diff --git a/iris_unstable/algebra/monotone.v b/iris_unstable/algebra/monotone.v
index e670ecd0946201f39963d2a8b5676c6ea7bd8490..f3ad047a3eb45b95fc36c5699393c383f4049c69 100644
--- a/iris_unstable/algebra/monotone.v
+++ b/iris_unstable/algebra/monotone.v
@@ -6,223 +6,164 @@ From iris.algebra Require Export cmra.
 From iris.algebra Require Import updates local_updates.
 From iris.prelude Require Import options.
 
-Local Arguments pcore _ _ !_ /.
-Local Arguments cmra_pcore _ !_ /.
-Local Arguments validN _ _ _ !_ /.
-Local Arguments valid _ _  !_ /.
-Local Arguments cmra_validN _ _ !_ /.
-Local Arguments cmra_valid _  !_ /.
-
-(* Given a preorder relation R on a type A we construct a resource algebra mra R
-   and an injection principal : A -> mra R such that:
+(** Given a preorder [R] on a type [A] we construct the "monotone" resource
+algebra [mra R] and an injection [principal : A → mra R] such that:
+
    [R x y] iff [principal x ≼ principal y]
-   where ≼ is the extension order of mra R resource algebra. This is exactly
-   what the lemma [principal_included] shows.
 
-   This resource algebra is useful for reasoning about monotonicity.
-   See the following paper for more details:
+Here, [≼] is the extension order of the [mra R] resource algebra. This is
+exactly what the lemma [principal_included] shows.
+
+This resource algebra is useful for reasoning about monotonicity. See the
+following paper for more details:
 
-   Reasoning About Monotonicity in Separation Logic
-   Amin Timany and Lars Birkedal
-   in Certified Programs and Proofs (CPP) 2021
+  Reasoning About Monotonicity in Separation Logic
+  Amin Timany and Lars Birkedal
+  in Certified Programs and Proofs (CPP) 2021
 *)
 
-Definition mra {A : Type} (R : relation A) : Type := list A.
-Definition principal {A : Type} (R : relation A) (a : A) : mra R := [a].
+Record mra {A} (R : relation A) := { mra_car : list A }.
+Definition principal {A} (R : relation A) (a : A) : mra R :=
+  {| mra_car := [a] |}.
+Global Arguments mra_car {_ _} _.
 
-(* OFE *)
-Section ofe.
-  Context {A : Type} {R : relation A}.
+Section mra.
+  Context {A} {R : relation A}.
   Implicit Types a b : A.
   Implicit Types x y : mra R.
 
-  Local Definition below (a : A) (x : mra R) := ∃ b, b ∈ x ∧ R a b.
-
-  Local Lemma below_app a x y : below a (x ++ y) ↔ below a x ∨ below a y.
-  Proof. set_solver. Qed.
+  Local Definition below (a : A) (x : mra R) := ∃ b, b ∈ mra_car x ∧ R a b.
 
   Local Lemma below_principal a b : below a (principal R b) ↔ R a b.
   Proof. set_solver. Qed.
 
-  Local Instance mra_equiv : Equiv (mra R) :=
-    λ x y, ∀ a, below a x ↔ below a y.
+  (* OFE *)
+  Local Instance mra_equiv : Equiv (mra R) := λ x y,
+    ∀ a, below a x ↔ below a y.
 
   Local Instance mra_equiv_equiv : Equivalence mra_equiv.
   Proof. unfold mra_equiv; split; intros ?; naive_solver. Qed.
 
   Canonical Structure mraO := discreteO (mra R).
-End ofe.
-
-Global Arguments mraO [_] _.
-
-(* CMRA *)
-Section cmra.
-  Context {A : Type} {R : relation A}.
-  Implicit Types a b : A.
-  Implicit Types x y : mra R.
 
+  (* CMRA *)
   Local Instance mra_valid : Valid (mra R) := λ x, True.
   Local Instance mra_validN : ValidN (mra R) := λ n x, True.
-  Local Program Instance mra_op : Op (mra R) := λ x y, x ++ y.
+  Local Program Instance mra_op : Op (mra R) := λ x y,
+    {| mra_car := mra_car x ++ mra_car y |}.
   Local Instance mra_pcore : PCore (mra R) := Some.
 
   Lemma mra_cmra_mixin : CmraMixin (mra R).
   Proof.
     apply discrete_cmra_mixin; first apply _.
-    apply ra_total_mixin.
-    - eauto.
-    - intros ??? Heq a; by rewrite !below_app (Heq a).
-    - intros ?; done.
-    - done.
-    - intros ????; rewrite !below_app; by intuition.
-    - intros ???; rewrite !below_app; by intuition.
-    - rewrite /core /pcore /=; intros ??; rewrite below_app; by intuition.
-    - done.
-    - intros ? ? [? ?]; eexists _; done.
-    - done.
+    apply ra_total_mixin; try done.
+    - (* [Proper] of [op] *) intros x y z Hyz a. specialize (Hyz a). set_solver.
+    - (* [Proper] of [core] *) apply _.
+    - (* [Assoc] *) intros x y z a. set_solver.
+    - (* [Comm] *) intros x y a. set_solver.
+    - (* [core x ⋅ x ≡ x] *) intros x a. set_solver.
   Qed.
 
   Canonical Structure mraR : cmra := Cmra (mra R) mra_cmra_mixin.
 
   Global Instance mra_cmra_total : CmraTotal mraR.
   Proof. rewrite /CmraTotal; eauto. Qed.
-  Global Instance mra_core_id (x : mra R) : CoreId x.
+  Global Instance mra_core_id x : CoreId x.
   Proof. by constructor. Qed.
 
   Global Instance mra_cmra_discrete : CmraDiscrete mraR.
   Proof. split; last done. intros ? ?; done. Qed.
 
-  Local Instance mra_unit : Unit (mra R) := @nil A.
+  Local Instance mra_unit : Unit (mra R) := {| mra_car := [] |}.
   Lemma auth_ucmra_mixin : UcmraMixin (mra R).
   Proof. split; done. Qed.
 
   Canonical Structure mraUR := Ucmra (mra R) auth_ucmra_mixin.
 
-  Lemma mra_idemp (x : mra R) : x ⋅ x ≡ x.
-  Proof. intros a; rewrite below_app; naive_solver. Qed.
+  (* Laws *)
+  Lemma mra_idemp x : x ⋅ x ≡ x.
+  Proof. intros a. set_solver. Qed.
 
-  Lemma mra_included (x y : mra R) : x ≼ y ↔ y ≡ x ⋅ y.
+  Lemma mra_included x y : x ≼ y ↔ y ≡ x ⋅ y.
   Proof.
     split; [|by intros ?; exists y].
     intros [z ->]; rewrite assoc mra_idemp; done.
   Qed.
 
-  Lemma principal_R_op_base `{!Transitive R} x y :
-    (∀ b, b ∈ y → ∃ c, c ∈ x ∧ R b c) → y ⋅ x ≡ x.
-  Proof.
-    intros HR. split; rewrite /op /mra_op below_app; [|by intuition].
-    intros [(c & (d & Hd1 & Hd2)%HR & Hc2)|]; [|done].
-    exists d; split; [|transitivity c]; done.
-  Qed.
-
   Lemma principal_R_op `{!Transitive R} a b :
-    R a b → principal R a ⋅ principal R b ≡ principal R b.
-  Proof.
-    intros; apply principal_R_op_base; intros c; rewrite /principal.
-    set_solver.
-  Qed.
-
-  Lemma principal_op_R' a b x :
-    R a a → principal R a ⋅ x ≡ principal R b → R a b.
-  Proof. move=> Ha /(_ a) HR. set_solver. Qed.
-
-  Lemma principal_op_R `{!Reflexive R} a b x :
-    principal R a ⋅ x ≡ principal R b → R a b.
-  Proof. by apply principal_op_R'. Qed.
+    R a b →
+    principal R a ⋅ principal R b ≡ principal R b.
+  Proof. intros Hab c. set_solver. Qed.
 
   Lemma principal_included `{!PreOrder R} a b :
     principal R a ≼ principal R b ↔ R a b.
   Proof.
     split.
-    - move=> [z Hz]. by eapply principal_op_R.
+    - move=> [z Hz]. specialize (Hz a). set_solver.
     - intros ?; exists (principal R b). by rewrite principal_R_op.
   Qed.
 
-  (* Useful? *)
-  Lemma principal_includedN `{!PreOrder R} n a b :
-    principal R a ≼{n} principal R b ↔ R a b.
-  Proof. by rewrite -principal_included -cmra_discrete_included_iff. Qed.
-
   Lemma mra_local_update_grow `{!Transitive R} a x b:
     R a b →
     (principal R a, x) ~l~> (principal R b, principal R b).
   Proof.
-    intros Hana Hanb.
-    apply local_update_unital_discrete.
-    intros z _ Habz.
-    split; first done.
-    intros w. specialize (Habz w).
-    set_solver.
+    intros Hana. apply local_update_unital_discrete=> z _ Habz.
+    split; first done. intros c. specialize (Habz c). set_solver.
   Qed.
 
   Lemma mra_local_update_get_frag `{!PreOrder R} a b:
     R b a →
     (principal R a, ε) ~l~> (principal R a, principal R b).
   Proof.
-    intros Hana.
-    apply local_update_unital_discrete.
-    intros z _; rewrite left_id; intros <-.
-    split; first done.
+    intros Hana. apply local_update_unital_discrete=> z _.
+    rewrite left_id. intros <-. split; first done.
     apply mra_included; by apply principal_included.
   Qed.
+End mra.
 
-End cmra.
-
+Global Arguments mraO {_} _.
 Global Arguments mraR {_} _.
 Global Arguments mraUR {_} _.
 
-(**
-If [R] is a partial order, relative to a setoid [S] on the carrier [A],
-then [principal R] is proper and injective.
-
-The following theory generalizes over an arbitrary setoid [S] and necessary properties,
-but is overly general, so we encapsulate the instances in an opt-in module.
-*)
-Module mra_over_rel.
+(** If [R] is a partial order, relative to a reflexive relation [S] on the
+carrier [A], then [principal R] is proper and injective. The theory for
+arbitrary relations [S] is overly general, so we do not declare the results
+as instances. Below we provide instances for [S] being [=] and [≡]. *)
 Section mra_over_rel.
-  Context {A : Type} {R : relation A}.
+  Context {A} {R : relation A} (S : relation A).
   Implicit Types a b : A.
   Implicit Types x y : mra R.
-  Implicit Type (S : relation A).
 
-  #[export] Instance principal_rel_proper S
-         `{!Proper (S ==> S ==> iff) R} `{!Reflexive S} :
+  Lemma principal_rel_proper :
+    Reflexive S →
+    Proper (S ==> S ==> iff) R →
     Proper (S ==> (≡)) (principal R).
-  Proof. intros a1 a2 Ha; split; rewrite ->!below_principal, !Ha; done. Qed.
+  Proof. intros ? HR a1 a2 Ha b. rewrite !below_principal. by apply HR. Qed.
 
-  Lemma principal_inj_related a b :
-    principal R a ≡ principal R b → R a a → R a b.
-  Proof. move=> /(_ a). set_solver. Qed.
-
-  Lemma principal_inj_general S a b :
-    principal R a ≡ principal R b →
-    R a a → R b b → (R a b → R b a → S a b) → S a b.
-  Proof. intros ??? Has; apply Has; apply principal_inj_related; auto. Qed.
-
-  #[export] Instance principal_inj {S} `{!Reflexive R} `{!AntiSymm S R} :
+  Lemma principal_rel_inj :
+    Reflexive R →
+    AntiSymm S R →
     Inj S (≡) (principal R).
-  Proof. intros ???. apply principal_inj_general => //. apply: anti_symm. Qed.
-End mra_over_rel.
+  Proof.
+    intros ?? a b Hab. move: (Hab a) (Hab b). rewrite !below_principal.
+    intros. apply (anti_symm R); naive_solver.
+  Qed.
 End mra_over_rel.
 
-(* Specialize [mra_over_rel] to equality. Only [principal_inj] seems generally useful. *)
-Global Instance principal_inj `{R : relation A} `{!Reflexive R} `{!AntiSymm (=) R} :
-  Inj (=) (≡) (principal R) := mra_over_rel.principal_inj.
-
-(* Might be useful if the type of elements is an OFE. *)
-Section mra_over_ofe.
-  Context {A : ofe} {R : relation A}.
-  Implicit Types a b : A.
-  Implicit Types x y : mra R.
-
-  Import mra_over_rel.
-
-  Global Instance principal_proper
-         `{!∀ n, Proper ((dist n) ==> (dist n) ==> iff) R} :
-    Proper ((≡) ==> (≡)) (principal R) := ne_proper _.
-
-  (* TODO: Useful? Clients should rather call equiv_dist. *)
-  Lemma principal_injN `{!Reflexive R} {Has : AntiSymm (≡) R} n :
-    Inj (dist n) (≡) (principal R).
-  Proof. intros x y Hxy%(inj _). by apply equiv_dist. Qed.
-End mra_over_ofe.
+Global Instance principal_inj {A} {R : relation A} :
+  Reflexive R →
+  AntiSymm (=) R →
+  Inj (=) (≡) (principal R) | 0. (* Lower cost than [principal_inj] *)
+Proof. intros. by apply (principal_rel_inj (=)). Qed.
+
+Global Instance principal_proper `{Equiv A} {R : relation A} :
+  Reflexive (≡@{A}) →
+  Proper ((≡) ==> (≡) ==> iff) R →
+  Proper ((≡) ==> (≡)) (principal R).
+Proof. intros. by apply (principal_rel_proper (≡)). Qed.
+
+Global Instance principal_equiv_inj `{Equiv A} {R : relation A} :
+  Reflexive R →
+  AntiSymm (≡) R →
+  Inj (≡) (≡) (principal R) | 1.
+Proof. intros. by apply (principal_rel_inj (≡)). Qed.
diff --git a/iris_unstable/base_logic/algebra.v b/iris_unstable/base_logic/algebra.v
index 8a8f270114106b6741d14da1481130017b7f1f51..4e4cc8d590f0b9d9961995d9a3cda31b38b15a48 100644
--- a/iris_unstable/base_logic/algebra.v
+++ b/iris_unstable/base_logic/algebra.v
@@ -1,7 +1,7 @@
 (** This is just an integration file for [iris_staging.algebra.list];
 both should be stabilized together. *)
 From iris.algebra Require Import cmra.
-From iris.unstable.algebra Require Import list monotone.
+From iris.unstable.algebra Require Import list.
 From iris.base_logic Require Import bi derived.
 From iris.prelude Require Import options.
 
@@ -19,16 +19,4 @@ Section list_cmra.
   Lemma list_validI l : ✓ l ⊣⊢ ∀ i, ✓ (l !! i).
   Proof. uPred.unseal; constructor=> n x ?. apply list_lookup_validN. Qed.
 End list_cmra.
-
-Section monotone.
-  Lemma monotone_equivI {A : ofe} (R : relation A)
-        `{!(∀ n : nat, Proper (dist n ==> dist n ==> iff) R)}
-        `{!Reflexive R} `{!AntiSymm (≡) R} a b :
-    principal R a ≡ principal R b ⊣⊢ (a ≡ b).
-  Proof.
-    uPred.unseal. do 2 split; intros Hp.
-    - exact: principal_injN.
-    - apply: mra_over_rel.principal_rel_proper Hp.
-  Qed.
-End monotone.
 End upred.
diff --git a/tests/monotone.ref b/tests/monotone.ref
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..6d1e6c77e59dd83ee4ec398087f9b3e514dd6fb4 100644
--- a/tests/monotone.ref
+++ b/tests/monotone.ref
@@ -0,0 +1,8 @@
+"mra_test_eq"
+     : string
+1 goal
+  
+  X, Y : gset nat
+  H : X = Y
+  ============================
+  X = Y
diff --git a/tests/monotone.v b/tests/monotone.v
index 9ee07a5208c5bc921cacb8b3fb7c161d183235f3..2408911721b58cf7b31c6bb3b7972938903a2933 100644
--- a/tests/monotone.v
+++ b/tests/monotone.v
@@ -1,42 +1,16 @@
-Require Import iris.unstable.algebra.monotone.
+From stdpp Require Import propset gmap strings.
+From iris.unstable.algebra Require Import monotone.
 
-Section test_mra_over_eq.
-  Context {A : Type} {R : relation A}.
-  Context `{!Reflexive R} {Has : AntiSymm (=) R}.
+Unset Mangle Names.
 
-  Implicit Types a b : A.
-  Implicit Types x y : mra R.
+Notation gset_mra K:= (mra (⊆@{gset K})).
 
-  Lemma test1 a b : principal R a ≡ principal R b → a = b.
-  Proof.
-    by intros ?%(inj _).
-  Qed.
+(* Check if we indeed get [=], i.e., the right [Inj] instance is used. *)
+Check "mra_test_eq".
+Lemma mra_test_eq X Y : principal _ X ≡@{gset_mra nat} principal _ Y → X = Y.
+Proof. intros ?%(inj _). Show. done. Qed.
 
-End test_mra_over_eq.
+Notation propset_mra K := (mra (⊆@{propset K})).
 
-Section test_mra_over_ofe.
-  Context {A : ofe} {R : relation A}.
-  Implicit Types a b : A.
-  Implicit Types x y : mra R.
-
-  Import mra_over_rel.
-  Context `{!Reflexive R} {Has : AntiSymm (≡) R}.
-  Lemma test a b : principal R a ≡ principal R b → a ≡ b.
-  Proof.
-    by intros ?%(inj _).
-  Qed.
-
-  Lemma principal_ne
-         `{!∀ n, Proper ((dist n) ==> (dist n) ==> iff) R} :
-    NonExpansive (principal R).
-  Proof. apply _. Abort.
-
-  Lemma principal_inj_instance :
-    Inj (≡) (≡) (principal R).
-  Proof. apply _. Abort.
-
-  (* Also questionable. *)
-  Instance principal_injN' n :
-    Inj (dist n) (dist n) (principal R).
-  Proof. apply principal_injN. Abort.
-End test_mra_over_ofe.
+Lemma mra_test_equiv X Y : principal _ X ≡@{propset_mra nat} principal _ Y → X ≡ Y.
+Proof. intros ?%(inj _). done. Qed.