diff --git a/theories/tests/proofmode.v b/theories/tests/proofmode.v index 660d174cb9dc320deaa232442449ead0e117a297..97d711b50deb55750f2b5607113a630ef79f3afb 100644 --- a/theories/tests/proofmode.v +++ b/theories/tests/proofmode.v @@ -291,12 +291,17 @@ Proof. iSpecialize ("Hφ" with "[% //] HP"). done. Qed. -Lemma test_iNext_laterN_later P n : ▷ ▷^n P ⊢ ▷^n ▷ P. +Lemma test_iNext_laterN_later P n : ▷ ▷^n P -∗ ▷^n ▷ P. Proof. iIntros "H". iNext. by iNext. Qed. -Lemma test_iNext_later_laterN P n : ▷^n ▷ P ⊢ ▷ ▷^n P. +Lemma test_iNext_later_laterN P n : ▷^n ▷ P -∗ ▷ ▷^n P. Proof. iIntros "H". iNext. by iNext. Qed. -Lemma test_iNext_laterN_laterN P n1 n2 : ▷ ▷^n1 ▷^n2 P ⊢ ▷^n1 ▷^n2 ▷ P. +Lemma test_iNext_plus_1 P n1 n2 : ▷ ▷^n1 ▷^n2 P -∗ ▷^n1 ▷^n2 ▷ P. Proof. iIntros "H". iNext. iNext. by iNext. Qed. +Lemma test_iNext_plus_2 P n m : ▷^n ▷^m P -∗ ▷^(n+m) P. +Proof. iIntros "H". iNext. done. Qed. +Lemma test_iNext_plus_3 P Q n m k : + ▷^m ▷^(2 + S n + k) P -∗ ▷^m ▷ ▷^(2 + S n) Q -∗ ▷^k ▷ ▷^(S (S n + S m)) (P ∗ Q). +Proof. iIntros "H1 H2". iNext. iNext. iNext. iFrame. Qed. Lemma test_iEval x y : ⌜ (y + x)%nat = 1 ⌠-∗ ⌜ S (x + y) = 2%nat ⌠: uPred M. Proof.