From 46e20e914858b020236b4ef4e7808bb5c1be1a65 Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Mon, 22 Oct 2018 11:32:10 +0200 Subject: [PATCH] get rid of observations in ownP, they just make porting harder --- theories/program_logic/ownp.v | 194 +++++++++++++++------------------- 1 file changed, 86 insertions(+), 108 deletions(-) diff --git a/theories/program_logic/ownp.v b/theories/program_logic/ownp.v index 42455a4d1..4eacbbb5c 100644 --- a/theories/program_logic/ownp.v +++ b/theories/program_logic/ownp.v @@ -5,69 +5,58 @@ From iris.algebra Require Import auth. From iris.proofmode Require Import tactics classes. Set Default Proof Using "Type". -Class ownPG' (Λstate Λobservation: Type) (Σ : gFunctors) := OwnPG { +Class ownPG' (Λstate Λobservation : Type) (Σ : gFunctors) := OwnPG { ownP_invG : invG Σ; - ownP_state_inG :> inG Σ (authR (optionUR (exclR (leibnizC Λstate)))); - ownP_obs_inG :> inG Σ (authR (optionUR (exclR (leibnizC (list Λobservation))))); - ownP_state_name : gname; - ownP_obs_name : gname + ownP_inG :> inG Σ (authR (optionUR (exclR (leibnizC Λstate)))); + ownP_name : gname; }. Notation ownPG Λ Σ := (ownPG' (state Λ) (observation Λ) Σ). Instance ownPG_irisG `{ownPG' Λstate Λobservation Σ} : irisG' Λstate Λobservation Σ := { iris_invG := ownP_invG; - state_interp σ κs := (own ownP_state_name (â— (Excl' (σ:leibnizC Λstate))) ∗ - own ownP_obs_name (â— (Excl' (κs:leibnizC (list Λobservation)))))%I + state_interp σ κs := (own ownP_name (â— (Excl' (σ:leibnizC Λstate))))%I }. Global Opaque iris_invG. -Definition ownPΣ (Λstate Λobservation : Type) : gFunctors := +Definition ownPΣ (Λstate : Type) : gFunctors := #[invΣ; - GFunctor (authR (optionUR (exclR (leibnizC Λstate)))); - GFunctor (authR (optionUR (exclR (leibnizC (list Λobservation)))))]. + GFunctor (authR (optionUR (exclR (leibnizC Λstate))))]. -Class ownPPreG' (Λstate Λobservation : Type) (Σ : gFunctors) : Set := IrisPreG { +Class ownPPreG' (Λstate : Type) (Σ : gFunctors) : Set := IrisPreG { ownPPre_invG :> invPreG Σ; - ownPPre_state_inG :> inG Σ (authR (optionUR (exclR (leibnizC Λstate)))); - ownPPre_obs_inG :> inG Σ (authR (optionUR (exclR (leibnizC (list Λobservation))))) + ownPPre_state_inG :> inG Σ (authR (optionUR (exclR (leibnizC Λstate)))) }. -Notation ownPPreG Λ Σ := (ownPPreG' (state Λ) (observation Λ) Σ). +Notation ownPPreG Λ Σ := (ownPPreG' (state Λ) Σ). -Instance subG_ownPΣ {Λstate Λobservation Σ} : subG (ownPΣ Λstate Λobservation) Σ → ownPPreG' Λstate Λobservation Σ. +Instance subG_ownPΣ {Λstate Σ} : subG (ownPΣ Λstate) Σ → ownPPreG' Λstate Σ. Proof. solve_inG. Qed. (** Ownership *) -Definition ownP_state `{ownPG' Λstate Λobservation Σ} (σ : Λstate) : iProp Σ := - own ownP_state_name (â—¯ (Excl' (σ:leibnizC Λstate))). +Definition ownP `{ownPG' Λstate Λobservation Σ} (σ : Λstate) : iProp Σ := + own ownP_name (â—¯ (Excl' (σ:leibnizC Λstate))). -Definition ownP_obs `{ownPG' Λstate Λobservation Σ} (κs: list Λobservation) : iProp Σ := - own ownP_obs_name (â—¯ (Excl' (κs:leibnizC (list Λobservation)))). - -Typeclasses Opaque ownP_state ownP_obs. -Instance: Params (@ownP_state) 3. -Instance: Params (@ownP_obs) 3. +Typeclasses Opaque ownP. +Instance: Params (@ownP) 3. (* Adequacy *) Theorem ownP_adequacy Σ `{ownPPreG Λ Σ} s e σ φ : - (∀ `{ownPG Λ Σ} κs, ownP_state σ ∗ ownP_obs κs ⊢ WP e @ s; ⊤ {{ v, ⌜φ v⌠}}) → + (∀ `{ownPG Λ Σ}, ownP σ ⊢ WP e @ s; ⊤ {{ v, ⌜φ v⌠}}) → adequate s e σ (λ v _, φ v). Proof. intros Hwp. apply (wp_adequacy Σ _). iIntros (? κs). iMod (own_alloc (â— (Excl' (σ : leibnizC _)) â‹… â—¯ (Excl' σ))) as (γσ) "[Hσ Hσf]"; first done. - iMod (own_alloc (â— (Excl' (κs : leibnizC _)) â‹… â—¯ (Excl' κs))) - as (γκs) "[Hκs Hκsf]"; first done. iModIntro. iExists (λ σ κs, - own γσ (â— (Excl' (σ:leibnizC _))) ∗ own γκs (â— (Excl' (κs:leibnizC _))))%I. - iFrame "Hσ Hκs". - iApply (Hwp (OwnPG _ _ _ _ _ _ γσ γκs)). rewrite /ownP_state /ownP_obs. iFrame. + own γσ (â— (Excl' (σ:leibnizC _))))%I. + iFrame "Hσ". + iApply (Hwp (OwnPG _ _ _ _ _ γσ)). rewrite /ownP. iFrame. Qed. Theorem ownP_invariance Σ `{ownPPreG Λ Σ} s e σ1 t2 σ2 φ : - (∀ `{ownPG Λ Σ} κs, - ownP_state σ1 ∗ ownP_obs κs ={⊤}=∗ WP e @ s; ⊤ {{ _, True }} ∗ - |={⊤,∅}=> ∃ σ' κs', ownP_state σ' ∗ ownP_obs κs' ∧ ⌜φ σ'âŒ) → + (∀ `{ownPG Λ Σ}, + ownP σ1 ={⊤}=∗ WP e @ s; ⊤ {{ _, True }} ∗ + |={⊤,∅}=> ∃ σ', ownP σ' ∧ ⌜φ σ'âŒ) → rtc erased_step ([e], σ1) (t2, σ2) → φ σ2. Proof. @@ -75,14 +64,12 @@ Proof. iIntros (? κs κs'). iMod (own_alloc (â— (Excl' (σ1 : leibnizC _)) â‹… â—¯ (Excl' σ1))) as (γσ) "[Hσ Hσf]"; first done. - iMod (own_alloc (â— (Excl' (κs ++ κs' : leibnizC _)) â‹… â—¯ (Excl' (κs ++ κs')))) - as (γκs) "[Hκs Hκsf]"; first done. iExists (λ σ κs', - own γσ (â— (Excl' (σ:leibnizC _))) ∗ own γκs (â— (Excl' (κs':leibnizC _))))%I. - iFrame "Hσ Hκs". - iMod (Hwp (OwnPG _ _ _ _ _ _ γσ γκs) with "[Hσf Hκsf]") as "[$ H]"; - first by rewrite /ownP_state /ownP_obs; iFrame. - iIntros "!> [Hσ Hκs]". iMod "H" as (σ2' κs'') "[Hσf [Hκsf %]]". rewrite/ownP_state /ownP_obs. + own γσ (â— (Excl' (σ:leibnizC _))))%I. + iFrame "Hσ". + iMod (Hwp (OwnPG _ _ _ _ _ γσ) with "[Hσf]") as "[$ H]"; + first by rewrite /ownP; iFrame. + iIntros "!> Hσ". iMod "H" as (σ2') "[Hσf %]". rewrite/ownP. iDestruct (own_valid_2 with "Hσ Hσf") as %[Hp _]%auth_valid_discrete_2. pose proof (Excl_included _ _ Hp) as Hp'. apply leibniz_equiv in Hp'. inversion Hp'; subst. auto. Qed. @@ -95,65 +82,54 @@ Section lifting. Implicit Types e : expr Λ. Implicit Types Φ : val Λ → iProp Σ. - Lemma ownP_eq σ1 σ2 κs1 κs2 : state_interp σ1 κs1 -∗ ownP_state σ2 -∗ ownP_obs κs2 -∗ ⌜σ1 = σ2 ∧ κs1 = κs2âŒ. + Lemma ownP_eq σ1 σ2 κs : state_interp σ1 κs -∗ ownP σ2 -∗ ⌜σ1 = σ2âŒ. Proof. - iIntros "[Hσ◠Hκsâ—] Hσ◯ Hκsâ—¯". rewrite /ownP_state /ownP_obs. + iIntros "Hσ◠Hσ◯". rewrite /ownP. iDestruct (own_valid_2 with "Hσ◠Hσ◯") as %[Hps _]%auth_valid_discrete_2. - iDestruct (own_valid_2 with "Hκsâ— Hκsâ—¯") - as %[Hpo _]%auth_valid_discrete_2. pose proof (leibniz_equiv _ _ (Excl_included _ _ Hps)) as ->. - pose proof (leibniz_equiv _ _ (Excl_included _ _ Hpo)) as ->. done. Qed. - Lemma ownP_state_twice σ1 σ2 : ownP_state σ1 ∗ ownP_state σ2 ⊢ False. - Proof. rewrite /ownP_state -own_op own_valid. by iIntros (?). Qed. - Lemma ownP_obs_twice κs1 κs2 : ownP_obs κs1 ∗ ownP_obs κs2 ⊢ False. - Proof. rewrite /ownP_obs -own_op own_valid. by iIntros (?). Qed. - Global Instance ownP_state_timeless σ : Timeless (@ownP_state (state Λ) (observation Λ) Σ _ σ). - Proof. rewrite /ownP_state; apply _. Qed. - Global Instance ownP_obs_timeless κs : Timeless (@ownP_obs (state Λ) (observation Λ) Σ _ κs). - Proof. rewrite /ownP_obs; apply _. Qed. + Lemma ownP_state_twice σ1 σ2 : ownP σ1 ∗ ownP σ2 ⊢ False. + Proof. rewrite /ownP -own_op own_valid. by iIntros (?). Qed. + Global Instance ownP_timeless σ : Timeless (@ownP (state Λ) (observation Λ) Σ _ σ). + Proof. rewrite /ownP; apply _. Qed. Lemma ownP_lift_step s E Φ e1 : - (|={E,∅}=> ∃ σ1 κs, ⌜if s is NotStuck then reducible e1 σ1 else to_val e1 = None⌠∗ - â–· ownP_state σ1 ∗ â–· ownP_obs κs ∗ - â–· ∀ κ κs' e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs ∧ κs = κ ++ κs'⌠-∗ - ownP_state σ2 ∗ ownP_obs κs' + (|={E,∅}=> ∃ σ1, ⌜if s is NotStuck then reducible e1 σ1 else to_val e1 = None⌠∗ + â–· ownP σ1 ∗ + â–· ∀ κ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠-∗ + ownP σ2 ={∅,E}=∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros "H". destruct (to_val e1) as [v|] eqn:EQe1. - apply of_to_val in EQe1 as <-. iApply fupd_wp. - iMod "H" as (σ1 κs) "[Hred _]"; iDestruct "Hred" as %Hred. + iMod "H" as (σ1) "[Hred _]"; iDestruct "Hred" as %Hred. destruct s; last done. apply reducible_not_val in Hred. move: Hred; by rewrite to_of_val. - iApply wp_lift_step; [done|]; iIntros (σ1 κ κs) "Hσκs". - iMod "H" as (σ1' κs' ?) "[>Hσf [>Hκsf H]]". - iDestruct (ownP_eq with "Hσκs Hσf Hκsf") as %[<- <-]. + iMod "H" as (σ1' ?) "[>Hσf H]". + iDestruct (ownP_eq with "Hσκs Hσf") as %<-. iModIntro; iSplit; [by destruct s|]; iNext; iIntros (e2 σ2 efs Hstep). - iDestruct "Hσκs" as "[Hσ Hκs]". - rewrite /ownP_state /ownP_obs. + iDestruct "Hσκs" as "Hσ". rewrite /ownP. iMod (own_update_2 with "Hσ Hσf") as "[Hσ Hσf]". { apply auth_update. apply: option_local_update. by apply: (exclusive_local_update _ (Excl σ2)). } - iMod (own_update_2 with "Hκs Hκsf") as "[Hκs Hκsf]". - { apply auth_update. apply: option_local_update. - by apply: (exclusive_local_update _ (Excl (κs:leibnizC _))). } - iFrame "Hσ Hκs". iApply ("H" with "[]"); eauto with iFrame. + iFrame "Hσ". iApply ("H" with "[]"); eauto with iFrame. Qed. Lemma ownP_lift_stuck E Φ e : - (|={E,∅}=> ∃ σ κs, ⌜stuck e σ⌠∗ â–· (ownP_state σ ∗ ownP_obs κs)) + (|={E,∅}=> ∃ σ, ⌜stuck e σ⌠∗ â–· (ownP σ)) ⊢ WP e @ E ?{{ Φ }}. Proof. iIntros "H". destruct (to_val e) as [v|] eqn:EQe. - apply of_to_val in EQe as <-. iApply fupd_wp. - iMod "H" as (σ1 κs) "[H _]". iDestruct "H" as %[Hnv _]. exfalso. + iMod "H" as (σ1) "[H _]". iDestruct "H" as %[Hnv _]. exfalso. by rewrite to_of_val in Hnv. - iApply wp_lift_stuck; [done|]. iIntros (σ1 κs) "Hσ". - iMod "H" as (σ1' κs') "(% & >[Hσf Hκsf])". - by iDestruct (ownP_eq with "Hσ Hσf Hκsf") as %[-> _]. + iMod "H" as (σ1') "(% & >Hσf)". + by iDestruct (ownP_eq with "Hσ Hσf") as %->. Qed. Lemma ownP_lift_pure_step `{Inhabited (state Λ)} s E Φ e1 : @@ -173,46 +149,46 @@ Section lifting. Qed. (** Derived lifting lemmas. *) - Lemma ownP_lift_atomic_step {s E Φ} e1 σ1 κs : + Lemma ownP_lift_atomic_step {s E Φ} e1 σ1 : (if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → - (â–· (ownP_state σ1 ∗ ownP_obs κs) ∗ - â–· ∀ κ κs' e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs ∧ κs = κ ++ κs'⌠-∗ - ownP_state σ2 -∗ ownP_obs κs' -∗ + (â–· (ownP σ1) ∗ + â–· ∀ κ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠-∗ + ownP σ2 -∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - iIntros (?) "[[Hσ Hκs] H]"; iApply ownP_lift_step. + iIntros (?) "[Hσ H]"; iApply ownP_lift_step. iMod (fupd_intro_mask' E ∅) as "Hclose"; first set_solver. - iModIntro; iExists σ1, κs; iFrame; iSplit; first by destruct s. - iNext; iIntros (κ κs' e2 σ2 efs [??]) "[Hσ Hκs]". - iDestruct ("H" $! κ κs' e2 σ2 efs with "[] [Hσ] [Hκs]") as "[HΦ $]"; [by eauto..|]. + iModIntro; iExists σ1; iFrame; iSplit; first by destruct s. + iNext; iIntros (κ e2 σ2 efs ?) "Hσ". + iDestruct ("H" $! κ e2 σ2 efs with "[] [Hσ]") as "[HΦ $]"; [by eauto..|]. destruct (to_val e2) eqn:?; last by iExFalso. iMod "Hclose"; iApply wp_value; last done. by apply of_to_val. Qed. - Lemma ownP_lift_atomic_det_step {s E Φ e1} σ1 κ κs v2 σ2 efs : + Lemma ownP_lift_atomic_det_step {s E Φ e1} σ1 v2 σ2 efs : (if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → (∀ κ' e2' σ2' efs', prim_step e1 σ1 κ' e2' σ2' efs' → - κ = κ' ∧ σ2 = σ2' ∧ to_val e2' = Some v2 ∧ efs = efs') → - â–· (ownP_state σ1 ∗ ownP_obs (κ ++ κs)) ∗ â–· (ownP_state σ2 -∗ ownP_obs κs -∗ + σ2 = σ2' ∧ to_val e2' = Some v2 ∧ efs = efs') → + â–· (ownP σ1) ∗ â–· (ownP σ2 -∗ Φ v2 ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - iIntros (? Hdet) "[[Hσ1 Hκs] Hσ2]"; iApply ownP_lift_atomic_step; try done. - iFrame; iNext; iIntros (κ' κs' e2' σ2' efs' (? & Heq)) "Hσ2' Hκs'". - edestruct (Hdet κ') as (->&->&Hval&->); first done. rewrite Hval. apply app_inv_head in Heq as ->. - iApply ("Hσ2" with "Hσ2' Hκs'"). + iIntros (? Hdet) "[Hσ1 Hσ2]"; iApply ownP_lift_atomic_step; try done. + iFrame; iNext; iIntros (κ' e2' σ2' efs' ?) "Hσ2'". + edestruct (Hdet κ') as (->&Hval&->); first done. rewrite Hval. + iApply ("Hσ2" with "Hσ2'"). Qed. - Lemma ownP_lift_atomic_det_step_no_fork {s E e1} σ1 κ κs v2 σ2 : + Lemma ownP_lift_atomic_det_step_no_fork {s E e1} σ1 v2 σ2 : (if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → (∀ κ' e2' σ2' efs', prim_step e1 σ1 κ' e2' σ2' efs' → - κ = κ' ∧ σ2 = σ2' ∧ to_val e2' = Some v2 ∧ [] = efs') → - {{{ â–· (ownP_state σ1 ∗ ownP_obs (κ ++ κs)) }}} e1 @ s; E {{{ RET v2; ownP_state σ2 ∗ ownP_obs κs}}}. + σ2 = σ2' ∧ to_val e2' = Some v2 ∧ [] = efs') → + {{{ â–· (ownP σ1) }}} e1 @ s; E {{{ RET v2; ownP σ2 }}}. Proof. - intros. rewrite -(ownP_lift_atomic_det_step σ1 κ κs v2 σ2 []); [|done..]. + intros. rewrite -(ownP_lift_atomic_det_step σ1 v2 σ2 []); [|done..]. rewrite big_sepL_nil right_id. apply bi.wand_intro_r. iIntros "[Hs Hs']". - iSplitL "Hs"; first by iFrame. iModIntro. iIntros "Hσ2 Hκs". iApply "Hs'". iFrame. + iSplitL "Hs"; first by iFrame. iModIntro. iIntros "Hσ2". iApply "Hs'". iFrame. Qed. Lemma ownP_lift_pure_det_step `{Inhabited (state Λ)} {s E Φ} e1 e2 efs : @@ -245,26 +221,26 @@ Section ectx_lifting. Hint Resolve head_stuck_stuck. Lemma ownP_lift_head_step s E Φ e1 : - (|={E,∅}=> ∃ σ1 κs, ⌜head_reducible e1 σ1⌠∗ â–· (ownP_state σ1 ∗ ownP_obs κs) ∗ - â–· ∀ κ κs' e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs ∧ κs = κ ++ κs'⌠-∗ - ownP_state σ2 -∗ ownP_obs κs' + (|={E,∅}=> ∃ σ1, ⌜head_reducible e1 σ1⌠∗ â–· (ownP σ1) ∗ + â–· ∀ κ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠-∗ + ownP σ2 ={∅,E}=∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros "H". iApply ownP_lift_step. - iMod "H" as (σ1 κs ?) "[>[Hσ1 Hκs] Hwp]". iModIntro. iExists σ1, κs. iSplit. + iMod "H" as (σ1 ?) "[>Hσ1 Hwp]". iModIntro. iExists σ1. iSplit. { destruct s; try by eauto using reducible_not_val. } - iFrame. iNext. iIntros (κ κs' e2 σ2 efs [? ->]) "[Hσ2 Hκs']". + iFrame. iNext. iIntros (κ e2 σ2 efs ?) "Hσ2". iApply ("Hwp" with "[] Hσ2"); eauto. Qed. Lemma ownP_lift_head_stuck E Φ e : sub_redexes_are_values e → - (|={E,∅}=> ∃ σ κs, ⌜head_stuck e σ⌠∗ â–· (ownP_state σ ∗ ownP_obs κs)) + (|={E,∅}=> ∃ σ, ⌜head_stuck e σ⌠∗ â–· (ownP σ)) ⊢ WP e @ E ?{{ Φ }}. Proof. - iIntros (?) "H". iApply ownP_lift_stuck. iMod "H" as (σ κs) "[% >[Hσ Hκs]]". - iExists σ, κs. iModIntro. by auto with iFrame. + iIntros (?) "H". iApply ownP_lift_stuck. iMod "H" as (σ) "[% >Hσ]". + iExists σ. iModIntro. by auto with iFrame. Qed. Lemma ownP_lift_pure_head_step s E Φ e1 : @@ -279,35 +255,37 @@ Section ectx_lifting. iNext. iIntros (?????). iApply "H"; eauto. Qed. - Lemma ownP_lift_atomic_head_step {s E Φ} e1 σ1 κs : + Lemma ownP_lift_atomic_head_step {s E Φ} e1 σ1 : head_reducible e1 σ1 → - â–· (ownP_state σ1 ∗ ownP_obs κs) ∗ â–· (∀ κ κs' e2 σ2 efs, - ⌜head_step e1 σ1 κ e2 σ2 efs ∧ κs = κ ++ κs'⌠-∗ ownP_state σ2 -∗ ownP_obs κs' -∗ + â–· (ownP σ1) ∗ â–· (∀ κ e2 σ2 efs, + ⌜head_step e1 σ1 κ e2 σ2 efs⌠-∗ ownP σ2 -∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "[Hst H]". iApply ownP_lift_atomic_step; eauto. { by destruct s; eauto using reducible_not_val. } iSplitL "Hst"; first done. - iNext. iIntros (????? [? ->]) "Hσ ?". iApply ("H" with "[] Hσ"); eauto. + iNext. iIntros (???? ?) "Hσ". iApply ("H" with "[] Hσ"); eauto. Qed. - Lemma ownP_lift_atomic_det_head_step {s E Φ e1} σ1 κ κs v2 σ2 efs : + Lemma ownP_lift_atomic_det_head_step {s E Φ e1} σ1 v2 σ2 efs : head_reducible e1 σ1 → (∀ κ' e2' σ2' efs', head_step e1 σ1 κ' e2' σ2' efs' → - κ = κ' ∧ σ2 = σ2' ∧ to_val e2' = Some v2 ∧ efs = efs') → - â–· (ownP_state σ1 ∗ ownP_obs (κ ++ κs)) ∗ â–· (ownP_state σ2 -∗ ownP_obs κs -∗ - Φ v2 ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + σ2 = σ2' ∧ to_val e2' = Some v2 ∧ efs = efs') → + â–· (ownP σ1) ∗ â–· (ownP σ2 -∗ + Φ v2 ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - intros Hr Hs. destruct s; apply ownP_lift_atomic_det_step; eauto using reducible_not_val. + intros Hr Hs. + destruct s; apply ownP_lift_atomic_det_step; eauto using reducible_not_val; + intros; eapply Hs; eauto 10. Qed. - Lemma ownP_lift_atomic_det_head_step_no_fork {s E e1} σ1 κ κs v2 σ2 : + Lemma ownP_lift_atomic_det_head_step_no_fork {s E e1} σ1 κ v2 σ2 : head_reducible e1 σ1 → (∀ κ' e2' σ2' efs', head_step e1 σ1 κ' e2' σ2' efs' → κ = κ' ∧ σ2 = σ2' ∧ to_val e2' = Some v2 ∧ [] = efs') → - {{{ â–· (ownP_state σ1 ∗ ownP_obs (κ ++ κs)) }}} e1 @ s; E {{{ RET v2; ownP_state σ2 ∗ ownP_obs κs }}}. + {{{ â–· (ownP σ1) }}} e1 @ s; E {{{ RET v2; ownP σ2 }}}. Proof. intros ???; apply ownP_lift_atomic_det_step_no_fork; last naive_solver. by destruct s; eauto using reducible_not_val. -- GitLab