diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index 74a5142233cb050ee9725d87caaaec8eed5b9561..c88ed57c673869da419e1989cafd90eafca5c030 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -44,7 +44,7 @@ reverse-deps:
   stage: deploy
   script:
   # Send a trigger to reverse dependencies to have them tested
-  - curl --fail -X POST -F "token=$IRIS_ATOMIC_SECRET" -F "ref=master" -F "variables[IRIS_REV]=$CI_COMMIT_SHA" https://gitlab.mpi-sws.org/api/v4/projects/250/trigger/pipeline
+  - curl --fail -X POST -F "token=$IRIS_EXAMPLES_SECRET" -F "ref=master" -F "variables[IRIS_REV]=$CI_COMMIT_SHA" https://gitlab.mpi-sws.org/api/v4/projects/615/trigger/pipeline
   only:
   - master
   except:
diff --git a/_CoqProject b/_CoqProject
index 9687006a8f4b93ce87ad137508bf53710963257d..3bbe45c867d57dde8be46df3d67728fcbf04c1c1 100644
--- a/_CoqProject
+++ b/_CoqProject
@@ -73,10 +73,6 @@ theories/heap_lang/lib/lock.v
 theories/heap_lang/lib/spin_lock.v
 theories/heap_lang/lib/ticket_lock.v
 theories/heap_lang/lib/counter.v
-theories/heap_lang/lib/barrier/barrier.v
-theories/heap_lang/lib/barrier/specification.v
-theories/heap_lang/lib/barrier/protocol.v
-theories/heap_lang/lib/barrier/proof.v
 theories/heap_lang/proofmode.v
 theories/heap_lang/adequacy.v
 theories/proofmode/strings.v
diff --git a/theories/heap_lang/lib/barrier/barrier.v b/theories/heap_lang/lib/barrier/barrier.v
deleted file mode 100644
index 7ae83e5da15123f3fcb6dc59f83401ee1e923ac1..0000000000000000000000000000000000000000
--- a/theories/heap_lang/lib/barrier/barrier.v
+++ /dev/null
@@ -1,7 +0,0 @@
-From iris.heap_lang Require Export notation.
-Set Default Proof Using "Type".
-
-Definition newbarrier : val := λ: <>, ref #false.
-Definition signal : val := λ: "x", "x" <- #true.
-Definition wait : val :=
-  rec: "wait" "x" := if: !"x" then #() else "wait" "x".
diff --git a/theories/heap_lang/lib/barrier/proof.v b/theories/heap_lang/lib/barrier/proof.v
deleted file mode 100644
index fd97bb305259a27065903f24bad88208a7b6342a..0000000000000000000000000000000000000000
--- a/theories/heap_lang/lib/barrier/proof.v
+++ /dev/null
@@ -1,200 +0,0 @@
-From iris.program_logic Require Export weakestpre.
-From iris.heap_lang Require Export lang.
-From iris.heap_lang.lib.barrier Require Export barrier.
-From stdpp Require Import functions.
-From iris.base_logic Require Import big_op lib.saved_prop lib.sts.
-From iris.heap_lang Require Import proofmode.
-From iris.heap_lang.lib.barrier Require Import protocol.
-Set Default Proof Using "Type".
-
-(** The CMRAs/functors we need. *)
-Class barrierG Σ := BarrierG {
-  barrier_stsG :> stsG Σ sts;
-  barrier_savedPropG :> savedPropG Σ idCF;
-}.
-Definition barrierΣ : gFunctors := #[stsΣ sts; savedPropΣ idCF].
-
-Instance subG_barrierΣ {Σ} : subG barrierΣ Σ → barrierG Σ.
-Proof. solve_inG. Qed.
-
-(** Now we come to the Iris part of the proof. *)
-Section proof.
-Context `{!heapG Σ, !barrierG Σ} (N : namespace).
-Implicit Types I : gset gname.
-
-Definition ress (P : iProp Σ) (I : gset gname) : iProp Σ :=
-  (∃ Ψ : gname → iProp Σ,
-    ▷ (P -∗ [∗ set] i ∈ I, Ψ i) ∗ [∗ set] i ∈ I, saved_prop_own i (Ψ i))%I.
-
-Coercion state_to_val (s : state) : val :=
-  match s with State Low _ => #false | State High _ => #true end.
-Arguments state_to_val !_ / : simpl nomatch.
-
-Definition state_to_prop (s : state) (P : iProp Σ) : iProp Σ :=
-  match s with State Low _ => P | State High _ => True%I end.
-Arguments state_to_prop !_ _ / : simpl nomatch.
-
-Definition barrier_inv (l : loc) (P : iProp Σ) (s : state) : iProp Σ :=
-  (l ↦ s ∗ ress (state_to_prop s P) (state_I s))%I.
-
-Definition barrier_ctx (γ : gname) (l : loc) (P : iProp Σ) : iProp Σ :=
-  sts_ctx γ N (barrier_inv l P).
-
-Definition send (l : loc) (P : iProp Σ) : iProp Σ :=
-  (∃ γ, barrier_ctx γ l P ∗ sts_ownS γ low_states {[ Send ]})%I.
-
-Definition recv (l : loc) (R : iProp Σ) : iProp Σ :=
-  (∃ γ P Q i,
-    barrier_ctx γ l P ∗ sts_ownS γ (i_states i) {[ Change i ]} ∗
-    saved_prop_own i Q ∗ ▷ (Q -∗ R))%I.
-
-Global Instance barrier_ctx_persistent (γ : gname) (l : loc) (P : iProp Σ) :
-  PersistentP (barrier_ctx γ l P).
-Proof. apply _. Qed.
-
-(** Setoids *)
-Global Instance ress_ne n : Proper (dist n ==> (=) ==> dist n) ress.
-Proof. solve_proper. Qed.
-Global Instance state_to_prop_ne s :
-  NonExpansive (state_to_prop s).
-Proof. solve_proper. Qed.
-Global Instance barrier_inv_ne n l :
-  Proper (dist n ==> eq ==> dist n) (barrier_inv l).
-Proof. solve_proper. Qed.
-Global Instance barrier_ctx_ne γ l : NonExpansive (barrier_ctx γ l).
-Proof. solve_proper. Qed. 
-Global Instance send_ne l : NonExpansive (send l).
-Proof. solve_proper. Qed.
-Global Instance recv_ne l : NonExpansive (recv l).
-Proof. solve_proper. Qed.
-
-(** Helper lemmas *)
-Lemma ress_split i i1 i2 Q R1 R2 P I :
-  i ∈ I → i1 ∉ I → i2 ∉ I → i1 ≠ i2 →
-  saved_prop_own i Q -∗ saved_prop_own i1 R1 -∗ saved_prop_own i2 R2 -∗
-  (Q -∗ R1 ∗ R2) -∗ ress P I -∗
-  ress P ({[i1;i2]} ∪ I ∖ {[i]}).
-Proof.
-  iIntros (????) "#HQ #H1 #H2 HQR"; iDestruct 1 as (Ψ) "[HPΨ HΨ]".
-  iDestruct (big_opS_delete _ _ i with "HΨ") as "[#HΨi HΨ]"; first done.
-  iExists (<[i1:=R1]> (<[i2:=R2]> Ψ)). iSplitL "HQR HPΨ".
-  - iPoseProof (saved_prop_agree with "HQ HΨi") as "#Heq".
-    iNext. iRewrite "Heq" in "HQR". iIntros "HP". iSpecialize ("HPΨ" with "HP").
-    iDestruct (big_opS_delete _ _ i with "HPΨ") as "[HΨ HPΨ]"; first done.
-    iDestruct ("HQR" with "HΨ") as "[HR1 HR2]".
-    rewrite -assoc_L !big_opS_fn_insert'; [|abstract set_solver ..].
-    by iFrame.
-  - rewrite -assoc_L !big_opS_fn_insert; [|abstract set_solver ..]. eauto.
-Qed.
-
-(** Actual proofs *)
-Lemma newbarrier_spec (P : iProp Σ) :
-  {{{ True }}} newbarrier #() {{{ l, RET #l; recv l P ∗ send l P }}}.
-Proof.
-  iIntros (Φ) "_ HΦ".
-  rewrite -wp_fupd /newbarrier /=. wp_seq. wp_alloc l as "Hl".
-  iApply ("HΦ" with "[> -]").
-  iMod (saved_prop_alloc (F:=idCF) P) as (γ) "#?".
-  iMod (sts_alloc (barrier_inv l P) _ N (State Low {[ γ ]}) with "[-]")
-    as (γ') "[#? Hγ']"; eauto.
-  { iNext. rewrite /barrier_inv /=. iFrame.
-    iExists (const P). rewrite !big_opS_singleton /=. eauto. }
-  iAssert (barrier_ctx γ' l P)%I as "#?".
-  { done. }
-  iAssert (sts_ownS γ' (i_states γ) {[Change γ]}
-    ∗ sts_ownS γ' low_states {[Send]})%I with "[> -]" as "[Hr Hs]".
-  { iApply sts_ownS_op; eauto using i_states_closed, low_states_closed.
-    - set_solver.
-    - iApply (sts_own_weaken with "Hγ'");
-        auto using sts.closed_op, i_states_closed, low_states_closed;
-        abstract set_solver. }
-  iModIntro. iSplitL "Hr".
-  - iExists γ', P, P, γ. iFrame. auto.
-  - rewrite /send. auto.
-Qed.
-
-Lemma signal_spec l P :
-  {{{ send l P ∗ P }}} signal #l {{{ RET #(); True }}}.
-Proof.
-  rewrite /signal /=.
-  iIntros (Φ) "[Hs HP] HΦ". iDestruct "Hs" as (γ) "[#Hsts Hγ]". wp_let.
-  iMod (sts_openS (barrier_inv l P) _ _ γ with "[Hγ]")
-    as ([p I]) "(% & [Hl Hr] & Hclose)"; eauto.
-  destruct p; [|done]. wp_store.
-  iSpecialize ("HΦ" with "[#]") => //. iFrame "HΦ".
-  iMod ("Hclose" $! (State High I) (∅ : set token) with "[-]"); last done.
-  iSplit; [iPureIntro; by eauto using signal_step|].
-  rewrite /barrier_inv /ress /=. iNext. iFrame "Hl".
-  iDestruct "Hr" as (Ψ) "[Hr Hsp]"; iExists Ψ; iFrame "Hsp".
-  iNext. iIntros "_"; by iApply "Hr".
-Qed.
-
-Lemma wait_spec l P:
-  {{{ recv l P }}} wait #l {{{ RET #(); P }}}.
-Proof.
-  rename P into R.
-  iIntros (Φ) "Hr HΦ"; iDestruct "Hr" as (γ P Q i) "(#Hsts & Hγ & #HQ & HQR)".
-  iLöb as "IH". wp_rec. wp_bind (! _)%E.
-  iMod (sts_openS (barrier_inv l P) _ _ γ with "[Hγ]")
-    as ([p I]) "(% & [Hl Hr] & Hclose)"; eauto.
-  wp_load. destruct p.
-  - iMod ("Hclose" $! (State Low I) {[ Change i ]} with "[Hl Hr]") as "Hγ".
-    { iSplit; first done. rewrite /barrier_inv /=. by iFrame. }
-    iAssert (sts_ownS γ (i_states i) {[Change i]})%I with "[> Hγ]" as "Hγ".
-    { iApply (sts_own_weaken with "Hγ"); eauto using i_states_closed. }
-    iModIntro. wp_if.
-    iApply ("IH" with "Hγ [HQR] [HΦ]"); auto.
-  - (* a High state: the comparison succeeds, and we perform a transition and
-    return to the client *)
-    iDestruct "Hr" as (Ψ) "[HΨ Hsp]".
-    iDestruct (big_opS_delete _ _ i with "Hsp") as "[#HΨi Hsp]"; first done.
-    iAssert (▷ Ψ i ∗ ▷ [∗ set] j ∈ I ∖ {[i]}, Ψ j)%I with "[HΨ]" as "[HΨ HΨ']".
-    { iNext. iApply (big_opS_delete _ _ i); first done. by iApply "HΨ". }
-    iMod ("Hclose" $! (State High (I ∖ {[ i ]})) ∅ with "[HΨ' Hl Hsp]").
-    { iSplit; [iPureIntro; by eauto using wait_step|].
-      rewrite /barrier_inv /=. iNext. iFrame "Hl". iExists Ψ; iFrame. auto. }
-    iPoseProof (saved_prop_agree with "HQ HΨi") as "#Heq".
-    iModIntro. wp_if.
-    iApply "HΦ". iApply "HQR". by iRewrite "Heq".
-Qed.
-
-Lemma recv_split E l P1 P2 :
-  ↑N ⊆ E → recv l (P1 ∗ P2) ={E}=∗ recv l P1 ∗ recv l P2.
-Proof.
-  rename P1 into R1; rename P2 into R2.
-  iIntros (?). iDestruct 1 as (γ P Q i) "(#Hsts & Hγ & #HQ & HQR)".
-  iMod (sts_openS (barrier_inv l P) _ _ γ with "[Hγ]")
-    as ([p I]) "(% & [Hl Hr] & Hclose)"; eauto.
-  iMod (saved_prop_alloc_strong (R1: ∙%CF (iProp Σ)) I) as (i1) "[% #Hi1]".
-  iMod (saved_prop_alloc_strong (R2: ∙%CF (iProp Σ)) (I ∪ {[i1]}))
-    as (i2) "[Hi2' #Hi2]"; iDestruct "Hi2'" as %Hi2.
-  rewrite ->not_elem_of_union, elem_of_singleton in Hi2; destruct Hi2.
-  iMod ("Hclose" $! (State p ({[i1; i2]} ∪ I ∖ {[i]}))
-                    {[Change i1; Change i2 ]} with "[-]") as "Hγ".
-  { iSplit; first by eauto using split_step.
-    rewrite /barrier_inv /=. iNext. iFrame "Hl".
-    by iApply (ress_split with "HQ Hi1 Hi2 HQR"). }
-  iAssert (sts_ownS γ (i_states i1) {[Change i1]}
-    ∗ sts_ownS γ (i_states i2) {[Change i2]})%I with "[> -]" as "[Hγ1 Hγ2]".
-  { iApply sts_ownS_op; eauto using i_states_closed, low_states_closed.
-    - abstract set_solver.
-    - iApply (sts_own_weaken with "Hγ");
-        eauto using sts.closed_op, i_states_closed.
-      abstract set_solver. }
-  iModIntro; iSplitL "Hγ1".
-  - iExists γ, P, R1, i1. iFrame; auto.
-  - iExists γ, P, R2, i2. iFrame; auto.
-Qed.
-
-Lemma recv_weaken l P1 P2 : (P1 -∗ P2) -∗ recv l P1 -∗ recv l P2.
-Proof.
-  iIntros "HP". iDestruct 1 as (γ P Q i) "(#Hctx&Hγ&Hi&HP1)".
-  iExists γ, P, Q, i. iFrame "Hctx Hγ Hi".
-  iNext. iIntros "HQ". by iApply "HP"; iApply "HP1".
-Qed.
-
-Lemma recv_mono l P1 P2 : (P1 ⊢ P2) → recv l P1 ⊢ recv l P2.
-Proof. iIntros (HP) "H". iApply (recv_weaken with "[] H"). iApply HP. Qed.
-End proof.
-
-Typeclasses Opaque barrier_ctx send recv.
diff --git a/theories/heap_lang/lib/barrier/protocol.v b/theories/heap_lang/lib/barrier/protocol.v
deleted file mode 100644
index 8ed9bbf50454e456be7b19dc39923bf6047a93df..0000000000000000000000000000000000000000
--- a/theories/heap_lang/lib/barrier/protocol.v
+++ /dev/null
@@ -1,85 +0,0 @@
-From iris.algebra Require Export sts.
-From iris.base_logic Require Import lib.own.
-From stdpp Require Export gmap.
-Set Default Proof Using "Type".
-
-(** The STS describing the main barrier protocol. Every state has an index-set
-    associated with it. These indices are actually [gname], because we use them
-    with saved propositions. *)
-Inductive phase := Low | High.
-Record state := State { state_phase : phase; state_I : gset gname }.
-Add Printing Constructor state.
-Inductive token := Change (i : gname) | Send.
-
-Global Instance stateT_inhabited: Inhabited state := populate (State Low ∅).
-Global Instance Change_inj : Inj (=) (=) Change.
-Proof. by injection 1. Qed.
-
-Inductive prim_step : relation state :=
-  | ChangeI p I2 I1 : prim_step (State p I1) (State p I2)
-  | ChangePhase I : prim_step (State Low I) (State High I).
-
-Definition tok (s : state) : set token :=
-  {[ t | ∃ i, t = Change i ∧ i ∉ state_I s ]} ∪
-  (if state_phase s is High then {[ Send ]} else ∅).
-Global Arguments tok !_ /.
-
-Canonical Structure sts := sts.STS prim_step tok.
-
-(* The set of states containing some particular i *)
-Definition i_states (i : gname) : set state := {[ s | i ∈ state_I s ]}.
-
-(* The set of low states *)
-Definition low_states : set state := {[ s | state_phase s = Low ]}.
-
-Lemma i_states_closed i : sts.closed (i_states i) {[ Change i ]}.
-Proof.
-  split; first (intros [[] I]; set_solver).
-  (* If we do the destruct of the states early, and then inversion
-     on the proof of a transition, it doesn't work - we do not obtain
-     the equalities we need. So we destruct the states late, because this
-     means we can use "destruct" instead of "inversion". *)
-  intros s1 s2 Hs1 [T1 T2 Hdisj Hstep'].
-  inversion_clear Hstep' as [? ? ? ? Htrans _ _ Htok].
-  destruct Htrans as [[] ??|]; done || set_solver.
-Qed.
-
-Lemma low_states_closed : sts.closed low_states {[ Send ]}.
-Proof.
-  split; first (intros [??]; set_solver).
-  intros s1 s2 Hs1 [T1 T2 Hdisj Hstep'].
-  inversion_clear Hstep' as [? ? ? ? Htrans _ _ Htok].
-  destruct Htrans as [[] ??|]; done || set_solver.
-Qed.
-
-(* Proof that we can take the steps we need. *)
-Lemma signal_step I : sts.steps (State Low I, {[Send]}) (State High I, ∅).
-Proof. apply rtc_once. constructor; first constructor; set_solver. Qed.
-
-Lemma wait_step i I :
-  i ∈ I →
-  sts.steps (State High I, {[ Change i ]}) (State High (I ∖ {[ i ]}), ∅).
-Proof.
-  intros. apply rtc_once.
-  constructor; first constructor; [set_solver..|].
-  apply elem_of_equiv=>-[j|]; last set_solver.
-  destruct (decide (i = j)); set_solver.
-Qed.
-
-Lemma split_step p i i1 i2 I :
-  i ∈ I → i1 ∉ I → i2 ∉ I → i1 ≠ i2 →
-  sts.steps
-    (State p I, {[ Change i ]})
-    (State p ({[i1; i2]} ∪ I ∖ {[i]}), {[ Change i1; Change i2 ]}).
-Proof.
-  intros. apply rtc_once. constructor; first constructor.
-  - destruct p; set_solver.
-  - destruct p; set_solver.
-  - apply elem_of_equiv=> /= -[j|]; last set_solver.
-    set_unfold; rewrite !(inj_iff Change).
-    assert (Change j ∈ match p with Low => ∅ : set token | High => {[Send]} end ↔ False)
-      as -> by (destruct p; set_solver).
-    destruct (decide (i1 = j)) as [->|]; first naive_solver.
-    destruct (decide (i2 = j)) as [->|]; first naive_solver.
-    destruct (decide (i = j)) as [->|]; naive_solver.
-Qed.
diff --git a/theories/heap_lang/lib/barrier/specification.v b/theories/heap_lang/lib/barrier/specification.v
deleted file mode 100644
index e3b16d18a76cabda5ea3393cf4b425bdfa578172..0000000000000000000000000000000000000000
--- a/theories/heap_lang/lib/barrier/specification.v
+++ /dev/null
@@ -1,30 +0,0 @@
-From iris.program_logic Require Export hoare.
-From iris.heap_lang.lib.barrier Require Export barrier.
-From iris.heap_lang.lib.barrier Require Import proof.
-From iris.heap_lang Require Import proofmode.
-Set Default Proof Using "Type".
-Import uPred.
-
-Section spec.
-Local Set Default Proof Using "Type*".
-Context `{!heapG Σ, !barrierG Σ}.
-
-Lemma barrier_spec (N : namespace) :
-  ∃ recv send : loc → iProp Σ -n> iProp Σ,
-    (∀ P, {{ True }} newbarrier #()
-                     {{ v, ∃ l : loc, ⌜v = #l⌝ ∗ recv l P ∗ send l P }}) ∧
-    (∀ l P, {{ send l P ∗ P }} signal #l {{ _, True }}) ∧
-    (∀ l P, {{ recv l P }} wait #l {{ _, P }}) ∧
-    (∀ l P Q, recv l (P ∗ Q) ={↑N}=> recv l P ∗ recv l Q) ∧
-    (∀ l P Q, (P -∗ Q) -∗ recv l P -∗ recv l Q).
-Proof.
-  exists (λ l, CofeMor (recv N l)), (λ l, CofeMor (send N l)).
-  split_and?; simpl.
-  - iIntros (P) "!# _". iApply (newbarrier_spec _ P with "[]"); [done..|].
-    iNext. eauto.
-  - iIntros (l P) "!# [Hl HP]". iApply (signal_spec with "[$Hl $HP]"). by eauto.
-  - iIntros (l P) "!# Hl". iApply (wait_spec with "Hl"). eauto.
-  - iIntros (l P Q) "!#". by iApply recv_split.
-  - apply recv_weaken.
-Qed.
-End spec.