diff --git a/theories/program_logic/weakestpre.v b/theories/program_logic/weakestpre.v index 5b210d7dd90563bea34458e13f16b656842d7e8e..ab91f2e6d9be22bee09ef33524edd9744c570ccd 100644 --- a/theories/program_logic/weakestpre.v +++ b/theories/program_logic/weakestpre.v @@ -213,9 +213,9 @@ Proof. by rewrite wp_unfold /wp_pre to_of_val. Qed. Lemma wp_strong_mono s1 s2 E1 E2 e Φ Ψ : s1 ⊑ s2 → E1 ⊆ E2 → - (∀ v, Φ v ={E2}=∗ Ψ v) ∗ WP e @ s1; E1 {{ Φ }} ⊢ WP e @ s2; E2 {{ Ψ }}. + WP e @ s1; E1 {{ Φ }} -∗ (∀ v, Φ v ={E2}=∗ Ψ v) -∗ WP e @ s2; E2 {{ Ψ }}. Proof. - iIntros (? HE) "[HΦ H]". iLöb as "IH" forall (e E1 E2 HE Φ Ψ). + iIntros (? HE) "H HΦ". iLöb as "IH" forall (e E1 E2 HE Φ Ψ). rewrite !wp_unfold /wp_pre. destruct (to_val e) as [v|] eqn:?. { iApply ("HΦ" with "[> -]"). by iApply (fupd_mask_mono E1 _). } @@ -224,9 +224,9 @@ Proof. iModIntro. iSplit; [by destruct s1, s2|]. iNext. iIntros (e2 σ2 efs Hstep). iMod ("H" with "[//]") as "($ & H & Hefs)". iMod "Hclose" as "_". iModIntro. iSplitR "Hefs". - - by iApply ("IH" with "[] HΦ"). + - iApply ("IH" with "[//] H HΦ"). - iApply (big_sepL_impl with "[$Hefs]"); iIntros "!#" (k ef _) "H". - by iApply ("IH" with "[] [] H"). + by iApply ("IH" with "[] H"). Qed. Lemma fupd_wp s E e Φ : (|={E}=> WP e @ s; E {{ Φ }}) ⊢ WP e @ s; E {{ Φ }}. @@ -236,7 +236,7 @@ Proof. iIntros (σ1) "Hσ1". iMod "H". by iApply "H". Qed. Lemma wp_fupd s E e Φ : WP e @ s; E {{ v, |={E}=> Φ v }} ⊢ WP e @ s; E {{ Φ }}. -Proof. iIntros "H". iApply (wp_strong_mono s s E); try iFrame; auto. Qed. +Proof. iIntros "H". iApply (wp_strong_mono s s E with "H"); auto. Qed. Lemma wp_atomic s E1 E2 e Φ `{!Atomic (stuckness_to_atomicity s) e} : (|={E1,E2}=> WP e @ s; E2 {{ v, |={E2,E1}=> Φ v }}) ⊢ WP e @ s; E1 {{ Φ }}. @@ -263,8 +263,8 @@ Proof. iIntros (σ1) "Hσ". iMod "HR". iMod ("H" with "[$]") as "[$ H]". iModIntro; iNext; iIntros (e2 σ2 efs Hstep). iMod ("H" $! e2 σ2 efs with "[% //]") as "($ & H & $)". - iMod "HR". iModIntro. iApply (wp_strong_mono s s E2); [done..|]. - iSplitR "H"; last iExact "H". iIntros (v) "H". by iApply "H". + iMod "HR". iModIntro. iApply (wp_strong_mono s s E2 with "H"); [done..|]. + iIntros (v) "H". by iApply "H". Qed. Lemma wp_bind K `{!LanguageCtx K} s E e Φ : @@ -300,17 +300,17 @@ Qed. (** * Derived rules *) Lemma wp_mono s E e Φ Ψ : (∀ v, Φ v ⊢ Ψ v) → WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ Ψ }}. Proof. - iIntros (HΦ) "H"; iApply (wp_strong_mono s s E E); auto. - iIntros "{$H}" (v) "?". by iApply HΦ. + iIntros (HΦ) "H"; iApply (wp_strong_mono with "H"); auto. + iIntros (v) "?". by iApply HΦ. Qed. Lemma wp_stuck_mono s1 s2 E e Φ : s1 ⊑ s2 → WP e @ s1; E {{ Φ }} ⊢ WP e @ s2; E {{ Φ }}. -Proof. iIntros (?) "H". iApply (wp_strong_mono s1 s2); auto with iFrame. Qed. +Proof. iIntros (?) "H". iApply (wp_strong_mono with "H"); auto. Qed. Lemma wp_stuck_weaken s E e Φ : WP e @ s; E {{ Φ }} ⊢ WP e @ E ?{{ Φ }}. Proof. apply wp_stuck_mono. by destruct s. Qed. Lemma wp_mask_mono s E1 E2 e Φ : E1 ⊆ E2 → WP e @ s; E1 {{ Φ }} ⊢ WP e @ s; E2 {{ Φ }}. -Proof. iIntros (?) "H"; iApply (wp_strong_mono s s E1 E2); auto. iFrame; eauto. Qed. +Proof. iIntros (?) "H"; iApply (wp_strong_mono with "H"); auto. Qed. Global Instance wp_mono' s E e : Proper (pointwise_relation _ (⊢) ==> (⊢)) (@wp Λ Σ _ s E e). Proof. by intros Φ Φ' ?; apply wp_mono. Qed. @@ -324,9 +324,9 @@ Lemma wp_value_fupd s E Φ e v `{!IntoVal e v} : Proof. intros. rewrite -wp_fupd -wp_value //. Qed. Lemma wp_frame_l s E e Φ R : R ∗ WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ v, R ∗ Φ v }}. -Proof. iIntros "[??]". iApply (wp_strong_mono s s E E _ Φ); try iFrame; eauto. Qed. +Proof. iIntros "[? H]". iApply (wp_strong_mono with "H"); auto with iFrame. Qed. Lemma wp_frame_r s E e Φ R : WP e @ s; E {{ Φ }} ∗ R ⊢ WP e @ s; E {{ v, Φ v ∗ R }}. -Proof. iIntros "[??]". iApply (wp_strong_mono s s E E _ Φ); try iFrame; eauto. Qed. +Proof. iIntros "[H ?]". iApply (wp_strong_mono with "H"); auto with iFrame. Qed. Lemma wp_frame_step_l s E1 E2 e Φ R : to_val e = None → E2 ⊆ E1 → @@ -352,8 +352,8 @@ Proof. iIntros (?) "[??]". iApply (wp_frame_step_r s E E); try iFrame; eauto. Qe Lemma wp_wand s E e Φ Ψ : WP e @ s; E {{ Φ }} -∗ (∀ v, Φ v -∗ Ψ v) -∗ WP e @ s; E {{ Ψ }}. Proof. - iIntros "Hwp H". iApply (wp_strong_mono s s E); auto. - iIntros "{$Hwp}" (?) "?". by iApply "H". + iIntros "Hwp H". iApply (wp_strong_mono with "Hwp"); auto. + iIntros (?) "?". by iApply "H". Qed. Lemma wp_wand_l s E e Φ Ψ : (∀ v, Φ v -∗ Ψ v) ∗ WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ Ψ }}.