diff --git a/theories/algebra/ofe.v b/theories/algebra/ofe.v index 9bb911c345090afec4f60cae462f6a1abdef6546..bd5f3e3867541643ed985bd443678d9a4fecda43 100644 --- a/theories/algebra/ofe.v +++ b/theories/algebra/ofe.v @@ -183,10 +183,15 @@ Section ofe. transitivity (c n); first by apply conv_compl. symmetry. apply chain_cauchy. omega. Qed. + Lemma timeless_iff n (x : A) `{!Timeless x} y : x ≡ y ↔ x ≡{n}≡ y. Proof. split; intros; auto. apply (timeless _), dist_le with n; auto with lia. Qed. + Lemma timeless_iff_0 n (x : A) `{!Timeless x} y : x ≡{0}≡ y ↔ x ≡{n}≡ y. + Proof. + split=> ?. by apply equiv_dist, (timeless _). eauto using dist_le with lia. + Qed. End ofe. (** Contractive functions *)