diff --git a/tests/mosel_paper.ref b/tests/mosel_paper.ref index 3031fbef6daf6da4f7add50dd373d6ca753f5d29..700e1159a429303df2d04f7dd27d6ef515796122 100644 --- a/tests/mosel_paper.ref +++ b/tests/mosel_paper.ref @@ -10,7 +10,7 @@ --------------------------------------∗ ∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a -2 subgoals +1 subgoal PROP : bi A : Type @@ -23,13 +23,19 @@ --------------------------------------∗ ∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a - -subgoal 2 is: - "HP" : P -"H2" : Ψ x ---------------------------------------∗ -∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a - +1 subgoal + + PROP : bi + A : Type + P : PROP + Φ, Ψ : A → PROP + x : A + ============================ + "HP" : P + "H2" : Ψ x + --------------------------------------∗ + ∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a + 1 subgoal PROP : bi diff --git a/tests/mosel_paper.v b/tests/mosel_paper.v index e5e08f8c44e7fa80b453afdc870c8875cd503542..25211740a8f9c6cf244641c542422e59dbe31abe 100644 --- a/tests/mosel_paper.v +++ b/tests/mosel_paper.v @@ -12,9 +12,9 @@ Lemma example_1 {PROP : bi} {A : Type} (P : PROP) (Φ Ψ : A → PROP) : P ∗ (∃ a, Φ a ∨ Ψ a) -∗ ∃ a, (P ∗ Φ a) ∨ (P ∗ Ψ a). Proof. iIntros "[HP H]". Show. - iDestruct "H" as (x) "[H1|H2]". Show. - - iExists x. iLeft. iSplitL "HP"; iAssumption. - - iExists x. iRight. iSplitL "HP"; iAssumption. + iDestruct "H" as (x) "[H1|H2]". + - Show. iExists x. iLeft. iSplitL "HP"; iAssumption. + - Show. iExists x. iRight. iSplitL "HP"; iAssumption. Qed. Lemma example {PROP : bi} {A : Type} (P : PROP) (Φ Ψ : A → PROP) : P ∗ (∃ a, Φ a ∨ Ψ a) -∗ ∃ a, (P ∗ Φ a) ∨ (P ∗ Ψ a).