From iris.proofmode Require Export classes. From iris.algebra Require Import gmap. From iris.prelude Require Import gmultiset. From iris.base_logic Require Import big_op. Import uPred. Section classes. Context {M : ucmraT}. Implicit Types P Q R : uPred M. (* FromAssumption *) Global Instance from_assumption_exact p P : FromAssumption p P P. Proof. destruct p; by rewrite /FromAssumption /= ?always_elim. Qed. Global Instance from_assumption_always_l p P Q : FromAssumption p P Q → FromAssumption p (□ P) Q. Proof. rewrite /FromAssumption=><-. by rewrite always_elim. Qed. Global Instance from_assumption_always_r P Q : FromAssumption true P Q → FromAssumption true P (□ Q). Proof. rewrite /FromAssumption=><-. by rewrite always_always. Qed. Global Instance from_assumption_bupd p P Q : FromAssumption p P Q → FromAssumption p P (|==> Q)%I. Proof. rewrite /FromAssumption=>->. apply bupd_intro. Qed. (* IntoPure *) Global Instance into_pure_pure φ : @IntoPure M ⌜φ⌝ φ. Proof. done. Qed. Global Instance into_pure_eq {A : ofeT} (a b : A) : Timeless a → @IntoPure M (a ≡ b) (a ≡ b). Proof. intros. by rewrite /IntoPure timeless_eq. Qed. Global Instance into_pure_cmra_valid `{CMRADiscrete A} (a : A) : @IntoPure M (✓ a) (✓ a). Proof. by rewrite /IntoPure discrete_valid. Qed. (* FromPure *) Global Instance from_pure_pure φ : @FromPure M ⌜φ⌝ φ. Proof. done. Qed. Global Instance from_pure_internal_eq {A : ofeT} (a b : A) : @FromPure M (a ≡ b) (a ≡ b). Proof. rewrite /FromPure. eapply pure_elim; [done|]=> ->. apply internal_eq_refl'. Qed. Global Instance from_pure_cmra_valid {A : cmraT} (a : A) : @FromPure M (✓ a) (✓ a). Proof. rewrite /FromPure. eapply pure_elim; [done|]=> ?. rewrite -cmra_valid_intro //. auto with I. Qed. Global Instance from_pure_bupd P φ : FromPure P φ → FromPure (|==> P) φ. Proof. rewrite /FromPure=> ->. apply bupd_intro. Qed. (* IntoPersistentP *) Global Instance into_persistentP_always_trans P Q : IntoPersistentP P Q → IntoPersistentP (□ P) Q | 0. Proof. rewrite /IntoPersistentP=> ->. by rewrite always_always. Qed. Global Instance into_persistentP_always P : IntoPersistentP (□ P) P | 1. Proof. done. Qed. Global Instance into_persistentP_persistent P : PersistentP P → IntoPersistentP P P | 100. Proof. done. Qed. (* IntoLater *) Global Instance into_laterN_default n P : IntoLaterN n P P | 1000. Proof. apply laterN_intro. Qed. Global Instance into_laterN_later n P Q : IntoLaterN n P Q → IntoLaterN (S n) (▷ P) Q. Proof. by rewrite /IntoLaterN=>->. Qed. Global Instance into_laterN_laterN n P : IntoLaterN n (▷^n P) P. Proof. done. Qed. Global Instance into_laterN_laterN_plus n m P Q : IntoLaterN m P Q → IntoLaterN (n + m) (▷^n P) Q. Proof. rewrite /IntoLaterN=>->. by rewrite laterN_plus. Qed. Global Instance into_laterN_and n P1 P2 Q1 Q2 : IntoLaterN n P1 Q1 → IntoLaterN n P2 Q2 → IntoLaterN n (P1 ∧ P2) (Q1 ∧ Q2). Proof. intros ??; red. by rewrite laterN_and; apply and_mono. Qed. Global Instance into_laterN_or n P1 P2 Q1 Q2 : IntoLaterN n P1 Q1 → IntoLaterN n P2 Q2 → IntoLaterN n (P1 ∨ P2) (Q1 ∨ Q2). Proof. intros ??; red. by rewrite laterN_or; apply or_mono. Qed. Global Instance into_laterN_sep n P1 P2 Q1 Q2 : IntoLaterN n P1 Q1 → IntoLaterN n P2 Q2 → IntoLaterN n (P1 ∗ P2) (Q1 ∗ Q2). Proof. intros ??; red. by rewrite laterN_sep; apply sep_mono. Qed. Global Instance into_laterN_big_sepL n {A} (Φ Ψ : nat → A → uPred M) (l: list A) : (∀ x k, IntoLaterN n (Φ k x) (Ψ k x)) → IntoLaterN n ([∗ list] k ↦ x ∈ l, Φ k x) ([∗ list] k ↦ x ∈ l, Ψ k x). Proof. rewrite /IntoLaterN=> ?. rewrite big_sepL_laterN. by apply big_sepL_mono. Qed. Global Instance into_laterN_big_sepM n `{Countable K} {A} (Φ Ψ : K → A → uPred M) (m : gmap K A) : (∀ x k, IntoLaterN n (Φ k x) (Ψ k x)) → IntoLaterN n ([∗ map] k ↦ x ∈ m, Φ k x) ([∗ map] k ↦ x ∈ m, Ψ k x). Proof. rewrite /IntoLaterN=> ?. rewrite big_sepM_laterN; by apply big_sepM_mono. Qed. Global Instance into_laterN_big_sepS n `{Countable A} (Φ Ψ : A → uPred M) (X : gset A) : (∀ x, IntoLaterN n (Φ x) (Ψ x)) → IntoLaterN n ([∗ set] x ∈ X, Φ x) ([∗ set] x ∈ X, Ψ x). Proof. rewrite /IntoLaterN=> ?. rewrite big_sepS_laterN; by apply big_sepS_mono. Qed. Global Instance into_laterN_big_sepMS n `{Countable A} (Φ Ψ : A → uPred M) (X : gmultiset A) : (∀ x, IntoLaterN n (Φ x) (Ψ x)) → IntoLaterN n ([∗ mset] x ∈ X, Φ x) ([∗ mset] x ∈ X, Ψ x). Proof. rewrite /IntoLaterN=> ?. rewrite big_sepMS_laterN; by apply big_sepMS_mono. Qed. (* FromLater *) Global Instance from_laterN_later P :FromLaterN 1 (▷ P) P | 0. Proof. done. Qed. Global Instance from_laterN_laterN n P : FromLaterN n (▷^n P) P | 0. Proof. done. Qed. (* The instances below are used when stripping a specific number of laters, or to balance laters in different branches of ∧, ∨ and ∗. *) Global Instance from_laterN_0 P : FromLaterN 0 P P | 100. (* fallthrough *) Proof. done. Qed. Global Instance from_laterN_later_S n P Q : FromLaterN n P Q → FromLaterN (S n) (▷ P) Q. Proof. by rewrite /FromLaterN=><-. Qed. Global Instance from_laterN_later_plus n m P Q : FromLaterN m P Q → FromLaterN (n + m) (▷^n P) Q. Proof. rewrite /FromLaterN=><-. by rewrite laterN_plus. Qed. Global Instance from_later_and n P1 P2 Q1 Q2 : FromLaterN n P1 Q1 → FromLaterN n P2 Q2 → FromLaterN n (P1 ∧ P2) (Q1 ∧ Q2). Proof. intros ??; red. by rewrite laterN_and; apply and_mono. Qed. Global Instance from_later_or n P1 P2 Q1 Q2 : FromLaterN n P1 Q1 → FromLaterN n P2 Q2 → FromLaterN n (P1 ∨ P2) (Q1 ∨ Q2). Proof. intros ??; red. by rewrite laterN_or; apply or_mono. Qed. Global Instance from_later_sep n P1 P2 Q1 Q2 : FromLaterN n P1 Q1 → FromLaterN n P2 Q2 → FromLaterN n (P1 ∗ P2) (Q1 ∗ Q2). Proof. intros ??; red. by rewrite laterN_sep; apply sep_mono. Qed. (* IntoWand *) Global Instance into_wand_wand P Q Q' : FromAssumption false Q Q' → IntoWand (P -∗ Q) P Q'. Proof. by rewrite /FromAssumption /IntoWand /= => ->. Qed. Global Instance into_wand_impl P Q Q' : FromAssumption false Q Q' → IntoWand (P → Q) P Q'. Proof. rewrite /FromAssumption /IntoWand /= => ->. by rewrite impl_wand. Qed. Global Instance into_wand_iff_l P Q : IntoWand (P ↔ Q) P Q. Proof. by apply and_elim_l', impl_wand. Qed. Global Instance into_wand_iff_r P Q : IntoWand (P ↔ Q) Q P. Proof. apply and_elim_r', impl_wand. Qed. Global Instance into_wand_always R P Q : IntoWand R P Q → IntoWand (□ R) P Q. Proof. rewrite /IntoWand=> ->. apply always_elim. Qed. Global Instance into_wand_later (R P Q : uPred M) : IntoWand R P Q → IntoWand R (▷ P) (▷ Q) | 100. Proof. rewrite /IntoWand=>->. by rewrite -later_wand -later_intro. Qed. Global Instance into_wand_laterN n (R P Q : uPred M) : IntoWand R P Q → IntoWand R (▷^n P) (▷^n Q) | 100. Proof. rewrite /IntoWand=>->. by rewrite -laterN_wand -laterN_intro. Qed. Global Instance into_wand_bupd R P Q : IntoWand R P Q → IntoWand R (|==> P) (|==> Q) | 100. Proof. rewrite /IntoWand=>->. apply wand_intro_l. by rewrite bupd_wand_r. Qed. (* FromAnd *) Global Instance from_and_and P1 P2 : FromAnd (P1 ∧ P2) P1 P2. Proof. done. Qed. Global Instance from_and_sep_persistent_l P1 P2 : PersistentP P1 → FromAnd (P1 ∗ P2) P1 P2 | 9. Proof. intros. by rewrite /FromAnd always_and_sep_l. Qed. Global Instance from_and_sep_persistent_r P1 P2 : PersistentP P2 → FromAnd (P1 ∗ P2) P1 P2 | 10. Proof. intros. by rewrite /FromAnd always_and_sep_r. Qed. Global Instance from_and_pure φ ψ : @FromAnd M ⌜φ ∧ ψ⌝ ⌜φ⌝ ⌜ψ⌝. Proof. by rewrite /FromAnd pure_and. Qed. Global Instance from_and_always P Q1 Q2 : FromAnd P Q1 Q2 → FromAnd (□ P) (□ Q1) (□ Q2). Proof. rewrite /FromAnd=> <-. by rewrite always_and. Qed. Global Instance from_and_later P Q1 Q2 : FromAnd P Q1 Q2 → FromAnd (▷ P) (▷ Q1) (▷ Q2). Proof. rewrite /FromAnd=> <-. by rewrite later_and. Qed. Global Instance from_and_laterN n P Q1 Q2 : FromAnd P Q1 Q2 → FromAnd (▷^n P) (▷^n Q1) (▷^n Q2). Proof. rewrite /FromAnd=> <-. by rewrite laterN_and. Qed. (* FromSep *) Global Instance from_sep_sep P1 P2 : FromSep (P1 ∗ P2) P1 P2 | 100. Proof. done. Qed. Global Instance from_sep_ownM (a b1 b2 : M) : FromOp a b1 b2 → FromSep (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2). Proof. intros. by rewrite /FromSep -ownM_op from_op. Qed. Global Instance from_sep_pure φ ψ : @FromSep M ⌜φ ∧ ψ⌝ ⌜φ⌝ ⌜ψ⌝. Proof. by rewrite /FromSep pure_and sep_and. Qed. Global Instance from_sep_always P Q1 Q2 : FromSep P Q1 Q2 → FromSep (□ P) (□ Q1) (□ Q2). Proof. rewrite /FromSep=> <-. by rewrite always_sep. Qed. Global Instance from_sep_later P Q1 Q2 : FromSep P Q1 Q2 → FromSep (▷ P) (▷ Q1) (▷ Q2). Proof. rewrite /FromSep=> <-. by rewrite later_sep. Qed. Global Instance from_sep_laterN n P Q1 Q2 : FromSep P Q1 Q2 → FromSep (▷^n P) (▷^n Q1) (▷^n Q2). Proof. rewrite /FromSep=> <-. by rewrite laterN_sep. Qed. Global Instance from_sep_bupd P Q1 Q2 : FromSep P Q1 Q2 → FromSep (|==> P) (|==> Q1) (|==> Q2). Proof. rewrite /FromSep=><-. apply bupd_sep. Qed. Global Instance from_sep_big_sepL {A} (Φ Ψ1 Ψ2 : nat → A → uPred M) l : (∀ k x, FromSep (Φ k x) (Ψ1 k x) (Ψ2 k x)) → FromSep ([∗ list] k ↦ x ∈ l, Φ k x) ([∗ list] k ↦ x ∈ l, Ψ1 k x) ([∗ list] k ↦ x ∈ l, Ψ2 k x). Proof. rewrite /FromSep=>?. rewrite -big_sepL_sepL. by apply big_sepL_mono. Qed. Global Instance from_sep_big_sepM `{Countable K} {A} (Φ Ψ1 Ψ2 : K → A → uPred M) m : (∀ k x, FromSep (Φ k x) (Ψ1 k x) (Ψ2 k x)) → FromSep ([∗ map] k ↦ x ∈ m, Φ k x) ([∗ map] k ↦ x ∈ m, Ψ1 k x) ([∗ map] k ↦ x ∈ m, Ψ2 k x). Proof. rewrite /FromSep=>?. rewrite -big_sepM_sepM. by apply big_sepM_mono. Qed. Global Instance from_sep_big_sepS `{Countable A} (Φ Ψ1 Ψ2 : A → uPred M) X : (∀ x, FromSep (Φ x) (Ψ1 x) (Ψ2 x)) → FromSep ([∗ set] x ∈ X, Φ x) ([∗ set] x ∈ X, Ψ1 x) ([∗ set] x ∈ X, Ψ2 x). Proof. rewrite /FromSep=>?. rewrite -big_sepS_sepS. by apply big_sepS_mono. Qed. Global Instance from_sep_big_sepMS `{Countable A} (Φ Ψ1 Ψ2 : A → uPred M) X : (∀ x, FromSep (Φ x) (Ψ1 x) (Ψ2 x)) → FromSep ([∗ mset] x ∈ X, Φ x) ([∗ mset] x ∈ X, Ψ1 x) ([∗ mset] x ∈ X, Ψ2 x). Proof. rewrite /FromSep=> ?. rewrite -big_sepMS_sepMS. by apply big_sepMS_mono. Qed. (* FromOp *) Global Instance from_op_op {A : cmraT} (a b : A) : FromOp (a ⋅ b) a b. Proof. by rewrite /FromOp. Qed. Global Instance from_op_persistent {A : cmraT} (a : A) : Persistent a → FromOp a a a. Proof. intros. by rewrite /FromOp -(persistent_dup a). Qed. Global Instance from_op_pair {A B : cmraT} (a b1 b2 : A) (a' b1' b2' : B) : FromOp a b1 b2 → FromOp a' b1' b2' → FromOp (a,a') (b1,b1') (b2,b2'). Proof. by constructor. Qed. Global Instance from_op_Some {A : cmraT} (a : A) b1 b2 : FromOp a b1 b2 → FromOp (Some a) (Some b1) (Some b2). Proof. by constructor. Qed. (* IntoOp *) Global Instance into_op_op {A : cmraT} (a b : A) : IntoOp (a ⋅ b) a b. Proof. by rewrite /IntoOp. Qed. Global Instance into_op_persistent {A : cmraT} (a : A) : Persistent a → IntoOp a a a. Proof. intros; apply (persistent_dup a). Qed. Global Instance into_op_pair {A B : cmraT} (a b1 b2 : A) (a' b1' b2' : B) : IntoOp a b1 b2 → IntoOp a' b1' b2' → IntoOp (a,a') (b1,b1') (b2,b2'). Proof. by constructor. Qed. Global Instance into_op_Some {A : cmraT} (a : A) b1 b2 : IntoOp a b1 b2 → IntoOp (Some a) (Some b1) (Some b2). Proof. by constructor. Qed. (* IntoAnd *) Global Instance into_and_sep p P Q : IntoAnd p (P ∗ Q) P Q. Proof. by apply mk_into_and_sep. Qed. Global Instance into_and_ownM p (a b1 b2 : M) : IntoOp a b1 b2 → IntoAnd p (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2). Proof. intros. apply mk_into_and_sep. by rewrite (into_op a) ownM_op. Qed. Global Instance into_and_and P Q : IntoAnd true (P ∧ Q) P Q. Proof. done. Qed. Global Instance into_and_and_persistent_l P Q : PersistentP P → IntoAnd false (P ∧ Q) P Q. Proof. intros; by rewrite /IntoAnd /= always_and_sep_l. Qed. Global Instance into_and_and_persistent_r P Q : PersistentP Q → IntoAnd false (P ∧ Q) P Q. Proof. intros; by rewrite /IntoAnd /= always_and_sep_r. Qed. Global Instance into_and_pure p φ ψ : @IntoAnd M p ⌜φ ∧ ψ⌝ ⌜φ⌝ ⌜ψ⌝. Proof. apply mk_into_and_sep. by rewrite pure_and always_and_sep_r. Qed. Global Instance into_and_always p P Q1 Q2 : IntoAnd true P Q1 Q2 → IntoAnd p (□ P) (□ Q1) (□ Q2). Proof. rewrite /IntoAnd=>->. destruct p; by rewrite ?always_and always_and_sep_r. Qed. Global Instance into_and_later p P Q1 Q2 : IntoAnd p P Q1 Q2 → IntoAnd p (▷ P) (▷ Q1) (▷ Q2). Proof. rewrite /IntoAnd=>->. destruct p; by rewrite ?later_and ?later_sep. Qed. Global Instance into_and_laterN n p P Q1 Q2 : IntoAnd p P Q1 Q2 → IntoAnd p (▷^n P) (▷^n Q1) (▷^n Q2). Proof. rewrite /IntoAnd=>->. destruct p; by rewrite ?laterN_and ?laterN_sep. Qed. Global Instance into_and_big_sepL {A} (Φ Ψ1 Ψ2 : nat → A → uPred M) p l : (∀ k x, IntoAnd p (Φ k x) (Ψ1 k x) (Ψ2 k x)) → IntoAnd p ([∗ list] k ↦ x ∈ l, Φ k x) ([∗ list] k ↦ x ∈ l, Ψ1 k x) ([∗ list] k ↦ x ∈ l, Ψ2 k x). Proof. rewrite /IntoAnd=> HΦ. destruct p. - rewrite -big_sepL_and. apply big_sepL_mono; auto. - rewrite -big_sepL_sepL. apply big_sepL_mono; auto. Qed. Global Instance into_and_big_sepM `{Countable K} {A} (Φ Ψ1 Ψ2 : K → A → uPred M) p m : (∀ k x, IntoAnd p (Φ k x) (Ψ1 k x) (Ψ2 k x)) → IntoAnd p ([∗ map] k ↦ x ∈ m, Φ k x) ([∗ map] k ↦ x ∈ m, Ψ1 k x) ([∗ map] k ↦ x ∈ m, Ψ2 k x). Proof. rewrite /IntoAnd=> HΦ. destruct p. - rewrite -big_sepM_and. apply big_sepM_mono; auto. - rewrite -big_sepM_sepM. apply big_sepM_mono; auto. Qed. Global Instance into_and_big_sepS `{Countable A} (Φ Ψ1 Ψ2 : A → uPred M) p X : (∀ x, IntoAnd p (Φ x) (Ψ1 x) (Ψ2 x)) → IntoAnd p ([∗ set] x ∈ X, Φ x) ([∗ set] x ∈ X, Ψ1 x) ([∗ set] x ∈ X, Ψ2 x). Proof. rewrite /IntoAnd=> HΦ. destruct p. - rewrite -big_sepS_and. apply big_sepS_mono; auto. - rewrite -big_sepS_sepS. apply big_sepS_mono; auto. Qed. Global Instance into_and_big_sepMS `{Countable A} (Φ Ψ1 Ψ2 : A → uPred M) p X : (∀ x, IntoAnd p (Φ x) (Ψ1 x) (Ψ2 x)) → IntoAnd p ([∗ mset] x ∈ X, Φ x) ([∗ mset] x ∈ X, Ψ1 x) ([∗ mset] x ∈ X, Ψ2 x). Proof. rewrite /IntoAnd=> HΦ. destruct p. - rewrite -big_sepMS_and. apply big_sepMS_mono; auto. - rewrite -big_sepMS_sepMS. apply big_sepMS_mono; auto. Qed. (* Frame *) Global Instance frame_here R : Frame R R True. Proof. by rewrite /Frame right_id. Qed. Global Instance frame_here_pure φ Q : FromPure Q φ → Frame ⌜φ⌝ Q True. Proof. rewrite /FromPure /Frame=> ->. by rewrite right_id. Qed. Class MakeSep (P Q PQ : uPred M) := make_sep : P ∗ Q ⊣⊢ PQ. Global Instance make_sep_true_l P : MakeSep True P P. Proof. by rewrite /MakeSep left_id. Qed. Global Instance make_sep_true_r P : MakeSep P True P. Proof. by rewrite /MakeSep right_id. Qed. Global Instance make_sep_default P Q : MakeSep P Q (P ∗ Q) | 100. Proof. done. Qed. Global Instance frame_sep_l R P1 P2 Q Q' : Frame R P1 Q → MakeSep Q P2 Q' → Frame R (P1 ∗ P2) Q' | 9. Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc. Qed. Global Instance frame_sep_r R P1 P2 Q Q' : Frame R P2 Q → MakeSep P1 Q Q' → Frame R (P1 ∗ P2) Q' | 10. Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc (comm _ R) assoc. Qed. Class MakeAnd (P Q PQ : uPred M) := make_and : P ∧ Q ⊣⊢ PQ. Global Instance make_and_true_l P : MakeAnd True P P. Proof. by rewrite /MakeAnd left_id. Qed. Global Instance make_and_true_r P : MakeAnd P True P. Proof. by rewrite /MakeAnd right_id. Qed. Global Instance make_and_default P Q : MakeAnd P Q (P ∧ Q) | 100. Proof. done. Qed. Global Instance frame_and_l R P1 P2 Q Q' : Frame R P1 Q → MakeAnd Q P2 Q' → Frame R (P1 ∧ P2) Q' | 9. Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed. Global Instance frame_and_r R P1 P2 Q Q' : Frame R P2 Q → MakeAnd P1 Q Q' → Frame R (P1 ∧ P2) Q' | 10. Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed. Class MakeOr (P Q PQ : uPred M) := make_or : P ∨ Q ⊣⊢ PQ. Global Instance make_or_true_l P : MakeOr True P True. Proof. by rewrite /MakeOr left_absorb. Qed. Global Instance make_or_true_r P : MakeOr P True True. Proof. by rewrite /MakeOr right_absorb. Qed. Global Instance make_or_default P Q : MakeOr P Q (P ∨ Q) | 100. Proof. done. Qed. Global Instance frame_or R P1 P2 Q1 Q2 Q : Frame R P1 Q1 → Frame R P2 Q2 → MakeOr Q1 Q2 Q → Frame R (P1 ∨ P2) Q. Proof. rewrite /Frame /MakeOr => <- <- <-. by rewrite -sep_or_l. Qed. Global Instance frame_wand R P1 P2 Q2 : Frame R P2 Q2 → Frame R (P1 -∗ P2) (P1 -∗ Q2). Proof. rewrite /Frame=> ?. apply wand_intro_l. by rewrite assoc (comm _ P1) -assoc wand_elim_r. Qed. Class MakeLater (P lP : uPred M) := make_later : ▷ P ⊣⊢ lP. Global Instance make_later_true : MakeLater True True. Proof. by rewrite /MakeLater later_True. Qed. Global Instance make_later_default P : MakeLater P (▷ P) | 100. Proof. done. Qed. Global Instance frame_later R R' P Q Q' : IntoLaterN 1 R' R → Frame R P Q → MakeLater Q Q' → Frame R' (▷ P) Q'. Proof. rewrite /Frame /MakeLater /IntoLaterN=>-> <- <-. by rewrite later_sep. Qed. Class MakeLaterN (n : nat) (P lP : uPred M) := make_laterN : ▷^n P ⊣⊢ lP. Global Instance make_laterN_true n : MakeLaterN n True True. Proof. by rewrite /MakeLaterN laterN_True. Qed. Global Instance make_laterN_default P : MakeLaterN n P (▷^n P) | 100. Proof. done. Qed. Global Instance frame_laterN n R R' P Q Q' : IntoLaterN n R' R → Frame R P Q → MakeLaterN n Q Q' → Frame R' (▷^n P) Q'. Proof. rewrite /Frame /MakeLater /IntoLaterN=>-> <- <-. by rewrite laterN_sep. Qed. Class MakeExcept0 (P Q : uPred M) := make_except_0 : ◇ P ⊣⊢ Q. Global Instance make_except_0_True : MakeExcept0 True True. Proof. by rewrite /MakeExcept0 except_0_True. Qed. Global Instance make_except_0_default P : MakeExcept0 P (◇ P) | 100. Proof. done. Qed. Global Instance frame_except_0 R P Q Q' : Frame R P Q → MakeExcept0 Q Q' → Frame R (◇ P) Q'. Proof. rewrite /Frame /MakeExcept0=><- <-. by rewrite except_0_sep -(except_0_intro R). Qed. Global Instance frame_exist {A} R (Φ Ψ : A → uPred M) : (∀ a, Frame R (Φ a) (Ψ a)) → Frame R (∃ x, Φ x) (∃ x, Ψ x). Proof. rewrite /Frame=> ?. by rewrite sep_exist_l; apply exist_mono. Qed. Global Instance frame_forall {A} R (Φ Ψ : A → uPred M) : (∀ a, Frame R (Φ a) (Ψ a)) → Frame R (∀ x, Φ x) (∀ x, Ψ x). Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed. Global Instance frame_bupd R P Q : Frame R P Q → Frame R (|==> P) (|==> Q). Proof. rewrite /Frame=><-. by rewrite bupd_frame_l. Qed. (* FromOr *) Global Instance from_or_or P1 P2 : FromOr (P1 ∨ P2) P1 P2. Proof. done. Qed. Global Instance from_or_bupd P Q1 Q2 : FromOr P Q1 Q2 → FromOr (|==> P) (|==> Q1) (|==> Q2). Proof. rewrite /FromOr=><-. apply or_elim; apply bupd_mono; auto with I. Qed. Global Instance from_or_pure φ ψ : @FromOr M ⌜φ ∨ ψ⌝ ⌜φ⌝ ⌜ψ⌝. Proof. by rewrite /FromOr pure_or. Qed. Global Instance from_or_always P Q1 Q2 : FromOr P Q1 Q2 → FromOr (□ P) (□ Q1) (□ Q2). Proof. rewrite /FromOr=> <-. by rewrite always_or. Qed. Global Instance from_or_later P Q1 Q2 : FromOr P Q1 Q2 → FromOr (▷ P) (▷ Q1) (▷ Q2). Proof. rewrite /FromOr=><-. by rewrite later_or. Qed. Global Instance from_or_laterN n P Q1 Q2 : FromOr P Q1 Q2 → FromOr (▷^n P) (▷^n Q1) (▷^n Q2). Proof. rewrite /FromOr=><-. by rewrite laterN_or. Qed. (* IntoOr *) Global Instance into_or_or P Q : IntoOr (P ∨ Q) P Q. Proof. done. Qed. Global Instance into_or_pure φ ψ : @IntoOr M ⌜φ ∨ ψ⌝ ⌜φ⌝ ⌜ψ⌝. Proof. by rewrite /IntoOr pure_or. Qed. Global Instance into_or_always P Q1 Q2 : IntoOr P Q1 Q2 → IntoOr (□ P) (□ Q1) (□ Q2). Proof. rewrite /IntoOr=>->. by rewrite always_or. Qed. Global Instance into_or_later P Q1 Q2 : IntoOr P Q1 Q2 → IntoOr (▷ P) (▷ Q1) (▷ Q2). Proof. rewrite /IntoOr=>->. by rewrite later_or. Qed. Global Instance into_or_laterN n P Q1 Q2 : IntoOr P Q1 Q2 → IntoOr (▷^n P) (▷^n Q1) (▷^n Q2). Proof. rewrite /IntoOr=>->. by rewrite laterN_or. Qed. (* FromExist *) Global Instance from_exist_exist {A} (Φ : A → uPred M): FromExist (∃ a, Φ a) Φ. Proof. done. Qed. Global Instance from_exist_bupd {A} P (Φ : A → uPred M) : FromExist P Φ → FromExist (|==> P) (λ a, |==> Φ a)%I. Proof. rewrite /FromExist=><-. apply exist_elim=> a. by rewrite -(exist_intro a). Qed. Global Instance from_exist_pure {A} (φ : A → Prop) : @FromExist M A ⌜∃ x, φ x⌝ (λ a, ⌜φ a⌝)%I. Proof. by rewrite /FromExist pure_exist. Qed. Global Instance from_exist_always {A} P (Φ : A → uPred M) : FromExist P Φ → FromExist (□ P) (λ a, □ (Φ a))%I. Proof. rewrite /FromExist=> <-. apply exist_elim=>x. apply always_mono, exist_intro. Qed. Global Instance from_exist_later {A} P (Φ : A → uPred M) : FromExist P Φ → FromExist (▷ P) (λ a, ▷ (Φ a))%I. Proof. rewrite /FromExist=> <-. apply exist_elim=>x. apply later_mono, exist_intro. Qed. Global Instance from_exist_laterN {A} n P (Φ : A → uPred M) : FromExist P Φ → FromExist (▷^n P) (λ a, ▷^n (Φ a))%I. Proof. rewrite /FromExist=> <-. apply exist_elim=>x. apply laterN_mono, exist_intro. Qed. (* IntoExist *) Global Instance into_exist_exist {A} (Φ : A → uPred M) : IntoExist (∃ a, Φ a) Φ. Proof. done. Qed. Global Instance into_exist_pure {A} (φ : A → Prop) : @IntoExist M A ⌜∃ x, φ x⌝ (λ a, ⌜φ a⌝)%I. Proof. by rewrite /IntoExist pure_exist. Qed. Global Instance into_exist_always {A} P (Φ : A → uPred M) : IntoExist P Φ → IntoExist (□ P) (λ a, □ (Φ a))%I. Proof. rewrite /IntoExist=> HP. by rewrite HP always_exist. Qed. Global Instance into_exist_later {A} P (Φ : A → uPred M) : IntoExist P Φ → Inhabited A → IntoExist (▷ P) (λ a, ▷ (Φ a))%I. Proof. rewrite /IntoExist=> HP ?. by rewrite HP later_exist. Qed. Global Instance into_exist_laterN {A} n P (Φ : A → uPred M) : IntoExist P Φ → Inhabited A → IntoExist (▷^n P) (λ a, ▷^n (Φ a))%I. Proof. rewrite /IntoExist=> HP ?. by rewrite HP laterN_exist. Qed. (* IntoModal *) Global Instance into_modal_later P : IntoModal P (▷ P). Proof. apply later_intro. Qed. Global Instance into_modal_bupd P : IntoModal P (|==> P). Proof. apply bupd_intro. Qed. Global Instance into_modal_except_0 P : IntoModal P (◇ P). Proof. apply except_0_intro. Qed. (* ElimModal *) Global Instance elim_modal_wand P P' Q Q' R : ElimModal P P' Q Q' → ElimModal P P' (R -∗ Q) (R -∗ Q'). Proof. rewrite /ElimModal=> H. apply wand_intro_r. by rewrite wand_curry -assoc (comm _ P') -wand_curry wand_elim_l. Qed. Global Instance forall_modal_wand {A} P P' (Φ Ψ : A → uPred M) : (∀ x, ElimModal P P' (Φ x) (Ψ x)) → ElimModal P P' (∀ x, Φ x) (∀ x, Ψ x). Proof. rewrite /ElimModal=> H. apply forall_intro=> a. by rewrite (forall_elim a). Qed. Global Instance elim_modal_always P Q : ElimModal (□ P) P Q Q. Proof. intros. by rewrite /ElimModal always_elim wand_elim_r. Qed. Global Instance elim_modal_bupd P Q : ElimModal (|==> P) P (|==> Q) (|==> Q). Proof. by rewrite /ElimModal bupd_frame_r wand_elim_r bupd_trans. Qed. Global Instance elim_modal_except_0 P Q : IsExcept0 Q → ElimModal (◇ P) P Q Q. Proof. intros. rewrite /ElimModal (except_0_intro (_ -∗ _)). by rewrite -except_0_sep wand_elim_r. Qed. Global Instance elim_modal_timeless_bupd P Q : TimelessP P → IsExcept0 Q → ElimModal (▷ P) P Q Q. Proof. intros. rewrite /ElimModal (except_0_intro (_ -∗ _)) (timelessP P). by rewrite -except_0_sep wand_elim_r. Qed. Global Instance elim_modal_timeless_bupd' p P Q : TimelessP P → IsExcept0 Q → ElimModal (▷?p P) P Q Q. Proof. destruct p; simpl; auto using elim_modal_timeless_bupd. intros _ _. by rewrite /ElimModal wand_elim_r. Qed. Global Instance is_except_0_except_0 P : IsExcept0 (◇ P). Proof. by rewrite /IsExcept0 except_0_idemp. Qed. Global Instance is_except_0_later P : IsExcept0 (▷ P). Proof. by rewrite /IsExcept0 except_0_later. Qed. Global Instance is_except_0_bupd P : IsExcept0 P → IsExcept0 (|==> P). Proof. rewrite /IsExcept0=> HP. by rewrite -{2}HP -(except_0_idemp P) -except_0_bupd -(except_0_intro P). Qed. End classes.