From b8dc077371ac9fbe45bb3f8ffe267ffac19e139a Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Fri, 10 Mar 2017 16:29:40 +0100 Subject: [PATCH] make frac_included into general lemma about < and + of positive fractions --- theories/algebra/frac.v | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/theories/algebra/frac.v b/theories/algebra/frac.v index 96f1a3d6d..7dfd5b92e 100644 --- a/theories/algebra/frac.v +++ b/theories/algebra/frac.v @@ -11,14 +11,19 @@ Instance frac_valid : Valid frac := λ x, (x ≤ 1)%Qc. Instance frac_pcore : PCore frac := λ _, None. Instance frac_op : Op frac := λ x y, (x + y)%Qp. -Lemma frac_included (x y : frac) : x ≼ y ↔ (x < y)%Qc. +(* TODO: Find better place for this lemma. *) +Lemma Qp_le_sum (x y : Qp) : (x < y)%Qc ↔ (∃ z, y = x + z)%Qp. Proof. split. - - intros [z ->%leibniz_equiv]; simpl. - rewrite -{1}(Qcplus_0_r x). apply Qcplus_lt_mono_l, Qp_prf. - intros Hlt%Qclt_minus_iff. exists (mk_Qp (y - x) Hlt). apply Qp_eq; simpl. by rewrite (Qcplus_comm y) Qcplus_assoc Qcplus_opp_r Qcplus_0_l. + - intros [z ->%leibniz_equiv]; simpl. + rewrite -{1}(Qcplus_0_r x). apply Qcplus_lt_mono_l, Qp_prf. Qed. + +Lemma frac_included (x y : frac) : x ≼ y ↔ (x < y)%Qc. +Proof. symmetry. exact: Qp_le_sum. Qed. + Corollary frac_included_weak (x y : frac) : x ≼ y → (x ≤ y)%Qc. Proof. intros ?%frac_included. auto using Qclt_le_weak. Qed. -- GitLab