From 8fd3233e600849807b5382fb07828cef45e7d9df Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Fri, 1 Jun 2018 10:32:10 +0200 Subject: [PATCH] tests/mosel_paper: show the two goals separately --- tests/mosel_paper.ref | 22 ++++++++++++++-------- tests/mosel_paper.v | 6 +++--- 2 files changed, 17 insertions(+), 11 deletions(-) diff --git a/tests/mosel_paper.ref b/tests/mosel_paper.ref index 3031fbef6..700e1159a 100644 --- a/tests/mosel_paper.ref +++ b/tests/mosel_paper.ref @@ -10,7 +10,7 @@ --------------------------------------∗ ∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a -2 subgoals +1 subgoal PROP : bi A : Type @@ -23,13 +23,19 @@ --------------------------------------∗ ∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a - -subgoal 2 is: - "HP" : P -"H2" : Ψ x ---------------------------------------∗ -∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a - +1 subgoal + + PROP : bi + A : Type + P : PROP + Φ, Ψ : A → PROP + x : A + ============================ + "HP" : P + "H2" : Ψ x + --------------------------------------∗ + ∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a + 1 subgoal PROP : bi diff --git a/tests/mosel_paper.v b/tests/mosel_paper.v index e5e08f8c4..25211740a 100644 --- a/tests/mosel_paper.v +++ b/tests/mosel_paper.v @@ -12,9 +12,9 @@ Lemma example_1 {PROP : bi} {A : Type} (P : PROP) (Φ Ψ : A → PROP) : P ∗ (∃ a, Φ a ∨ Ψ a) -∗ ∃ a, (P ∗ Φ a) ∨ (P ∗ Ψ a). Proof. iIntros "[HP H]". Show. - iDestruct "H" as (x) "[H1|H2]". Show. - - iExists x. iLeft. iSplitL "HP"; iAssumption. - - iExists x. iRight. iSplitL "HP"; iAssumption. + iDestruct "H" as (x) "[H1|H2]". + - Show. iExists x. iLeft. iSplitL "HP"; iAssumption. + - Show. iExists x. iRight. iSplitL "HP"; iAssumption. Qed. Lemma example {PROP : bi} {A : Type} (P : PROP) (Φ Ψ : A → PROP) : P ∗ (∃ a, Φ a ∨ Ψ a) -∗ ∃ a, (P ∗ Φ a) ∨ (P ∗ Ψ a). -- GitLab