q" := (@bi_entails PROP P%I Q%I). -Notation "P ⊣⊢ Q" := (equiv (A:=bi_car PROP) P%I Q%I). +Notation "P ⊢ Q" := (P ⊢@{PROP} Q). +Notation "P ⊣⊢ Q" := (P ⊣⊢@{PROP} Q). Hint Resolve or_elim or_intro_l' or_intro_r' True_intro False_elim. Hint Resolve and_elim_l' and_elim_r' and_intro forall_intro. @@ -127,10 +127,10 @@ Proof. Qed. Global Instance internal_eq_absorbing {A : ofeT} (x y : A) : - Absorbing (x ≡ y : PROP)%I. + Absorbing (PROP:=PROP) (x ≡ y). Proof. by rewrite /Absorbing absorbingly_internal_eq. Qed. Global Instance internal_eq_persistent {A : ofeT} (a b : A) : - Persistent (a ≡ b : PROP)%I. + Persistent (PROP:=PROP) (a ≡ b). Proof. by intros; rewrite /Persistent persistently_internal_eq. Qed. (* Equality under a later. *) @@ -351,7 +351,7 @@ Proof. by rewrite {1}(except_0_intro P) except_0_sep. Qed. Lemma except_0_frame_r P Q : â—‡ P ∗ Q ⊢ â—‡ (P ∗ Q). Proof. by rewrite {1}(except_0_intro Q) except_0_sep. Qed. -Lemma later_affinely_1 `{!Timeless (emp%I : PROP)} P : â–· <affine> P ⊢ â—‡ <affine> â–· P. +Lemma later_affinely_1 `{!Timeless (PROP:=PROP) emp} P : â–· <affine> P ⊢ â—‡ <affine> â–· P. Proof. rewrite /bi_affinely later_and (timeless emp%I) except_0_and. by apply and_mono, except_0_intro. @@ -366,12 +366,12 @@ Proof. rewrite /sbi_except_0; apply _. Qed. Global Instance Timeless_proper : Proper ((≡) ==> iff) (@Timeless PROP). Proof. solve_proper. Qed. -Global Instance pure_timeless φ : Timeless (⌜φ⌠: PROP)%I. +Global Instance pure_timeless φ : Timeless (PROP:=PROP) ⌜φâŒ. Proof. rewrite /Timeless /sbi_except_0 pure_alt later_exist_false. apply or_elim, exist_elim; [auto|]=> Hφ. rewrite -(exist_intro Hφ). auto. Qed. -Global Instance emp_timeless `{BiAffine PROP} : Timeless (emp : PROP)%I. +Global Instance emp_timeless `{BiAffine PROP} : Timeless (PROP:=PROP) emp. Proof. rewrite -True_emp. apply _. Qed. Global Instance and_timeless P Q : Timeless P → Timeless Q → Timeless (P ∧ Q). @@ -420,13 +420,13 @@ Proof. Qed. Global Instance affinely_timeless P : - Timeless (emp%I : PROP) → Timeless P → Timeless (<affine> P). + Timeless (PROP:=PROP) emp → Timeless P → Timeless (<affine> P). Proof. rewrite /bi_affinely; apply _. Qed. Global Instance absorbingly_timeless P : Timeless P → Timeless (<absorb> P). Proof. rewrite /bi_absorbingly; apply _. Qed. Global Instance eq_timeless {A : ofeT} (a b : A) : - Discrete a → Timeless (a ≡ b : PROP)%I. + Discrete a → Timeless (PROP:=PROP) (a ≡ b). Proof. intros. rewrite /Discrete !discrete_eq. apply (timeless _). Qed. Global Instance from_option_timeless {A} P (Ψ : A → PROP) (mx : option A) : (∀ x, Timeless (Ψ x)) → Timeless P → Timeless (from_option Ψ P mx). diff --git a/theories/bi/embedding.v b/theories/bi/embedding.v index 90453b0e6571d12706cba8f8ea4d3aa5f8544163..ee071f187b83628a4e13ce37317cab77b646368f 100644 --- a/theories/bi/embedding.v +++ b/theories/bi/embedding.v @@ -36,21 +36,21 @@ Arguments bi_embed_embed : simpl never. Class SbiEmbed (PROP1 PROP2 : sbi) `{BiEmbed PROP1 PROP2} := { embed_internal_eq_1 (A : ofeT) (x y : A) : ⎡x ≡ y⎤ ⊢ x ≡ y; embed_later P : ⎡▷ P⎤ ⊣⊢ â–· ⎡P⎤; - embed_interal_inj (PROP' : sbi) (P Q : PROP1) : ⎡P⎤ ≡ ⎡Q⎤ ⊢ (P ≡ Q : PROP'); + embed_interal_inj (PROP' : sbi) (P Q : PROP1) : ⎡P⎤ ≡ ⎡Q⎤ ⊢@{PROP'} (P ≡ Q); }. Hint Mode SbiEmbed ! - - : typeclass_instances. Hint Mode SbiEmbed - ! - : typeclass_instances. Class BiEmbedBUpd (PROP1 PROP2 : bi) `{BiEmbed PROP1 PROP2, BiBUpd PROP1, BiBUpd PROP2} := { - embed_bupd P : ⎡|==> P⎤ ⊣⊢ bupd (PROP:=PROP2) ⎡P⎤ + embed_bupd P : ⎡|==> P⎤ ⊣⊢@{PROP2} |==> ⎡P⎤ }. Hint Mode BiEmbedBUpd - ! - - - : typeclass_instances. Hint Mode BiEmbedBUpd ! - - - - : typeclass_instances. Class BiEmbedFUpd (PROP1 PROP2 : sbi) `{BiEmbed PROP1 PROP2, BiFUpd PROP1, BiFUpd PROP2} := { - embed_fupd E1 E2 P : ⎡|={E1,E2}=> P⎤ ⊣⊢ fupd (PROP:=PROP2) E1 E2 ⎡P⎤ + embed_fupd E1 E2 P : ⎡|={E1,E2}=> P⎤ ⊣⊢@{PROP2} |={E1,E2}=> ⎡P⎤ }. Hint Mode BiEmbedFUpd - ! - - - : typeclass_instances. Hint Mode BiEmbedFUpd ! - - - - : typeclass_instances. diff --git a/theories/bi/interface.v b/theories/bi/interface.v index 178fe6717abd66e0959dc5eeff148325555467c5..b90fdfd99dd4835864b8968ca058b45a277574f2 100644 --- a/theories/bi/interface.v +++ b/theories/bi/interface.v @@ -2,6 +2,11 @@ From iris.algebra Require Export ofe. Set Primitive Projections. Reserved Notation "P ⊢ Q" (at level 99, Q at level 200, right associativity). +Reserved Notation "P '⊢@{' PROP } Q" (at level 99, Q at level 200, right associativity). +Reserved Notation "('⊢@{' PROP } )" (at level 99). +Reserved Notation "P ⊣⊢ Q" (at level 95, no associativity). +Reserved Notation "P '⊣⊢@{' PROP } Q" (at level 95, no associativity). +Reserved Notation "('⊣⊢@{' PROP } )" (at level 95). Reserved Notation "'emp'". Reserved Notation "'⌜' φ 'âŒ'" (at level 1, φ at level 200, format "⌜ φ âŒ"). Reserved Notation "P ∗ Q" (at level 80, right associativity). @@ -265,11 +270,14 @@ Instance bi_rewrite_relation (PROP : bi) : RewriteRelation (@bi_entails PROP). Instance bi_inhabited {PROP : bi} : Inhabited PROP := populate (bi_pure True). Notation "P ⊢ Q" := (bi_entails P%I Q%I) : stdpp_scope. +Notation "P ⊢@{ PROP } Q" := (bi_entails (PROP:=PROP) P%I Q%I) (only parsing) : stdpp_scope. Notation "(⊢)" := bi_entails (only parsing) : stdpp_scope. +Notation "(⊢@{ PROP } )" := (bi_entails (PROP:=PROP)) (only parsing) : stdpp_scope. -Notation "P ⊣⊢ Q" := (equiv (A:=bi_car _) P%I Q%I) - (at level 95, no associativity) : stdpp_scope. +Notation "P ⊣⊢ Q" := (equiv (A:=bi_car _) P%I Q%I) : stdpp_scope. +Notation "P ⊣⊢@{ PROP } Q" := (equiv (A:=bi_car PROP) P%I Q%I) (only parsing) : stdpp_scope. Notation "(⊣⊢)" := (equiv (A:=bi_car _)) (only parsing) : stdpp_scope. +Notation "(⊣⊢@{ PROP } )" := (equiv (A:=bi_car PROP)) (only parsing) : stdpp_scope. Notation "P -∗ Q" := (P ⊢ Q) : stdpp_scope. @@ -340,7 +348,7 @@ Lemma pure_intro P (φ : Prop) : φ → P ⊢ ⌜ φ âŒ. Proof. eapply bi_mixin_pure_intro, bi_bi_mixin. Qed. Lemma pure_elim' (φ : Prop) P : (φ → True ⊢ P) → ⌜ φ ⌠⊢ P. Proof. eapply bi_mixin_pure_elim', bi_bi_mixin. Qed. -Lemma pure_forall_2 {A} (φ : A → Prop) : (∀ a, ⌜ φ a ⌠: PROP) ⊢ ⌜ ∀ a, φ a âŒ. +Lemma pure_forall_2 {A} (φ : A → Prop) : (∀ a, ⌜ φ a âŒ) ⊢@{PROP} ⌜ ∀ a, φ a âŒ. Proof. eapply bi_mixin_pure_forall_2, bi_bi_mixin. Qed. Lemma and_elim_l P Q : P ∧ Q ⊢ P. @@ -394,7 +402,7 @@ Proof. eapply bi_mixin_persistently_mono, bi_bi_mixin. Qed. Lemma persistently_idemp_2 P : <pers> P ⊢ <pers> <pers> P. Proof. eapply bi_mixin_persistently_idemp_2, bi_bi_mixin. Qed. -Lemma persistently_emp_2 : (emp : PROP) ⊢ <pers> emp. +Lemma persistently_emp_2 : emp ⊢@{PROP} <pers> emp. Proof. eapply bi_mixin_persistently_emp_2, bi_bi_mixin. Qed. Lemma persistently_forall_2 {A} (Ψ : A → PROP) : @@ -425,21 +433,23 @@ Lemma internal_eq_rewrite {A : ofeT} a b (Ψ : A → PROP) : NonExpansive Ψ → a ≡ b ⊢ Ψ a → Ψ b. Proof. eapply sbi_mixin_internal_eq_rewrite, sbi_sbi_mixin. Qed. -Lemma fun_ext {A} {B : A → ofeT} (f g : ofe_fun B) : (∀ x, f x ≡ g x) ⊢ (f ≡ g : PROP). +Lemma fun_ext {A} {B : A → ofeT} (f g : ofe_fun B) : + (∀ x, f x ≡ g x) ⊢@{PROP} f ≡ g. Proof. eapply sbi_mixin_fun_ext, sbi_sbi_mixin. Qed. -Lemma sig_eq {A : ofeT} (P : A → Prop) (x y : sig P) : `x ≡ `y ⊢ (x ≡ y : PROP). +Lemma sig_eq {A : ofeT} (P : A → Prop) (x y : sig P) : + `x ≡ `y ⊢@{PROP} x ≡ y. Proof. eapply sbi_mixin_sig_eq, sbi_sbi_mixin. Qed. Lemma discrete_eq_1 {A : ofeT} (a b : A) : - Discrete a → a ≡ b ⊢ (⌜a ≡ b⌠: PROP). + Discrete a → a ≡ b ⊢@{PROP} ⌜a ≡ bâŒ. Proof. eapply sbi_mixin_discrete_eq_1, sbi_sbi_mixin. Qed. (* Later *) Global Instance later_contractive : Contractive (@sbi_later PROP). Proof. eapply sbi_mixin_later_contractive, sbi_sbi_mixin. Qed. -Lemma later_eq_1 {A : ofeT} (x y : A) : Next x ≡ Next y ⊢ â–· (x ≡ y : PROP). +Lemma later_eq_1 {A : ofeT} (x y : A) : Next x ≡ Next y ⊢@{PROP} â–· (x ≡ y). Proof. eapply sbi_mixin_later_eq_1, sbi_sbi_mixin. Qed. -Lemma later_eq_2 {A : ofeT} (x y : A) : â–· (x ≡ y) ⊢ (Next x ≡ Next y : PROP). +Lemma later_eq_2 {A : ofeT} (x y : A) : â–· (x ≡ y) ⊢@{PROP} Next x ≡ Next y. Proof. eapply sbi_mixin_later_eq_2, sbi_sbi_mixin. Qed. Lemma later_mono P Q : (P ⊢ Q) → â–· P ⊢ â–· Q. diff --git a/theories/bi/monpred.v b/theories/bi/monpred.v index d24572362542790c383acd6a663f4cfeeca35c4d..4de962442ec86acc4008d9eba0aefe813c745153 100644 --- a/theories/bi/monpred.v +++ b/theories/bi/monpred.v @@ -823,7 +823,7 @@ Lemma monPred_at_except_0 i P : (â—‡ P) i ⊣⊢ â—‡ P i. Proof. by unseal. Qed. Lemma monPred_equivI {PROP' : sbi} P Q : - sbi_internal_eq (PROP:=PROP') P Q ⊣⊢ ∀ i, P i ≡ Q i. + P ≡ Q ⊣⊢@{PROP'} ∀ i, P i ≡ Q i. Proof. apply bi.equiv_spec. split. - apply bi.forall_intro=>?. apply (bi.f_equiv (flip monPred_at _)). diff --git a/theories/bi/plainly.v b/theories/bi/plainly.v index dc97f4e88fe96777f6a09b16649ec326076ff089..7f15fee347ba612055377ed20a23602d1074e986 100644 --- a/theories/bi/plainly.v +++ b/theories/bi/plainly.v @@ -161,7 +161,7 @@ Proof. apply (anti_symm _); auto using plainly_idemp_1, plainly_idemp_2. Qed. Lemma plainly_intro' P Q : (â– P ⊢ Q) → â– P ⊢ â– Q. Proof. intros <-. apply plainly_idemp_2. Qed. -Lemma plainly_pure φ : ■⌜φ⌠⊣⊢ bi_pure (PROP:=PROP) φ. +Lemma plainly_pure φ : ■⌜φ⌠⊣⊢@{PROP} ⌜φâŒ. Proof. apply (anti_symm _); auto. - by rewrite plainly_elim_persistently persistently_pure. @@ -204,7 +204,7 @@ Proof. by rewrite -{1}(left_id emp%I _ Q%I) plainly_and_sep_assoc and_elim_l. Qe Lemma plainly_and_sep_r_1 P Q : P ∧ â– Q ⊢ P ∗ â– Q. Proof. by rewrite !(comm _ P) plainly_and_sep_l_1. Qed. -Lemma plainly_True_emp : â– True ⊣⊢ â– (@bi_emp PROP). +Lemma plainly_True_emp : â– True ⊣⊢@{PROP} â– emp. Proof. apply (anti_symm _); eauto using plainly_mono, plainly_emp_intro. Qed. Lemma plainly_and_sep P Q : â– (P ∧ Q) ⊢ â– (P ∗ Q). Proof. @@ -273,7 +273,7 @@ Proof. rewrite -!impl_wand_affinely_plainly. apply plainly_impl_plainly. Qed. Section plainly_affine_bi. Context `{BiAffine PROP}. - Lemma plainly_emp : â– emp ⊣⊢ bi_emp (PROP:=PROP). + Lemma plainly_emp : â– emp ⊣⊢@{PROP} emp. Proof. by rewrite -!True_emp plainly_pure. Qed. Lemma plainly_and_sep_l P Q : â– P ∧ Q ⊣⊢ â– P ∗ Q. @@ -311,7 +311,7 @@ Proof. solve_proper. Qed. Lemma plainly_if_mono p P Q : (P ⊢ Q) → â– ?p P ⊢ â– ?p Q. Proof. by intros ->. Qed. -Lemma plainly_if_pure p φ : â– ?p ⌜φ⌠⊣⊢ bi_pure (PROP:=PROP) φ. +Lemma plainly_if_pure p φ : â– ?p ⌜φ⌠⊣⊢@{PROP} ⌜φâŒ. Proof. destruct p; simpl; auto using plainly_pure. Qed. Lemma plainly_if_and p P Q : â– ?p (P ∧ Q) ⊣⊢ â– ?p P ∧ â– ?p Q. Proof. destruct p; simpl; auto using plainly_and. Qed. @@ -406,7 +406,7 @@ Global Instance limit_preserving_Plain {A:ofeT} `{Cofe A} (Φ : A → PROP) : Proof. intros. apply limit_preserving_entails; solve_proper. Qed. (* Plainness instances *) -Global Instance pure_plain φ : Plain (⌜φâŒ%I : PROP). +Global Instance pure_plain φ : Plain (PROP:=PROP) ⌜φâŒ. Proof. by rewrite /Plain plainly_pure. Qed. Global Instance emp_plain : Plain (PROP:=PROP) emp. Proof. apply plainly_emp_intro. Qed. @@ -458,7 +458,7 @@ Global Instance from_option_plain {A} P (Ψ : A → PROP) (mx : option A) : Proof. destruct mx; apply _. Qed. (* Interaction with equality *) -Lemma plainly_internal_eq {A:ofeT} (a b : A) : plainly (A:=PROP) (a ≡ b) ⊣⊢ a ≡ b. +Lemma plainly_internal_eq {A:ofeT} (a b : A) : â– (a ≡ b) ⊣⊢@{PROP} a ≡ b. Proof. apply (anti_symm (⊢)). { by rewrite plainly_elim. } @@ -511,7 +511,7 @@ Lemma except_0_plainly `{!BiPlainlyExist PROP} P : â—‡ â– P ⊣⊢ â– â—‡ P. Proof. by rewrite /sbi_except_0 plainly_or -later_plainly plainly_pure. Qed. Global Instance internal_eq_plain {A : ofeT} (a b : A) : - Plain (a ≡ b : PROP)%I. + Plain (PROP:=PROP) (a ≡ b). Proof. by intros; rewrite /Plain plainly_internal_eq. Qed. Global Instance later_plain P : Plain P → Plain (â–· P). diff --git a/theories/proofmode/class_instances_sbi.v b/theories/proofmode/class_instances_sbi.v index 18c60184ee059465bd5965c73b0a264de20d0857..9ae1b1d9583d1ea3b7f01ad5e14a0cb54c4b2a62 100644 --- a/theories/proofmode/class_instances_sbi.v +++ b/theories/proofmode/class_instances_sbi.v @@ -225,7 +225,7 @@ Global Instance into_sep_except_0 P Q1 Q2 : Proof. rewrite /IntoSep=> ->. by rewrite except_0_sep. Qed. (* FIXME: This instance is overly specific, generalize it. *) -Global Instance into_sep_affinely_later `{!Timeless (emp%I : PROP)} P Q1 Q2 : +Global Instance into_sep_affinely_later `{!Timeless (PROP:=PROP) emp} P Q1 Q2 : IntoSep P Q1 Q2 → Affine Q1 → Affine Q2 → IntoSep (<affine> â–· P) (<affine> â–· Q1) (<affine> â–· Q2). Proof.