upred.v 32.9 KB
Newer Older
1
From stdpp Require Import finite.
2
3
From iris.bi Require Import notation.
From iris.algebra Require Export cmra updates.
4
Set Default Proof Using "Type".
Tej Chajed's avatar
Tej Chajed committed
5
6
7
Local Hint Extern 1 (_  _) => etrans; [eassumption|] : core.
Local Hint Extern 1 (_  _) => etrans; [|eassumption] : core.
Local Hint Extern 10 (_  _) => lia : core.
8

Ralf Jung's avatar
Ralf Jung committed
9
10
11
12
13
(** The basic definition of the uPred type, its metric and functor laws.
    You probably do not want to import this file. Instead, import
    base_logic.base_logic; that will also give you all the primitive
    and many derived laws for the logic. *)

Ralf Jung's avatar
Ralf Jung committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
(* A good way of understanding this definition of the uPred OFE is to
   consider the OFE uPred0 of monotonous SProp predicates. That is,
   uPred0 is the OFE of non-expansive functions from M to SProp that
   are monotonous with respect to CMRA inclusion. This notion of
   monotonicity has to be stated in the SProp logic. Together with the
   usual closedness property of SProp, this gives exactly uPred_mono.

   Then, we quotient uPred0 *in the sProp logic* with respect to
   equivalence on valid elements of M. That is, we quotient with
   respect to the following *sProp* equivalence relation:
     P1 ≡ P2 := ∀ x, ✓ x → (P1(x) ↔ P2(x))       (1)
   When seen from the ambiant logic, obtaining this quotient requires
   definig both a custom Equiv and Dist.


   It is worth noting that this equivalence relation admits canonical
   representatives. More precisely, one can show that every
   equivalence class contains exactly one element P0 such that:
Ralf Jung's avatar
Ralf Jung committed
32
33
34
35
36
     ∀ x, (✓ x → P0(x)) → P0(x)                 (2)
   (Again, this assertion has to be understood in sProp). Intuitively,
   this says that P0 trivially holds whenever the resource is invalid.
   Starting from any element P, one can find this canonical
   representative by choosing:
Ralf Jung's avatar
Ralf Jung committed
37
38
39
40
41
42
43
44
45
46
47
48
     P0(x) := ✓ x → P(x)                        (3)

   Hence, as an alternative definition of uPred, we could use the set
   of canonical representatives (i.e., the subtype of monotonous
   sProp predicates that verify (2)). This alternative definition would
   save us from using a quotient. However, the definitions of the various
   connectives would get more complicated, because we have to make sure
   they all verify (2), which sometimes requires some adjustments. We
   would moreover need to prove one more property for every logical
   connective.
 *)

49
Record uPred (M : ucmraT) : Type := UPred {
50
  uPred_holds :> nat  M  Prop;
51

52
53
  uPred_mono n1 n2 x1 x2 :
    uPred_holds n1 x1  x1 {n1} x2  n2  n1  uPred_holds n2 x2
54
}.
55
56
Bind Scope bi_scope with uPred.
Arguments uPred_holds {_} _%I _ _ : simpl never.
57
Add Printing Constructor uPred.
58
Instance: Params (@uPred_holds) 3 := {}.
59
60
61
62
63
64
65
66
67
68

Section cofe.
  Context {M : ucmraT}.

  Inductive uPred_equiv' (P Q : uPred M) : Prop :=
    { uPred_in_equiv :  n x, {n} x  P n x  Q n x }.
  Instance uPred_equiv : Equiv (uPred M) := uPred_equiv'.
  Inductive uPred_dist' (n : nat) (P Q : uPred M) : Prop :=
    { uPred_in_dist :  n' x, n'  n  {n'} x  P n' x  Q n' x }.
  Instance uPred_dist : Dist (uPred M) := uPred_dist'.
69
  Definition uPred_ofe_mixin : OfeMixin (uPred M).
70
71
72
73
74
75
76
77
78
79
80
81
  Proof.
    split.
    - intros P Q; split.
      + by intros HPQ n; split=> i x ??; apply HPQ.
      + intros HPQ; split=> n x ?; apply HPQ with n; auto.
    - intros n; split.
      + by intros P; split=> x i.
      + by intros P Q HPQ; split=> x i ??; symmetry; apply HPQ.
      + intros P Q Q' HP HQ; split=> i x ??.
        by trans (Q i x);[apply HP|apply HQ].
    - intros n P Q HPQ; split=> i x ??; apply HPQ; auto.
  Qed.
82
  Canonical Structure uPredO : ofeT := OfeT (uPred M) uPred_ofe_mixin.
83

84
  Program Definition uPred_compl : Compl uPredO := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
85
    {| uPred_holds n x :=  n', n'  n  {n'} x  c n' n' x |}.
86
  Next Obligation.
87
88
89
    move=> /= c n1 n2 x1 x2 HP Hx12 Hn12 n3 Hn23 Hv. eapply uPred_mono.
    eapply HP, cmra_validN_includedN, cmra_includedN_le=>//; lia.
    eapply cmra_includedN_le=>//; lia. done.
90
  Qed.
91
  Global Program Instance uPred_cofe : Cofe uPredO := {| compl := uPred_compl |}.
92
  Next Obligation.
93
94
    intros n c; split=>i x Hin Hv.
    etrans; [|by symmetry; apply (chain_cauchy c i n)]. split=>H; [by apply H|].
95
    repeat intro. apply (chain_cauchy c n' i)=>//. by eapply uPred_mono.
96
  Qed.
97
End cofe.
98
Arguments uPredO : clear implicits.
99
100
101
102
103
104
105
106
107
108
109

Instance uPred_ne {M} (P : uPred M) n : Proper (dist n ==> iff) (P n).
Proof.
  intros x1 x2 Hx; split=> ?; eapply uPred_mono; eauto; by rewrite Hx.
Qed.
Instance uPred_proper {M} (P : uPred M) n : Proper (() ==> iff) (P n).
Proof. by intros x1 x2 Hx; apply uPred_ne, equiv_dist. Qed.

Lemma uPred_holds_ne {M} (P Q : uPred M) n1 n2 x :
  P {n2} Q  n2  n1  {n2} x  Q n1 x  P n2 x.
Proof.
110
  intros [Hne] ???. eapply Hne; try done. eauto using uPred_mono, cmra_validN_le.
111
112
Qed.

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
(* Equivalence to the definition of uPred in the appendix. *)
Lemma uPred_alt {M : ucmraT} (P: nat  M  Prop) :
  ( n1 n2 x1 x2, P n1 x1  x1 {n1} x2  n2  n1  P n2 x2) 
  ( ( x n1 n2, n2  n1  P n1 x  P n2 x) (* Pointwise down-closed *)
   ( n x1 x2, x1 {n} x2   m, m  n  P m x1  P m x2) (* Non-expansive *)
   ( n x1 x2, x1 {n} x2   m, m  n  P m x1  P m x2) (* Monotonicity *)
  ).
Proof.
  (* Provide this lemma to eauto. *)
  assert ( n1 n2 (x1 x2 : M), n2  n1  x1 {n1} x2  x1 {n2} x2).
  { intros ????? H. eapply cmra_includedN_le; last done. by rewrite H. }
  (* Now go ahead. *)
  split.
  - intros Hupred. repeat split; eauto using cmra_includedN_le.
  - intros (Hdown & _ & Hmono) **. eapply Hmono; [done..|]. eapply Hdown; done.
128
129
130
131
Qed.

(** functor *)
Program Definition uPred_map {M1 M2 : ucmraT} (f : M2 -n> M1)
132
  `{!CmraMorphism f} (P : uPred M1) :
133
  uPred M2 := {| uPred_holds n x := P n (f x) |}.
134
Next Obligation. naive_solver eauto using uPred_mono, cmra_morphism_monotoneN. Qed.
135
136

Instance uPred_map_ne {M1 M2 : ucmraT} (f : M2 -n> M1)
137
  `{!CmraMorphism f} n : Proper (dist n ==> dist n) (uPred_map f).
138
139
Proof.
  intros x1 x2 Hx; split=> n' y ??.
140
  split; apply Hx; auto using cmra_morphism_validN.
141
142
143
144
Qed.
Lemma uPred_map_id {M : ucmraT} (P : uPred M): uPred_map cid P  P.
Proof. by split=> n x ?. Qed.
Lemma uPred_map_compose {M1 M2 M3 : ucmraT} (f : M1 -n> M2) (g : M2 -n> M3)
145
    `{!CmraMorphism f, !CmraMorphism g} (P : uPred M3):
146
147
148
  uPred_map (g  f) P  uPred_map f (uPred_map g P).
Proof. by split=> n x Hx. Qed.
Lemma uPred_map_ext {M1 M2 : ucmraT} (f g : M1 -n> M2)
149
      `{!CmraMorphism f} `{!CmraMorphism g}:
150
151
  ( x, f x  g x)   x, uPred_map f x  uPred_map g x.
Proof. intros Hf P; split=> n x Hx /=; by rewrite /uPred_holds /= Hf. Qed.
152
153
154
Definition uPredO_map {M1 M2 : ucmraT} (f : M2 -n> M1) `{!CmraMorphism f} :
  uPredO M1 -n> uPredO M2 := OfeMor (uPred_map f : uPredO M1  uPredO M2).
Lemma uPredO_map_ne {M1 M2 : ucmraT} (f g : M2 -n> M1)
155
    `{!CmraMorphism f, !CmraMorphism g} n :
156
  f {n} g  uPredO_map f {n} uPredO_map g.
157
158
159
160
161
Proof.
  by intros Hfg P; split=> n' y ??;
    rewrite /uPred_holds /= (dist_le _ _ _ _(Hfg y)); last lia.
Qed.

162
163
164
Program Definition uPredOF (F : urFunctor) : oFunctor := {|
  oFunctor_car A _ B _ := uPredO (urFunctor_car F B A);
  oFunctor_map A1 _ A2 _ B1 _ B2 _ fg := uPredO_map (urFunctor_map F (fg.2, fg.1))
165
166
|}.
Next Obligation.
167
  intros F A1 ? A2 ? B1 ? B2 ? n P Q HPQ.
168
  apply uPredO_map_ne, urFunctor_ne; split; by apply HPQ.
169
170
Qed.
Next Obligation.
171
  intros F A ? B ? P; simpl. rewrite -{2}(uPred_map_id P).
172
173
174
  apply uPred_map_ext=>y. by rewrite urFunctor_id.
Qed.
Next Obligation.
175
  intros F A1 ? A2 ? A3 ? B1 ? B2 ? B3 ? f g f' g' P; simpl. rewrite -uPred_map_compose.
176
177
178
  apply uPred_map_ext=>y; apply urFunctor_compose.
Qed.

179
180
Instance uPredOF_contractive F :
  urFunctorContractive F  oFunctorContractive (uPredOF F).
181
Proof.
182
  intros ? A1 ? A2 ? B1 ? B2 ? n P Q HPQ. apply uPredO_map_ne, urFunctor_contractive.
183
  destruct n; split; by apply HPQ.
184
185
186
187
188
Qed.

(** logical entailement *)
Inductive uPred_entails {M} (P Q : uPred M) : Prop :=
  { uPred_in_entails :  n x, {n} x  P n x  Q n x }.
189
Hint Resolve uPred_mono : uPred_def.
190

Robbert Krebbers's avatar
Robbert Krebbers committed
191
192
193
194
195
(** logical connectives *)
Program Definition uPred_pure_def {M} (φ : Prop) : uPred M :=
  {| uPred_holds n x := φ |}.
Solve Obligations with done.
Definition uPred_pure_aux : seal (@uPred_pure_def). by eexists. Qed.
196
Definition uPred_pure {M} := uPred_pure_aux.(unseal) M.
Robbert Krebbers's avatar
Robbert Krebbers committed
197
Definition uPred_pure_eq :
198
  @uPred_pure = @uPred_pure_def := uPred_pure_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
199
200
201
202
203

Program Definition uPred_and_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
Definition uPred_and_aux : seal (@uPred_and_def). by eexists. Qed.
204
205
Definition uPred_and {M} := uPred_and_aux.(unseal) M.
Definition uPred_and_eq: @uPred_and = @uPred_and_def := uPred_and_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
206
207
208
209
210

Program Definition uPred_or_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
Definition uPred_or_aux : seal (@uPred_or_def). by eexists. Qed.
211
212
Definition uPred_or {M} := uPred_or_aux.(unseal) M.
Definition uPred_or_eq: @uPred_or = @uPred_or_def := uPred_or_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
213
214
215
216
217

Program Definition uPred_impl_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  n' x',
       x  x'  n'  n  {n'} x'  P n' x'  Q n' x' |}.
Next Obligation.
218
  intros M P Q n1 n1' x1 x1' HPQ [x2 Hx1'] Hn1 n2 x3 [x4 Hx3] ?; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
219
220
221
222
  rewrite Hx3 (dist_le _ _ _ _ Hx1'); auto. intros ??.
  eapply HPQ; auto. exists (x2  x4); by rewrite assoc.
Qed.
Definition uPred_impl_aux : seal (@uPred_impl_def). by eexists. Qed.
223
Definition uPred_impl {M} := uPred_impl_aux.(unseal) M.
Robbert Krebbers's avatar
Robbert Krebbers committed
224
Definition uPred_impl_eq :
225
  @uPred_impl = @uPred_impl_def := uPred_impl_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
226
227
228
229
230

Program Definition uPred_forall_def {M A} (Ψ : A  uPred M) : uPred M :=
  {| uPred_holds n x :=  a, Ψ a n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
Definition uPred_forall_aux : seal (@uPred_forall_def). by eexists. Qed.
231
Definition uPred_forall {M A} := uPred_forall_aux.(unseal) M A.
Robbert Krebbers's avatar
Robbert Krebbers committed
232
Definition uPred_forall_eq :
233
  @uPred_forall = @uPred_forall_def := uPred_forall_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
234
235
236
237
238

Program Definition uPred_exist_def {M A} (Ψ : A  uPred M) : uPred M :=
  {| uPred_holds n x :=  a, Ψ a n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
Definition uPred_exist_aux : seal (@uPred_exist_def). by eexists. Qed.
239
240
Definition uPred_exist {M A} := uPred_exist_aux.(unseal) M A.
Definition uPred_exist_eq: @uPred_exist = @uPred_exist_def := uPred_exist_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
241
242
243
244
245

Program Definition uPred_internal_eq_def {M} {A : ofeT} (a1 a2 : A) : uPred M :=
  {| uPred_holds n x := a1 {n} a2 |}.
Solve Obligations with naive_solver eauto 2 using (dist_le (A:=A)).
Definition uPred_internal_eq_aux : seal (@uPred_internal_eq_def). by eexists. Qed.
246
Definition uPred_internal_eq {M A} := uPred_internal_eq_aux.(unseal) M A.
Robbert Krebbers's avatar
Robbert Krebbers committed
247
Definition uPred_internal_eq_eq:
248
  @uPred_internal_eq = @uPred_internal_eq_def := uPred_internal_eq_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
249
250
251
252

Program Definition uPred_sep_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  x1 x2, x {n} x1  x2  P n x1  Q n x2 |}.
Next Obligation.
253
  intros M P Q n1 n2 x y (x1&x2&Hx&?&?) [z Hy] Hn.
Robbert Krebbers's avatar
Robbert Krebbers committed
254
  exists x1, (x2  z); split_and?; eauto using uPred_mono, cmra_includedN_l.
255
  eapply dist_le, Hn. by rewrite Hy Hx assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
256
257
Qed.
Definition uPred_sep_aux : seal (@uPred_sep_def). by eexists. Qed.
258
259
Definition uPred_sep {M} := uPred_sep_aux.(unseal) M.
Definition uPred_sep_eq: @uPred_sep = @uPred_sep_def := uPred_sep_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
260
261
262
263
264

Program Definition uPred_wand_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  n' x',
       n'  n  {n'} (x  x')  P n' x'  Q n' (x  x') |}.
Next Obligation.
265
266
  intros M P Q n1 n1' x1 x1' HPQ ? Hn n3 x3 ???; simpl in *.
  eapply uPred_mono with n3 (x1  x3);
Robbert Krebbers's avatar
Robbert Krebbers committed
267
268
269
    eauto using cmra_validN_includedN, cmra_monoN_r, cmra_includedN_le.
Qed.
Definition uPred_wand_aux : seal (@uPred_wand_def). by eexists. Qed.
270
Definition uPred_wand {M} := uPred_wand_aux.(unseal) M.
Robbert Krebbers's avatar
Robbert Krebbers committed
271
Definition uPred_wand_eq :
272
  @uPred_wand = @uPred_wand_def := uPred_wand_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
273

274
275
276
(* Equivalently, this could be `∀ y, P n y`.  That's closer to the intuition
   of "embedding the step-indexed logic in Iris", but the two are equivalent
   because Iris is afine.  The following is easier to work with. *)
277
Program Definition uPred_plainly_def {M} (P : uPred M) : uPred M :=
278
  {| uPred_holds n x := P n ε |}.
279
Solve Obligations with naive_solver eauto using uPred_mono, ucmra_unit_validN.
280
281
282
283
Definition uPred_plainly_aux : seal (@uPred_plainly_def). by eexists. Qed.
Definition uPred_plainly {M} := uPred_plainly_aux.(unseal) M.
Definition uPred_plainly_eq :
  @uPred_plainly = @uPred_plainly_def := uPred_plainly_aux.(seal_eq).
284

Robbert Krebbers's avatar
Robbert Krebbers committed
285
286
287
288
289
290
Program Definition uPred_persistently_def {M} (P : uPred M) : uPred M :=
  {| uPred_holds n x := P n (core x) |}.
Next Obligation.
  intros M; naive_solver eauto using uPred_mono, @cmra_core_monoN.
Qed.
Definition uPred_persistently_aux : seal (@uPred_persistently_def). by eexists. Qed.
291
Definition uPred_persistently {M} := uPred_persistently_aux.(unseal) M.
Robbert Krebbers's avatar
Robbert Krebbers committed
292
Definition uPred_persistently_eq :
293
  @uPred_persistently = @uPred_persistently_def := uPred_persistently_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
294
295
296
297

Program Definition uPred_later_def {M} (P : uPred M) : uPred M :=
  {| uPred_holds n x := match n return _ with 0 => True | S n' => P n' x end |}.
Next Obligation.
298
  intros M P [|n1] [|n2] x1 x2; eauto using uPred_mono, cmra_includedN_S with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
299
300
Qed.
Definition uPred_later_aux : seal (@uPred_later_def). by eexists. Qed.
301
Definition uPred_later {M} := uPred_later_aux.(unseal) M.
Robbert Krebbers's avatar
Robbert Krebbers committed
302
Definition uPred_later_eq :
303
  @uPred_later = @uPred_later_def := uPred_later_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
304
305
306
307

Program Definition uPred_ownM_def {M : ucmraT} (a : M) : uPred M :=
  {| uPred_holds n x := a {n} x |}.
Next Obligation.
308
309
  intros M a n1 n2 x1 x [a' Hx1] [x2 Hx] Hn. eapply cmra_includedN_le=>//.
  exists (a'  x2). by rewrite Hx(assoc op) Hx1.
Robbert Krebbers's avatar
Robbert Krebbers committed
310
311
Qed.
Definition uPred_ownM_aux : seal (@uPred_ownM_def). by eexists. Qed.
312
Definition uPred_ownM {M} := uPred_ownM_aux.(unseal) M.
Robbert Krebbers's avatar
Robbert Krebbers committed
313
Definition uPred_ownM_eq :
314
  @uPred_ownM = @uPred_ownM_def := uPred_ownM_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
315
316
317
318
319

Program Definition uPred_cmra_valid_def {M} {A : cmraT} (a : A) : uPred M :=
  {| uPred_holds n x := {n} a |}.
Solve Obligations with naive_solver eauto 2 using cmra_validN_le.
Definition uPred_cmra_valid_aux : seal (@uPred_cmra_valid_def). by eexists. Qed.
320
Definition uPred_cmra_valid {M A} := uPred_cmra_valid_aux.(unseal) M A.
Robbert Krebbers's avatar
Robbert Krebbers committed
321
Definition uPred_cmra_valid_eq :
322
  @uPred_cmra_valid = @uPred_cmra_valid_def := uPred_cmra_valid_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
323
324
325
326
327

Program Definition uPred_bupd_def {M} (Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  k yf,
      k  n  {k} (x  yf)   x', {k} (x'  yf)  Q k x' |}.
Next Obligation.
328
  intros M Q n1 n2 x1 x2 HQ [x3 Hx] Hn k yf Hk.
Robbert Krebbers's avatar
Robbert Krebbers committed
329
330
331
  rewrite (dist_le _ _ _ _ Hx); last lia. intros Hxy.
  destruct (HQ k (x3  yf)) as (x'&?&?); [auto|by rewrite assoc|].
  exists (x'  x3); split; first by rewrite -assoc.
332
  eauto using uPred_mono, cmra_includedN_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
333
Qed.
334
335
336
337
338
339
340
Definition uPred_bupd_aux : seal (@uPred_bupd_def). by eexists. Qed.
Definition uPred_bupd {M} := uPred_bupd_aux.(unseal) M.
Definition uPred_bupd_eq :
  @uPred_bupd = @uPred_bupd_def := uPred_bupd_aux.(seal_eq).

(** Global uPred-specific Notation *)
Notation "✓ x" := (uPred_cmra_valid x) (at level 20) : bi_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
341

342
(** Primitive logical rules.
343
344
345
    These are not directly usable later because they do not refer to the BI
    connectives. *)
Module uPred_primitive.
Robbert Krebbers's avatar
Robbert Krebbers committed
346
347
348
Definition unseal_eqs :=
  (uPred_pure_eq, uPred_and_eq, uPred_or_eq, uPred_impl_eq, uPred_forall_eq,
  uPred_exist_eq, uPred_internal_eq_eq, uPred_sep_eq, uPred_wand_eq,
349
  uPred_plainly_eq, uPred_persistently_eq, uPred_later_eq, uPred_ownM_eq,
350
  uPred_cmra_valid_eq, @uPred_bupd_eq).
351
Ltac unseal :=
352
  rewrite !unseal_eqs /=.
Robbert Krebbers's avatar
Robbert Krebbers committed
353

354
355
356
357
358
359
Section primitive.
Context {M : ucmraT}.
Implicit Types φ : Prop.
Implicit Types P Q : uPred M.
Implicit Types A : Type.
Arguments uPred_holds {_} !_ _ _ /.
Tej Chajed's avatar
Tej Chajed committed
360
Hint Immediate uPred_in_entails : core.
Robbert Krebbers's avatar
Robbert Krebbers committed
361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
Notation "P ⊢ Q" := (@uPred_entails M P%I Q%I) : stdpp_scope.
Notation "(⊢)" := (@uPred_entails M) (only parsing) : stdpp_scope.
Notation "P ⊣⊢ Q" := (@uPred_equiv M P%I Q%I) : stdpp_scope.
Notation "(⊣⊢)" := (@uPred_equiv M) (only parsing) : stdpp_scope.

Notation "'True'" := (uPred_pure True) : bi_scope.
Notation "'False'" := (uPred_pure False) : bi_scope.
Notation "'⌜' φ '⌝'" := (uPred_pure φ%type%stdpp) : bi_scope.
Infix "∧" := uPred_and : bi_scope.
Infix "∨" := uPred_or : bi_scope.
Infix "→" := uPred_impl : bi_scope.
Notation "∀ x .. y , P" :=
  (uPred_forall (λ x, .. (uPred_forall (λ y, P)) ..)) : bi_scope.
Notation "∃ x .. y , P" :=
  (uPred_exist (λ x, .. (uPred_exist (λ y, P)) ..)) : bi_scope.
Infix "∗" := uPred_sep : bi_scope.
Infix "-∗" := uPred_wand : bi_scope.
Notation "□ P" := (uPred_persistently P) : bi_scope.
Notation "■ P" := (uPred_plainly P) : bi_scope.
Notation "x ≡ y" := (uPred_internal_eq x y) : bi_scope.
Notation "▷ P" := (uPred_later P) : bi_scope.
Notation "|==> P" := (uPred_bupd P) : bi_scope.

(** Entailment *)
Lemma entails_po : PreOrder ().
Robbert Krebbers's avatar
Robbert Krebbers committed
387
388
Proof.
  split.
389
390
391
392
393
394
  - by intros P; split=> x i.
  - by intros P Q Q' HP HQ; split=> x i ??; apply HQ, HP.
Qed.
Lemma entails_anti_sym : AntiSymm () ().
Proof. intros P Q HPQ HQP; split=> x n; by split; [apply HPQ|apply HQP]. Qed.
Lemma equiv_spec P Q : (P  Q)  (P  Q)  (Q  P).
Robbert Krebbers's avatar
Robbert Krebbers committed
395
396
Proof.
  split.
397
398
399
  - intros HPQ; split; split=> x i; apply HPQ.
  - intros [??]. exact: entails_anti_sym.
Qed.
400
Lemma entails_lim (cP cQ : chain (uPredO M)) :
401
402
403
  ( n, cP n  cQ n)  compl cP  compl cQ.
Proof.
  intros Hlim; split=> n m ? HP.
Robbert Krebbers's avatar
Robbert Krebbers committed
404
  eapply uPred_holds_ne, Hlim, HP; rewrite ?conv_compl; eauto.
405
Qed.
406

407
408
409
410
411
(** Non-expansiveness and setoid morphisms *)
Lemma pure_ne n : Proper (iff ==> dist n) (@uPred_pure M).
Proof. intros φ1 φ2 Hφ. by unseal; split=> -[|m] ?; try apply Hφ. Qed.

Lemma and_ne : NonExpansive2 (@uPred_and M).
Robbert Krebbers's avatar
Robbert Krebbers committed
412
Proof.
413
414
  intros n P P' HP Q Q' HQ; unseal; split=> x n' ??.
  split; (intros [??]; split; [by apply HP|by apply HQ]).
Robbert Krebbers's avatar
Robbert Krebbers committed
415
416
Qed.

417
Lemma or_ne : NonExpansive2 (@uPred_or M).
Robbert Krebbers's avatar
Robbert Krebbers committed
418
Proof.
419
420
  intros n P P' HP Q Q' HQ; split=> x n' ??.
  unseal; split; (intros [?|?]; [left; by apply HP|right; by apply HQ]).
Robbert Krebbers's avatar
Robbert Krebbers committed
421
422
Qed.

423
424
425
426
427
428
Lemma impl_ne :
  NonExpansive2 (@uPred_impl M).
Proof.
  intros n P P' HP Q Q' HQ; split=> x n' ??.
  unseal; split; intros HPQ x' n'' ????; apply HQ, HPQ, HP; auto.
Qed.
429

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
Lemma sep_ne : NonExpansive2 (@uPred_sep M).
Proof.
  intros n P P' HP Q Q' HQ; split=> n' x ??.
  unseal; split; intros (x1&x2&?&?&?); ofe_subst x;
    exists x1, x2; split_and!; try (apply HP || apply HQ);
    eauto using cmra_validN_op_l, cmra_validN_op_r.
Qed.

Lemma wand_ne :
  NonExpansive2 (@uPred_wand M).
Proof.
  intros n P P' HP Q Q' HQ; split=> n' x ??; unseal; split; intros HPQ x' n'' ???;
    apply HQ, HPQ, HP; eauto using cmra_validN_op_r.
Qed.

Lemma internal_eq_ne (A : ofeT) :
  NonExpansive2 (@uPred_internal_eq M A).
Proof.
  intros n x x' Hx y y' Hy; split=> n' z; unseal; split; intros; simpl in *.
  - by rewrite -(dist_le _ _ _ _ Hx) -?(dist_le _ _ _ _ Hy); auto.
  - by rewrite (dist_le _ _ _ _ Hx) ?(dist_le _ _ _ _ Hy); auto.
Qed.

Lemma forall_ne A n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_forall M A).
Proof.
  by intros Ψ1 Ψ2 HΨ; unseal; split=> n' x; split; intros HP a; apply HΨ.
Qed.

Lemma exist_ne A n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_exist M A).
Proof.
  intros Ψ1 Ψ2 HΨ.
  unseal; split=> n' x ??; split; intros [a ?]; exists a; by apply HΨ.
Qed.

Lemma later_contractive : Contractive (@uPred_later M).
Proof.
Ralf Jung's avatar
Ralf Jung committed
468
  unseal; intros [|n] P Q HPQ; split=> -[|n'] x ?? //=; try lia.
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
  apply HPQ; eauto using cmra_validN_S.
Qed.

Lemma plainly_ne : NonExpansive (@uPred_plainly M).
Proof.
  intros n P1 P2 HP.
  unseal; split=> n' x; split; apply HP; eauto using @ucmra_unit_validN.
Qed.

Lemma persistently_ne : NonExpansive (@uPred_persistently M).
Proof.
  intros n P1 P2 HP.
  unseal; split=> n' x; split; apply HP; eauto using @cmra_core_validN.
Qed.

Lemma ownM_ne : NonExpansive (@uPred_ownM M).
485
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
486
487
  intros n a b Ha.
  unseal; split=> n' x ? /=. by rewrite (dist_le _ _ _ _ Ha); last lia.
488
489
Qed.

490
Lemma cmra_valid_ne {A : cmraT} :
Robbert Krebbers's avatar
Robbert Krebbers committed
491
  NonExpansive (@uPred_cmra_valid M A).
492
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
493
494
  intros n a b Ha; unseal; split=> n' x ? /=.
  by rewrite (dist_le _ _ _ _ Ha); last lia.
495
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
496

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
Lemma bupd_ne : NonExpansive (@uPred_bupd M).
Proof.
  intros n P Q HPQ.
  unseal; split=> n' x; split; intros HP k yf ??;
    destruct (HP k yf) as (x'&?&?); auto;
    exists x'; split; auto; apply HPQ; eauto using cmra_validN_op_l.
Qed.

(** Introduction and elimination rules *)
Lemma pure_intro φ P : φ  P  ⌜φ⌝.
Proof. by intros ?; unseal; split. Qed.
Lemma pure_elim' φ P : (φ  True  P)  ⌜φ⌝  P.
Proof. unseal; intros HP; split=> n x ??. by apply HP. Qed.
Lemma pure_forall_2 {A} (φ : A  Prop) : ( x : A, ⌜φ x)   x : A, φ x.
Proof. by unseal. Qed.
512

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
Lemma and_elim_l P Q : P  Q  P.
Proof. by unseal; split=> n x ? [??]. Qed.
Lemma and_elim_r P Q : P  Q  Q.
Proof. by unseal; split=> n x ? [??]. Qed.
Lemma and_intro P Q R : (P  Q)  (P  R)  P  Q  R.
Proof. intros HQ HR; unseal; split=> n x ??; by split; [apply HQ|apply HR]. Qed.

Lemma or_intro_l P Q : P  P  Q.
Proof. unseal; split=> n x ??; left; auto. Qed.
Lemma or_intro_r P Q : Q  P  Q.
Proof. unseal; split=> n x ??; right; auto. Qed.
Lemma or_elim P Q R : (P  R)  (Q  R)  P  Q  R.
Proof. intros HP HQ; unseal; split=> n x ? [?|?]. by apply HP. by apply HQ. Qed.

Lemma impl_intro_r P Q R : (P  Q  R)  P  Q  R.
Proof.
  unseal; intros HQ; split=> n x ?? n' x' ????. apply HQ;
    naive_solver eauto using uPred_mono, cmra_included_includedN.
Qed.
Lemma impl_elim_l' P Q R : (P  Q  R)  P  Q  R.
Proof. unseal; intros HP ; split=> n x ? [??]; apply HP with n x; auto. Qed.
534

535
536
537
538
Lemma forall_intro {A} P (Ψ : A  uPred M): ( a, P  Ψ a)  P   a, Ψ a.
Proof. unseal; intros HPΨ; split=> n x ?? a; by apply HPΨ. Qed.
Lemma forall_elim {A} {Ψ : A  uPred M} a : ( a, Ψ a)  Ψ a.
Proof. unseal; split=> n x ? HP; apply HP. Qed.
539

540
541
542
543
544
545
546
Lemma exist_intro {A} {Ψ : A  uPred M} a : Ψ a   a, Ψ a.
Proof. unseal; split=> n x ??; by exists a. Qed.
Lemma exist_elim {A} (Φ : A  uPred M) Q : ( a, Φ a  Q)  ( a, Φ a)  Q.
Proof. unseal; intros HΦΨ; split=> n x ? [a ?]; by apply HΦΨ with a. Qed.

(** BI connectives *)
Lemma sep_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
547
Proof.
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
  intros HQ HQ'; unseal.
  split; intros n' x ? (x1&x2&?&?&?); exists x1,x2; ofe_subst x;
    eauto 7 using cmra_validN_op_l, cmra_validN_op_r, uPred_in_entails.
Qed.
Lemma True_sep_1 P : P  True  P.
Proof.
  unseal; split; intros n x ??. exists (core x), x. by rewrite cmra_core_l.
Qed.
Lemma True_sep_2 P : True  P  P.
Proof.
  unseal; split; intros n x ? (x1&x2&?&_&?); ofe_subst;
    eauto using uPred_mono, cmra_includedN_r.
Qed.
Lemma sep_comm' P Q : P  Q  Q  P.
Proof.
  unseal; split; intros n x ? (x1&x2&?&?&?); exists x2, x1; by rewrite (comm op).
Qed.
Lemma sep_assoc' P Q R : (P  Q)  R  P  (Q  R).
Proof.
  unseal; split; intros n x ? (x1&x2&Hx&(y1&y2&Hy&?&?)&?).
  exists y1, (y2  x2); split_and?; auto.
  + by rewrite (assoc op) -Hy -Hx.
  + by exists y2, x2.
Qed.
Lemma wand_intro_r P Q R : (P  Q  R)  P  Q - R.
Proof.
  unseal=> HPQR; split=> n x ?? n' x' ???; apply HPQR; auto.
  exists x, x'; split_and?; auto.
  eapply uPred_mono with n x; eauto using cmra_validN_op_l.
Qed.
Lemma wand_elim_l' P Q R : (P  Q - R)  P  Q  R.
Proof.
  unseal =>HPQR. split; intros n x ? (?&?&?&?&?). ofe_subst.
  eapply HPQR; eauto using cmra_validN_op_l.
Qed.

(** Persistently *)
Lemma persistently_mono P Q : (P  Q)   P   Q.
Proof. intros HP; unseal; split=> n x ? /=. by apply HP, cmra_core_validN. Qed.
Lemma persistently_elim P :  P  P.
Proof.
  unseal; split=> n x ? /=.
  eauto using uPred_mono, @cmra_included_core, cmra_included_includedN.
Qed.
Lemma persistently_idemp_2 P :  P    P.
Proof. unseal; split=> n x ?? /=. by rewrite cmra_core_idemp. Qed.

Lemma persistently_forall_2 {A} (Ψ : A  uPred M) : ( a,  Ψ a)  (  a, Ψ a).
Proof. by unseal. Qed.
Lemma persistently_exist_1 {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof. by unseal. Qed.

Lemma persistently_and_sep_l_1 P Q :  P  Q  P  Q.
Proof.
  unseal; split=> n x ? [??]; exists (core x), x; simpl in *.
  by rewrite cmra_core_l.
Qed.

(** Plainly *)
Lemma plainly_mono P Q : (P  Q)   P   Q.
Proof. intros HP; unseal; split=> n x ? /=. apply HP, ucmra_unit_validN. Qed.
Lemma plainly_elim_persistently P :  P   P.
Proof. unseal; split; simpl; eauto using uPred_mono, @ucmra_unit_leastN. Qed.
Lemma plainly_idemp_2 P :  P    P.
Proof. unseal; split=> n x ?? //. Qed.

Lemma plainly_forall_2 {A} (Ψ : A  uPred M) : ( a,  Ψ a)  (  a, Ψ a).
Proof. by unseal. Qed.
Lemma plainly_exist_1 {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof. by unseal. Qed.

619
Lemma prop_ext_2 P Q :  ((P - Q)  (Q - P))  P  Q.
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
Proof.
  unseal; split=> n x ? /= HPQ. split=> n' x' ??.
    move: HPQ=> [] /(_ n' x'); rewrite !left_id=> ?.
    move=> /(_ n' x'); rewrite !left_id=> ?. naive_solver.
Qed.

(* The following two laws are very similar, and indeed they hold not just for □
   and ■, but for any modality defined as `M P n x := ∀ y, R x y → P n y`. *)
Lemma persistently_impl_plainly P Q : ( P   Q)   ( P  Q).
Proof.
  unseal; split=> /= n x ? HPQ n' x' ????.
  eapply uPred_mono with n' (core x)=>//; [|by apply cmra_included_includedN].
  apply (HPQ n' x); eauto using cmra_validN_le.
Qed.

Lemma plainly_impl_plainly P Q : ( P   Q)   ( P  Q).
Proof.
  unseal; split=> /= n x ? HPQ n' x' ????.
  eapply uPred_mono with n' ε=>//; [|by apply cmra_included_includedN].
  apply (HPQ n' x); eauto using cmra_validN_le.
Qed.

(** Later *)
Lemma later_mono P Q : (P  Q)   P   Q.
Proof.
  unseal=> HP; split=>-[|n] x ??; [done|apply HP; eauto using cmra_validN_S].
Qed.
Lemma later_intro P : P   P.
Proof.
  unseal; split=> -[|n] /= x ? HP; first done.
  apply uPred_mono with (S n) x; eauto using cmra_validN_S.
Qed.
Lemma later_forall_2 {A} (Φ : A  uPred M) : ( a,  Φ a)    a, Φ a.
Proof. unseal; by split=> -[|n] x. Qed.
Lemma later_exist_false {A} (Φ : A  uPred M) :
  (  a, Φ a)   False  ( a,  Φ a).
Proof. unseal; split=> -[|[|n]] x /=; eauto. Qed.
Lemma later_sep_1 P Q :  (P  Q)   P   Q.
Proof.
  unseal; split=> n x ?.
  destruct n as [|n]; simpl.
  { by exists x, (core x); rewrite cmra_core_r. }
  intros (x1&x2&Hx&?&?); destruct (cmra_extend n x x1 x2)
    as (y1&y2&Hx'&Hy1&Hy2); eauto using cmra_validN_S; simpl in *.
  exists y1, y2; split; [by rewrite Hx'|by rewrite Hy1 Hy2].
Qed.
Lemma later_sep_2 P Q :  P   Q   (P  Q).
Proof.
  unseal; split=> n x ?.
  destruct n as [|n]; simpl; [done|intros (x1&x2&Hx&?&?)].
  exists x1, x2; eauto using dist_S.
Qed.

Lemma later_false_em P :  P   False  ( False  P).
Proof.
  unseal; split=> -[|n] x ? /= HP; [by left|right].
  intros [|n'] x' ????; eauto using uPred_mono, cmra_included_includedN.
Qed.

Lemma later_persistently_1 P :   P    P.
Proof. by unseal. Qed.
Lemma later_persistently_2 P :   P    P.
Proof. by unseal. Qed.
Lemma later_plainly_1 P :   P    P.
Proof. by unseal. Qed.
Lemma later_plainly_2 P :   P    P.
Proof. by unseal. Qed.

(** Internal equality *)
Lemma internal_eq_refl {A : ofeT} P (a : A) : P  (a  a).
Proof. unseal; by split=> n x ??; simpl. Qed.
Lemma internal_eq_rewrite {A : ofeT} a b (Ψ : A  uPred M) :
  NonExpansive Ψ  a  b  Ψ a  Ψ b.
Proof. intros HΨ. unseal; split=> n x ?? n' x' ??? Ha. by apply HΨ with n a. Qed.

695
Lemma fun_ext {A} {B : A  ofeT} (g1 g2 : discrete_fun B) :
696
697
  ( i, g1 i  g2 i)  g1  g2.
Proof. by unseal. Qed.
698
Lemma sig_eq {A : ofeT} (P : A  Prop) (x y : sigO P) :
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
  proj1_sig x  proj1_sig y  x  y.
Proof. by unseal. Qed.

Lemma later_eq_1 {A : ofeT} (x y : A) : Next x  Next y   (x  y).
Proof. by unseal. Qed.
Lemma later_eq_2 {A : ofeT} (x y : A) :  (x  y)  Next x  Next y.
Proof. by unseal. Qed.

Lemma discrete_eq_1 {A : ofeT} (a b : A) : Discrete a  a  b  a  b.
Proof.
  unseal=> ?. split=> n x ?. by apply (discrete_iff n).
Qed.

(** Basic update modality *)
Lemma bupd_intro P : P  |==> P.
Proof.
  unseal. split=> n x ? HP k yf ?; exists x; split; first done.
  apply uPred_mono with n x; eauto using cmra_validN_op_l.
Qed.
Lemma bupd_mono P Q : (P  Q)  (|==> P)  |==> Q.
Proof.
  unseal. intros HPQ; split=> n x ? HP k yf ??.
  destruct (HP k yf) as (x'&?&?); eauto.
  exists x'; split; eauto using uPred_in_entails, cmra_validN_op_l.
Qed.
Lemma bupd_trans P : (|==> |==> P)  |==> P.
Proof. unseal; split; naive_solver. Qed.
Lemma bupd_frame_r P R : (|==> P)  R  |==> P  R.
Proof.
  unseal; split; intros n x ? (x1&x2&Hx&HP&?) k yf ??.
  destruct (HP k (x2  yf)) as (x'&?&?); eauto.
  { by rewrite assoc -(dist_le _ _ _ _ Hx); last lia. }
  exists (x'  x2); split; first by rewrite -assoc.
  exists x', x2. eauto using uPred_mono, cmra_validN_op_l, cmra_validN_op_r.
Qed.
Lemma bupd_plainly P : (|==>  P)  P.
Proof.
  unseal; split => n x Hnx /= Hng.
  destruct (Hng n ε) as [? [_ Hng']]; try rewrite right_id; auto.
  eapply uPred_mono; eauto using ucmra_unit_leastN.
739
740
Qed.

741
(** Own *)
Robbert Krebbers's avatar
Robbert Krebbers committed
742
743
744
Lemma ownM_op (a1 a2 : M) :
  uPred_ownM (a1  a2)  uPred_ownM a1  uPred_ownM a2.
Proof.
745
  unseal; split=> n x ?; split.
Robbert Krebbers's avatar
Robbert Krebbers committed
746
747
748
749
750
751
  - intros [z ?]; exists a1, (a2  z); split; [by rewrite (assoc op)|].
    split. by exists (core a1); rewrite cmra_core_r. by exists z.
  - intros (y1&y2&Hx&[z1 Hy1]&[z2 Hy2]); exists (z1  z2).
    by rewrite (assoc op _ z1) -(comm op z1) (assoc op z1)
      -(assoc op _ a2) (comm op z1) -Hy1 -Hy2.
Qed.
752
Lemma persistently_ownM_core (a : M) : uPred_ownM a   uPred_ownM (core a).
Robbert Krebbers's avatar
Robbert Krebbers committed
753
Proof.
754
  split=> n x /=; unseal; intros Hx. simpl. by apply cmra_core_monoN.
Robbert Krebbers's avatar
Robbert Krebbers committed
755
Qed.
756
Lemma ownM_unit P : P  (uPred_ownM ε).
Robbert Krebbers's avatar
Robbert Krebbers committed
757
Proof. unseal; split=> n x ??; by  exists x; rewrite left_id. Qed.
758
Lemma later_ownM a :  uPred_ownM a   b, uPred_ownM b   (a  b).
Robbert Krebbers's avatar
Robbert Krebbers committed
759
Proof.
760
  unseal; split=> -[|n] x /= ? Hax; first by eauto using ucmra_unit_leastN.
Robbert Krebbers's avatar
Robbert Krebbers committed
761
762
763
764
765
  destruct Hax as [y ?].
  destruct (cmra_extend n x a y) as (a'&y'&Hx&?&?); auto using cmra_validN_S.
  exists a'. rewrite Hx. eauto using cmra_includedN_l.
Qed.

766
767
768
769
770
771
772
773
774
775
776
Lemma bupd_ownM_updateP x (Φ : M  Prop) :
  x ~~>: Φ  uPred_ownM x  |==>  y, ⌜Φ y  uPred_ownM y.
Proof.
  unseal=> Hup; split=> n x2 ? [x3 Hx] k yf ??.
  destruct (Hup k (Some (x3  yf))) as (y&?&?); simpl in *.
  { rewrite /= assoc -(dist_le _ _ _ _ Hx); auto. }
  exists (y  x3); split; first by rewrite -assoc.
  exists y; eauto using cmra_includedN_l.
Qed.

(** Valid *)
Robbert Krebbers's avatar
Robbert Krebbers committed
777
778
779
780
Lemma ownM_valid (a : M) : uPred_ownM a   a.
Proof.
  unseal; split=> n x Hv [a' ?]; ofe_subst; eauto using cmra_validN_op_l.
Qed.
781
Lemma cmra_valid_intro {A : cmraT} P (a : A) :  a  P  ( a).
Robbert Krebbers's avatar
Robbert Krebbers committed
782
Proof. unseal=> ?; split=> n x ? _ /=; by apply cmra_valid_validN. Qed.
783
784
785
Lemma cmra_valid_elim {A : cmraT} (a : A) : ¬ {0} a   a  False.
Proof. unseal=> Ha; split=> n x ??; apply Ha, cmra_validN_le with n; auto. Qed.
Lemma plainly_cmra_valid_1 {A : cmraT} (a : A) :  a    a.
Robbert Krebbers's avatar
Robbert Krebbers committed
786
Proof. by unseal. Qed.
787
Lemma cmra_valid_weaken {A : cmraT} (a b : A) :  (a  b)   a.
Robbert Krebbers's avatar
Robbert Krebbers committed
788
789
Proof. unseal; split=> n x _; apply cmra_validN_op_l. Qed.

790
Lemma prod_validI {A B : cmraT} (x : A * B) :  x   x.1   x.2.
Robbert Krebbers's avatar
Robbert Krebbers committed
791
792
793
794
795
Proof. by unseal. Qed.
Lemma option_validI {A : cmraT} (mx : option A) :
   mx  match mx with Some x =>  x | None => True : uPred M end.
Proof. unseal. by destruct mx. Qed.

796
797
Lemma discrete_valid {A : cmraT} `{!CmraDiscrete A} (a : A) :  a  ⌜✓ a.
Proof. unseal; split=> n x _. by rewrite /= -cmra_discrete_valid_iff. Qed.
798

799
Lemma discrete_fun_validI {A} {B : A  ucmraT} (g : discrete_fun B) :  g   i,  g i.
800
801
Proof. by unseal. Qed.

802
(** Consistency/soundness statement *)
803
804
(** The lemmas [pure_soundness] and [internal_eq_soundness] should become an
instance of [siProp] soundness in the future. *)
Ralf Jung's avatar
Ralf Jung committed
805
Lemma pure_soundness φ : (True   φ )  φ.
806
807
Proof. unseal=> -[H]. by apply (H 0 ε); eauto using ucmra_unit_validN. Qed.

808
809
810
811
812
813
Lemma internal_eq_soundness {A : ofeT} (x y : A) : (True  x  y)  x  y.
Proof.
  unseal=> -[H]. apply equiv_dist=> n.
  by apply (H n ε); eauto using ucmra_unit_validN.
Qed.

Ralf Jung's avatar
Ralf Jung committed
814
Lemma later_soundness P : (True   P)  (True  P).
815
Proof.
816
817
818
  unseal=> -[HP]; split=> n x Hx _.
  apply uPred_mono with n ε; eauto using ucmra_unit_leastN.
  by apply (HP (S n)); eauto using ucmra_unit_validN.
819
Qed.
820
821
End primitive.
End uPred_primitive.