Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Abhishek Anand
Iris
Commits
68e8477d
Commit
68e8477d
authored
May 21, 2019
by
Robbert Krebbers
Browse files
Get rid of γs in locks.
parent
8c1119c4
Changes
3
Hide whitespace changes
Inline
Side-by-side
theories/heap_lang/lib/lock.v
View file @
68e8477d
...
...
@@ -8,32 +8,29 @@ Structure lock Σ `{!heapG Σ} := Lock {
acquire
:
val
;
release
:
val
;
(* -- predicates -- *)
(* name is used to associate locked with is_lock *)
name
:
Type
;
is_lock
(
N
:
namespace
)
(
γ
:
name
)
(
lock
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
;
locked
(
γ
:
name
)
:
iProp
Σ
;
is_lock
(
N
:
namespace
)
(
lk
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
;
locked
(
lk
:
val
)
:
iProp
Σ
;
(* -- general properties -- *)
is_lock_ne
N
γ
lk
:
NonExpansive
(
is_lock
N
γ
lk
)
;
is_lock_persistent
N
γ
lk
R
:
Persistent
(
is_lock
N
γ
lk
R
)
;
locked_timeless
γ
:
Timeless
(
locked
γ
)
;
locked_exclusive
γ
:
locked
γ
-
∗
locked
γ
-
∗
False
;
is_lock_ne
N
lk
:
NonExpansive
(
is_lock
N
lk
)
;
is_lock_persistent
N
lk
R
:
Persistent
(
is_lock
N
lk
R
)
;
locked_timeless
lk
:
Timeless
(
locked
lk
)
;
locked_exclusive
lk
:
locked
lk
-
∗
locked
lk
-
∗
False
;
(* -- operation specs -- *)
newlock_spec
N
(
R
:
iProp
Σ
)
:
{{{
R
}}}
newlock
#()
{{{
lk
γ
,
RET
lk
;
is_lock
N
γ
lk
R
}}}
;
acquire_spec
N
γ
lk
R
:
{{{
is_lock
N
γ
lk
R
}}}
acquire
lk
{{{
RET
#()
;
locked
γ
∗
R
}}}
;
release_spec
N
γ
lk
R
:
{{{
is_lock
N
γ
lk
R
∗
locked
γ
∗
R
}}}
release
lk
{{{
RET
#()
;
True
}}}
{{{
R
}}}
newlock
#()
{{{
lk
,
RET
lk
;
is_lock
N
lk
R
}}}
;
acquire_spec
N
lk
R
:
{{{
is_lock
N
lk
R
}}}
acquire
lk
{{{
RET
#()
;
locked
lk
∗
R
}}}
;
release_spec
N
lk
R
:
{{{
is_lock
N
lk
R
∗
locked
lk
∗
R
}}}
release
lk
{{{
RET
#()
;
True
}}}
}.
Arguments
newlock
{
_
_
}
_
.
Arguments
acquire
{
_
_
}
_
.
Arguments
release
{
_
_
}
_
.
Arguments
is_lock
{
_
_
}
_
_
_
_
_
.
Arguments
is_lock
{
_
_
}
_
_
_
_
.
Arguments
locked
{
_
_
}
_
_
.
Existing
Instances
is_lock_ne
is_lock_persistent
locked_timeless
.
Instance
is_lock_proper
Σ
`
{!
heapG
Σ
}
(
L
:
lock
Σ
)
N
γ
lk
:
Proper
((
≡
)
==>
(
≡
))
(
is_lock
L
N
γ
lk
)
:
=
ne_proper
_
.
Instance
is_lock_proper
Σ
`
{!
heapG
Σ
}
(
L
:
lock
Σ
)
N
lk
:
Proper
((
≡
)
==>
(
≡
))
(
is_lock
L
N
lk
)
:
=
ne_proper
_
.
theories/heap_lang/lib/spin_lock.v
View file @
68e8477d
...
...
@@ -26,51 +26,58 @@ Section proof.
Definition
lock_inv
(
γ
:
gname
)
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
b
:
bool
,
l
↦
#
b
∗
if
b
then
True
else
own
γ
(
Excl
())
∗
R
)%
I
.
Definition
is_lock
(
γ
:
gname
)
(
lk
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
l
:
loc
,
⌜
lk
=
#
l
⌝
∧
inv
N
(
lock_inv
γ
l
R
))%
I
.
Definition
is_lock
(
lk
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
γ
(
l
:
loc
)
,
⌜
lk
=
#
l
⌝
∧
meta
l
nroot
γ
∧
inv
N
(
lock_inv
γ
l
R
))%
I
.
Definition
locked
(
γ
:
gname
)
:
iProp
Σ
:
=
own
γ
(
Excl
()).
Definition
locked
(
lk
:
val
)
:
iProp
Σ
:
=
(
∃
γ
(
l
:
loc
),
⌜
lk
=
#
l
⌝
∧
meta
l
nroot
γ
∧
own
γ
(
Excl
()))%
I
.
Lemma
locked_exclusive
(
γ
:
gname
)
:
locked
γ
-
∗
locked
γ
-
∗
False
.
Proof
.
iIntros
"H1 H2"
.
by
iDestruct
(
own_valid_2
with
"H1 H2"
)
as
%?.
Qed
.
Lemma
locked_exclusive
lk
:
locked
lk
-
∗
locked
lk
-
∗
False
.
Proof
.
iDestruct
1
as
(
γ
1
l1
?)
"[#Hm1 H1]"
.
iDestruct
1
as
(
γ
2
l2
?)
"[#Hm2 H2]"
;
simplify_eq
/=.
iDestruct
(
meta_agree
with
"Hm1 Hm2"
)
as
%<-.
by
iDestruct
(
own_valid_2
with
"H1 H2"
)
as
%?.
Qed
.
Global
Instance
lock_inv_ne
γ
l
:
NonExpansive
(
lock_inv
γ
l
).
Global
Instance
lock_inv_ne
γ
l
k
:
NonExpansive
(
lock_inv
γ
l
k
).
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_ne
γ
l
:
NonExpansive
(
is_lock
γ
l
).
Global
Instance
is_lock_ne
l
k
:
NonExpansive
(
is_lock
l
k
).
Proof
.
solve_proper
.
Qed
.
(** The main proofs. *)
Global
Instance
is_lock_persistent
γ
l
R
:
Persistent
(
is_lock
γ
l
R
).
Global
Instance
is_lock_persistent
l
k
R
:
Persistent
(
is_lock
l
k
R
).
Proof
.
apply
_
.
Qed
.
Global
Instance
locked_timeless
γ
:
Timeless
(
locked
γ
).
Global
Instance
locked_timeless
lk
:
Timeless
(
locked
lk
).
Proof
.
apply
_
.
Qed
.
Lemma
newlock_spec
(
R
:
iProp
Σ
)
:
{{{
R
}}}
newlock
#()
{{{
lk
γ
,
RET
lk
;
is_lock
γ
lk
R
}}}.
{{{
R
}}}
newlock
#()
{{{
lk
,
RET
lk
;
is_lock
lk
R
}}}.
Proof
.
iIntros
(
Φ
)
"HR HΦ"
.
rewrite
-
wp_fupd
/
newlock
/=.
wp_lam
.
wp_a
lloc
l
as
"Hl"
.
wp_lam
.
wp_a
pply
(
wp_alloc
with
"[//]"
)
;
iIntros
(
l
)
"
[
Hl
Hm]
"
.
iMod
(
own_alloc
(
Excl
()))
as
(
γ
)
"Hγ"
;
first
done
.
iMod
(
meta_set
_
_
γ
nroot
with
"Hm"
)
as
"#Hm"
;
first
done
.
iMod
(
inv_alloc
N
_
(
lock_inv
γ
l
R
)
with
"[-HΦ]"
)
as
"#?"
.
{
iIntros
"!>"
.
iExists
false
.
by
iFrame
.
}
iModIntro
.
iApply
"HΦ"
.
iExists
l
.
eauto
.
iModIntro
.
iApply
"HΦ"
.
iExists
γ
,
l
.
eauto
.
Qed
.
Lemma
try_acquire_spec
γ
lk
R
:
{{{
is_lock
γ
lk
R
}}}
try_acquire
lk
{{{
b
,
RET
#
b
;
if
b
is
true
then
locked
γ
∗
R
else
True
}}}.
Lemma
try_acquire_spec
lk
R
:
{{{
is_lock
lk
R
}}}
try_acquire
lk
{{{
b
,
RET
#
b
;
if
b
is
true
then
locked
lk
∗
R
else
True
}}}.
Proof
.
iIntros
(
Φ
)
"#Hl HΦ"
.
iDestruct
"Hl"
as
(
l
->)
"#Hinv"
.
iIntros
(
Φ
)
"#Hl HΦ"
.
iDestruct
"Hl"
as
(
γ
l
->)
"#
[Hm
Hinv
]
"
.
wp_rec
.
iInv
N
as
([])
"[Hl HR]"
.
-
wp_cas_fail
.
iModIntro
.
iSplitL
"Hl"
;
first
(
iNext
;
iExists
true
;
eauto
).
iApply
(
"HΦ"
$!
false
).
done
.
-
wp_cas_suc
.
iDestruct
"HR"
as
"[Hγ HR]"
.
iModIntro
.
iSplitL
"Hl"
;
first
(
iNext
;
iExists
true
;
eauto
).
rewrite
/
locked
.
by
iApply
(
"HΦ"
$!
true
with
"[$H
γ $HR]"
)
.
rewrite
/
locked
.
iApply
(
"HΦ"
$!
true
with
"[$H
R Hγ]"
)
;
eauto
.
Qed
.
Lemma
acquire_spec
γ
lk
R
:
{{{
is_lock
γ
lk
R
}}}
acquire
lk
{{{
RET
#()
;
locked
γ
∗
R
}}}.
Lemma
acquire_spec
lk
R
:
{{{
is_lock
lk
R
}}}
acquire
lk
{{{
RET
#()
;
locked
lk
∗
R
}}}.
Proof
.
iIntros
(
Φ
)
"#Hl HΦ"
.
iL
ö
b
as
"IH"
.
wp_rec
.
wp_apply
(
try_acquire_spec
with
"Hl"
).
iIntros
([]).
...
...
@@ -78,11 +85,13 @@ Section proof.
-
iIntros
"_"
.
wp_if
.
iApply
(
"IH"
with
"[HΦ]"
).
auto
.
Qed
.
Lemma
release_spec
γ
lk
R
:
{{{
is_lock
γ
lk
R
∗
locked
γ
∗
R
}}}
release
lk
{{{
RET
#()
;
True
}}}.
Lemma
release_spec
lk
R
:
{{{
is_lock
lk
R
∗
locked
lk
∗
R
}}}
release
lk
{{{
RET
#()
;
True
}}}.
Proof
.
iIntros
(
Φ
)
"(Hlock & Hlocked & HR) HΦ"
.
iDestruct
"Hlock"
as
(
l
->)
"#Hinv"
.
iDestruct
"Hlock"
as
(
γ
l
->)
"#[Hm Hinv]"
.
iDestruct
"Hlocked"
as
(
γ
'
l'
?)
"[#Hm' Hlocked]"
;
simplify_eq
/=.
iDestruct
(
meta_agree
with
"Hm Hm'"
)
as
%<-.
rewrite
/
release
/=.
wp_lam
.
iInv
N
as
(
b
)
"[Hl _]"
.
wp_store
.
iSplitR
"HΦ"
;
last
by
iApply
"HΦ"
.
iModIntro
.
iNext
.
iExists
false
.
by
iFrame
.
...
...
theories/heap_lang/lib/ticket_lock.v
View file @
68e8477d
...
...
@@ -45,48 +45,56 @@ Section proof.
own
γ
(
●
(
Excl'
o
,
GSet
(
set_seq
0
n
)))
∗
((
own
γ
(
◯
(
Excl'
o
,
GSet
∅
))
∗
R
)
∨
own
γ
(
◯
(
ε
,
GSet
{[
o
]}))))%
I
.
Definition
is_lock
(
γ
:
gname
)
(
lk
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
lo
ln
:
loc
,
⌜
lk
=
(#
lo
,
#
ln
)%
V
⌝
∗
inv
N
(
lock_inv
γ
lo
ln
R
))%
I
.
Definition
is_lock
(
lk
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
γ
(
lo
ln
:
loc
)
,
⌜
lk
=
(#
lo
,
#
ln
)%
V
⌝
∗
meta
lo
nroot
γ
∗
inv
N
(
lock_inv
γ
lo
ln
R
))%
I
.
Definition
issued
(
γ
:
gname
)
(
x
:
nat
)
:
iProp
Σ
:
=
own
γ
(
◯
(
ε
,
GSet
{[
x
]}))%
I
.
Definition
issued
(
lk
:
val
)
(
x
:
nat
)
:
iProp
Σ
:
=
(
∃
γ
(
lo
ln
:
loc
),
⌜
lk
=
(#
lo
,
#
ln
)%
V
⌝
∗
meta
lo
nroot
γ
∗
own
γ
(
◯
(
ε
,
GSet
{[
x
]})))%
I
.
Definition
locked
(
γ
:
gname
)
:
iProp
Σ
:
=
(
∃
o
,
own
γ
(
◯
(
Excl'
o
,
GSet
∅
)))%
I
.
Definition
locked
(
lk
:
val
)
:
iProp
Σ
:
=
(
∃
γ
(
lo
ln
:
loc
)
o
,
⌜
lk
=
(#
lo
,
#
ln
)%
V
⌝
∗
meta
lo
nroot
γ
∗
own
γ
(
◯
(
Excl'
o
,
GSet
∅
)))%
I
.
Global
Instance
lock_inv_ne
γ
lo
ln
:
NonExpansive
(
lock_inv
γ
lo
ln
).
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_ne
γ
lk
:
NonExpansive
(
is_lock
γ
lk
).
Global
Instance
is_lock_ne
lk
:
NonExpansive
(
is_lock
lk
).
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_persistent
γ
lk
R
:
Persistent
(
is_lock
γ
lk
R
).
Global
Instance
is_lock_persistent
lk
R
:
Persistent
(
is_lock
lk
R
).
Proof
.
apply
_
.
Qed
.
Global
Instance
locked_timeless
γ
:
Timeless
(
locked
γ
).
Global
Instance
locked_timeless
lk
:
Timeless
(
locked
lk
).
Proof
.
apply
_
.
Qed
.
Lemma
locked_exclusive
(
γ
:
gname
)
:
locked
γ
-
∗
locked
γ
-
∗
False
.
Lemma
locked_exclusive
lk
:
locked
lk
-
∗
locked
lk
-
∗
False
.
Proof
.
iDestruct
1
as
(
o1
)
"H1"
.
iDestruct
1
as
(
o2
)
"H2"
.
iDestruct
1
as
(
γ
1
lo1
ln1
o1
?)
"[#Hm1 H1]"
.
iDestruct
1
as
(
γ
2
lo2
ln2
o2
?)
"[#Hm2 H2]"
;
simplify_eq
/=.
iDestruct
(
meta_agree
with
"Hm1 Hm2"
)
as
%<-.
iDestruct
(
own_valid_2
with
"H1 H2"
)
as
%[[]
_
].
Qed
.
Lemma
newlock_spec
(
R
:
iProp
Σ
)
:
{{{
R
}}}
newlock
#()
{{{
lk
γ
,
RET
lk
;
is_lock
γ
lk
R
}}}.
{{{
R
}}}
newlock
#()
{{{
lk
,
RET
lk
;
is_lock
lk
R
}}}.
Proof
.
iIntros
(
Φ
)
"HR HΦ"
.
rewrite
-
wp_fupd
.
wp_lam
.
wp_alloc
ln
as
"Hln"
.
wp_a
lloc
lo
as
"Hlo
"
.
wp_alloc
ln
as
"Hln"
.
wp_a
pply
(
wp_alloc
with
"[//]"
)
;
iIntros
(
lo
)
"[Hlo Hm]
"
.
iMod
(
own_alloc
(
●
(
Excl'
0
%
nat
,
GSet
∅
)
⋅
◯
(
Excl'
0
%
nat
,
GSet
∅
)))
as
(
γ
)
"[Hγ Hγ']"
.
{
by
apply
auth_both_valid
.
}
iMod
(
meta_set
_
_
γ
nroot
with
"Hm"
)
as
"#Hm"
;
first
done
.
iMod
(
inv_alloc
_
_
(
lock_inv
γ
lo
ln
R
)
with
"[-HΦ]"
).
{
iNext
.
rewrite
/
lock_inv
.
iExists
0
%
nat
,
0
%
nat
.
iFrame
.
iLeft
.
by
iFrame
.
}
wp_pures
.
iModIntro
.
iApply
(
"HΦ"
$!
(#
lo
,
#
ln
)%
V
γ
).
iExists
lo
,
ln
.
eauto
.
wp_pures
.
iModIntro
.
iApply
(
"HΦ"
$!
(#
lo
,
#
ln
)%
V
).
iExists
γ
,
lo
,
ln
.
eauto
.
Qed
.
Lemma
wait_loop_spec
γ
lk
x
R
:
{{{
is_lock
γ
lk
R
∗
issued
γ
x
}}}
wait_loop
#
x
lk
{{{
RET
#()
;
locked
γ
∗
R
}}}.
Lemma
wait_loop_spec
lk
x
R
:
{{{
is_lock
lk
R
∗
issued
lk
x
}}}
wait_loop
#
x
lk
{{{
RET
#()
;
locked
lk
∗
R
}}}.
Proof
.
iIntros
(
Φ
)
"[Hl Ht] HΦ"
.
iDestruct
"Hl"
as
(
lo
ln
->)
"#Hinv"
.
iIntros
(
Φ
)
"[Hl Ht] HΦ"
.
iDestruct
"Hl"
as
(
γ
lo'
ln'
->)
"#[Hm Hinv]"
.
iDestruct
"Ht"
as
(
γ
'
lo
ln
?)
"[#Hm' Ht]"
;
simplify_eq
/=.
iDestruct
(
meta_agree
with
"Hm Hm'"
)
as
%<-.
iL
ö
b
as
"IH"
.
wp_rec
.
subst
.
wp_pures
.
wp_bind
(!
_
)%
E
.
iInv
N
as
(
o
n
)
"(Hlo & Hln & Ha)"
.
wp_load
.
destruct
(
decide
(
x
=
o
))
as
[->|
Hneq
].
...
...
@@ -94,7 +102,7 @@ Section proof.
+
iModIntro
.
iSplitL
"Hlo Hln Hainv Ht"
.
{
iNext
.
iExists
o
,
n
.
iFrame
.
}
wp_pures
.
case_bool_decide
;
[|
done
].
wp_if
.
iApply
(
"HΦ"
with
"[-]"
).
rewrite
/
locked
.
iFrame
.
eauto
.
iApply
(
"HΦ"
with
"[-]"
).
rewrite
/
locked
.
iFrame
.
eauto
20
.
+
iDestruct
(
own_valid_2
with
"Ht Haown"
)
as
%
[
_
?%
gset_disj_valid_op
].
set_solver
.
-
iModIntro
.
iSplitL
"Hlo Hln Ha"
.
...
...
@@ -103,10 +111,10 @@ Section proof.
wp_if
.
iApply
(
"IH"
with
"Ht"
).
iNext
.
by
iExact
"HΦ"
.
Qed
.
Lemma
acquire_spec
γ
lk
R
:
{{{
is_lock
γ
lk
R
}}}
acquire
lk
{{{
RET
#()
;
locked
γ
∗
R
}}}.
Lemma
acquire_spec
lk
R
:
{{{
is_lock
lk
R
}}}
acquire
lk
{{{
RET
#()
;
locked
lk
∗
R
}}}.
Proof
.
iIntros
(
ϕ
)
"Hl HΦ"
.
iDestruct
"Hl"
as
(
lo
ln
->)
"#Hinv"
.
iIntros
(
ϕ
)
"Hl HΦ"
.
iDestruct
"Hl"
as
(
γ
lo
ln
->)
"#
[Hm
Hinv
]
"
.
iL
ö
b
as
"IH"
.
wp_rec
.
wp_bind
(!
_
)%
E
.
simplify_eq
/=.
wp_proj
.
iInv
N
as
(
o
n
)
"[Hlo [Hln Ha]]"
.
wp_load
.
iModIntro
.
iSplitL
"Hlo Hln Ha"
.
...
...
@@ -123,8 +131,8 @@ Section proof.
{
iNext
.
iExists
o'
,
(
S
n
).
rewrite
Nat2Z
.
inj_succ
-
Z
.
add_1_r
.
by
iFrame
.
}
wp_if
.
iApply
(
wait_loop_spec
γ
(#
lo
,
#
ln
)
with
"[-HΦ]"
).
+
iFrame
.
rewrite
/
is_lock
;
eauto
1
0
.
iApply
(
wait_loop_spec
(#
lo
,
#
ln
)
with
"[-HΦ]"
).
+
iFrame
.
rewrite
/
is_lock
/
issued
;
eauto
2
0
.
+
by
iNext
.
-
wp_cas_fail
.
iModIntro
.
iSplitL
"Hlo' Hln' Hauth Haown"
.
...
...
@@ -132,11 +140,12 @@ Section proof.
wp_if
.
by
iApply
"IH"
;
auto
.
Qed
.
Lemma
release_spec
γ
lk
R
:
{{{
is_lock
γ
lk
R
∗
locked
γ
∗
R
}}}
release
lk
{{{
RET
#()
;
True
}}}.
Lemma
release_spec
lk
R
:
{{{
is_lock
lk
R
∗
locked
lk
∗
R
}}}
release
lk
{{{
RET
#()
;
True
}}}.
Proof
.
iIntros
(
Φ
)
"(Hl & Hγ & HR) HΦ"
.
iDestruct
"Hl"
as
(
lo
ln
->)
"#Hinv"
.
iDestruct
"Hγ"
as
(
o
)
"Hγo"
.
iIntros
(
Φ
)
"(Hl & Hγ & HR) HΦ"
.
iDestruct
"Hl"
as
(
γ
'
lo'
ln'
->)
"#[Hm Hinv]"
.
iDestruct
"Hγ"
as
(
γ
lo
ln
o
?)
"[#Hm' Hγo]"
;
simplify_eq
/=.
iDestruct
(
meta_agree
with
"Hm Hm'"
)
as
%<-.
wp_lam
.
wp_proj
.
wp_bind
(!
_
)%
E
.
iInv
N
as
(
o'
n
)
"(>Hlo & >Hln & >Hauth & Haown)"
.
wp_load
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment