From f6040640d4651471e6ca705e598eff5e587e7987 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Sun, 3 Dec 2017 18:53:32 +0100 Subject: [PATCH] Remove notation for `bi_absorbingly`. We do not have a notation for `bi_affinely` either, so this is at least consistent. --- theories/bi/derived.v | 67 +++++++++++++++------------- theories/proofmode/class_instances.v | 40 ++++++++--------- theories/proofmode/classes.v | 3 +- theories/proofmode/coq_tactics.v | 2 +- 4 files changed, 59 insertions(+), 53 deletions(-) diff --git a/theories/bi/derived.v b/theories/bi/derived.v index 49e209bb4..b19bd48e0 100644 --- a/theories/bi/derived.v +++ b/theories/bi/derived.v @@ -49,9 +49,8 @@ Definition bi_absorbingly {PROP : bi} (P : PROP) : PROP := (True ∗ P)%I. Arguments bi_absorbingly {_} _%I : simpl never. Instance: Params (@bi_absorbingly) 1. Typeclasses Opaque bi_absorbingly. -Notation "â–² P" := (bi_absorbingly P) (at level 20, right associativity) : bi_scope. -Class Absorbing {PROP : bi} (P : PROP) := absorbing : â–² P ⊢ P. +Class Absorbing {PROP : bi} (P : PROP) := absorbing : bi_absorbingly P ⊢ P. Arguments Absorbing {_} _%I : simpl never. Arguments absorbing {_} _%I. @@ -767,53 +766,57 @@ Global Instance absorbingly_flip_mono' : Proper (flip (⊢) ==> flip (⊢)) (@bi_absorbingly PROP). Proof. solve_proper. Qed. -Lemma absorbingly_intro P : P ⊢ â–² P. +Lemma absorbingly_intro P : P ⊢ bi_absorbingly P. Proof. by rewrite /bi_absorbingly -True_sep_2. Qed. -Lemma absorbingly_mono P Q : (P ⊢ Q) → â–² P ⊢ â–² Q. +Lemma absorbingly_mono P Q : (P ⊢ Q) → bi_absorbingly P ⊢ bi_absorbingly Q. Proof. by intros ->. Qed. -Lemma absorbingly_idemp P : â–² â–² P ⊣⊢ â–² P. +Lemma absorbingly_idemp P : bi_absorbingly (bi_absorbingly P) ⊣⊢ bi_absorbingly P. Proof. apply (anti_symm _), absorbingly_intro. rewrite /bi_absorbingly assoc. apply sep_mono; auto. Qed. -Lemma absorbingly_pure φ : â–² ⌜ φ ⌠⊣⊢ ⌜ φ âŒ. +Lemma absorbingly_pure φ : bi_absorbingly ⌜ φ ⌠⊣⊢ ⌜ φ âŒ. Proof. apply (anti_symm _), absorbingly_intro. apply wand_elim_r', pure_elim'=> ?. apply wand_intro_l; auto. Qed. -Lemma absorbingly_or P Q : â–² (P ∨ Q) ⊣⊢ â–² P ∨ â–² Q. +Lemma absorbingly_or P Q : + bi_absorbingly (P ∨ Q) ⊣⊢ bi_absorbingly P ∨ bi_absorbingly Q. Proof. by rewrite /bi_absorbingly sep_or_l. Qed. -Lemma absorbingly_and P Q : â–² (P ∧ Q) ⊢ â–² P ∧ â–² Q. +Lemma absorbingly_and P Q : + bi_absorbingly (P ∧ Q) ⊢ bi_absorbingly P ∧ bi_absorbingly Q. Proof. apply and_intro; apply absorbingly_mono; auto. Qed. -Lemma absorbingly_forall {A} (Φ : A → PROP) : â–² (∀ a, Φ a) ⊢ ∀ a, â–² Φ a. +Lemma absorbingly_forall {A} (Φ : A → PROP) : + bi_absorbingly (∀ a, Φ a) ⊢ ∀ a, bi_absorbingly (Φ a). Proof. apply forall_intro=> a. by rewrite (forall_elim a). Qed. -Lemma absorbingly_exist {A} (Φ : A → PROP) : â–² (∃ a, Φ a) ⊣⊢ ∃ a, â–² Φ a. +Lemma absorbingly_exist {A} (Φ : A → PROP) : + bi_absorbingly (∃ a, Φ a) ⊣⊢ ∃ a, bi_absorbingly (Φ a). Proof. by rewrite /bi_absorbingly sep_exist_l. Qed. -Lemma absorbingly_internal_eq {A : ofeT} (x y : A) : â–² (x ≡ y) ⊣⊢ x ≡ y. +Lemma absorbingly_internal_eq {A : ofeT} (x y : A) : bi_absorbingly (x ≡ y) ⊣⊢ x ≡ y. Proof. apply (anti_symm _), absorbingly_intro. apply wand_elim_r', (internal_eq_rewrite' x y (λ y, True -∗ x ≡ y)%I); auto. apply wand_intro_l, internal_eq_refl. Qed. -Lemma absorbingly_sep P Q : â–² (P ∗ Q) ⊣⊢ â–² P ∗ â–² Q. +Lemma absorbingly_sep P Q : bi_absorbingly (P ∗ Q) ⊣⊢ bi_absorbingly P ∗ bi_absorbingly Q. Proof. by rewrite -{1}absorbingly_idemp /bi_absorbingly !assoc -!(comm _ P) !assoc. Qed. -Lemma absorbingly_True_emp : â–² True ⊣⊢ â–² emp. +Lemma absorbingly_True_emp : bi_absorbingly True ⊣⊢ bi_absorbingly emp. Proof. by rewrite absorbingly_pure /bi_absorbingly right_id. Qed. -Lemma absorbingly_wand P Q : â–² (P -∗ Q) ⊢ â–² P -∗ â–² Q. +Lemma absorbingly_wand P Q : bi_absorbingly (P -∗ Q) ⊢ bi_absorbingly P -∗ bi_absorbingly Q. Proof. apply wand_intro_l. by rewrite -absorbingly_sep wand_elim_r. Qed. -Lemma absorbingly_sep_l P Q : â–² P ∗ Q ⊣⊢ â–² (P ∗ Q). +Lemma absorbingly_sep_l P Q : bi_absorbingly P ∗ Q ⊣⊢ bi_absorbingly (P ∗ Q). Proof. by rewrite /bi_absorbingly assoc. Qed. -Lemma absorbingly_sep_r P Q : P ∗ â–² Q ⊣⊢ â–² (P ∗ Q). +Lemma absorbingly_sep_r P Q : P ∗ bi_absorbingly Q ⊣⊢ bi_absorbingly (P ∗ Q). Proof. by rewrite /bi_absorbingly !assoc (comm _ P). Qed. -Lemma absorbingly_sep_lr P Q : â–² P ∗ Q ⊣⊢ P ∗ â–² Q. +Lemma absorbingly_sep_lr P Q : bi_absorbingly P ∗ Q ⊣⊢ P ∗ bi_absorbingly Q. Proof. by rewrite absorbingly_sep_l absorbingly_sep_r. Qed. Lemma affinely_absorbingly `{!PositiveBI PROP} P : - bi_affinely (â–² P) ⊣⊢ bi_affinely P. + bi_affinely (bi_absorbingly P) ⊣⊢ bi_affinely P. Proof. apply (anti_symm _), affinely_mono, absorbingly_intro. by rewrite /bi_absorbingly affinely_sep affinely_True_emp affinely_emp left_id. @@ -872,13 +875,13 @@ Proof. intros. by rewrite /Absorbing -absorbingly_sep_r absorbing. Qed. Global Instance wand_absorbing P Q : Absorbing Q → Absorbing (P -∗ Q). Proof. intros. by rewrite /Absorbing absorbingly_wand !absorbing -absorbingly_intro. Qed. -Global Instance absorbingly_absorbing P : Absorbing (â–² P). +Global Instance absorbingly_absorbing P : Absorbing (bi_absorbingly P). Proof. rewrite /bi_absorbingly. apply _. Qed. (* Properties of affine and absorbing propositions *) Lemma affine_affinely P `{!Affine P} : bi_affinely P ⊣⊢ P. Proof. rewrite /bi_affinely. apply (anti_symm _); auto. Qed. -Lemma absorbing_absorbingly P `{!Absorbing P} : â–² P ⊣⊢ P. +Lemma absorbing_absorbingly P `{!Absorbing P} : bi_absorbingly P ⊣⊢ P. Proof. by apply (anti_symm _), absorbingly_intro. Qed. Lemma True_affine_all_affine P : Affine (True%I : PROP) → Affine P. @@ -965,7 +968,8 @@ Global Instance persistently_flip_mono' : Proper (flip (⊢) ==> flip (⊢)) (@bi_persistently PROP). Proof. intros P Q; apply persistently_mono. Qed. -Lemma absorbingly_persistently P : â–² bi_persistently P ⊣⊢ bi_persistently P. +Lemma absorbingly_persistently P : + bi_absorbingly (bi_persistently P) ⊣⊢ bi_persistently P. Proof. apply (anti_symm _), absorbingly_intro. by rewrite /bi_absorbingly comm persistently_absorbing. @@ -987,7 +991,7 @@ Proof. Qed. Lemma persistently_and_emp_elim P : emp ∧ bi_persistently P ⊢ P. Proof. by rewrite comm persistently_and_sep_elim right_id and_elim_r. Qed. -Lemma persistently_elim_absorbingly P : bi_persistently P ⊢ â–² P. +Lemma persistently_elim_absorbingly P : bi_persistently P ⊢ bi_absorbingly P. Proof. rewrite -(right_id True%I _ (bi_persistently _)%I) -{1}(left_id emp%I _ True%I). by rewrite persistently_and_sep_assoc (comm bi_and) persistently_and_emp_elim comm. @@ -1171,7 +1175,7 @@ Global Instance plainly_flip_mono' : Proper (flip (⊢) ==> flip (⊢)) (@bi_plainly PROP). Proof. intros P Q; apply plainly_mono. Qed. -Lemma absorbingly_plainly P : â–² bi_plainly P ⊣⊢ bi_plainly P. +Lemma absorbingly_plainly P : bi_absorbingly (bi_plainly P) ⊣⊢ bi_plainly P. Proof. apply (anti_symm _), absorbingly_intro. by rewrite /bi_absorbingly comm plainly_absorbing. @@ -1195,7 +1199,7 @@ Proof. Qed. Lemma plainly_and_emp_elim P : emp ∧ bi_plainly P ⊢ P. Proof. by rewrite plainly_elim_persistently persistently_and_emp_elim. Qed. -Lemma plainly_elim_absorbingly P : bi_plainly P ⊢ â–² P. +Lemma plainly_elim_absorbingly P : bi_plainly P ⊢ bi_absorbingly P. Proof. by rewrite plainly_elim_persistently persistently_elim_absorbingly. Qed. Lemma plainly_elim P `{!Absorbing P} : bi_plainly P ⊢ P. Proof. by rewrite plainly_elim_persistently persistently_elim. Qed. @@ -1662,7 +1666,7 @@ Proof. Qed. Global Instance affinely_plain P : Plain P → Plain (bi_affinely P). Proof. rewrite /bi_affinely. apply _. Qed. -Global Instance absorbingly_plain P : Plain P → Plain (â–² P). +Global Instance absorbingly_plain P : Plain P → Plain (bi_absorbingly P). Proof. rewrite /bi_absorbingly. apply _. Qed. Global Instance from_option_palin {A} P (Ψ : A → PROP) (mx : option A) : (∀ x, Plain (Ψ x)) → Plain P → Plain (from_option Ψ P mx). @@ -1742,7 +1746,7 @@ Global Instance persistently_persistent P : Persistent (bi_persistently P). Proof. by rewrite /Persistent persistently_idemp. Qed. Global Instance affinely_persistent P : Persistent P → Persistent (bi_affinely P). Proof. rewrite /bi_affinely. apply _. Qed. -Global Instance absorbingly_persistent P : Persistent P → Persistent (â–² P). +Global Instance absorbingly_persistent P : Persistent P → Persistent (bi_absorbingly P). Proof. rewrite /bi_absorbingly. apply _. Qed. Global Instance from_option_persistent {A} P (Ψ : A → PROP) (mx : option A) : (∀ x, Persistent (Ψ x)) → Persistent P → Persistent (from_option Ψ P mx). @@ -1796,7 +1800,8 @@ Proof. intros. rewrite -persistent_and_sep_1; auto. Qed. Lemma persistent_entails_r P Q `{!Persistent Q} : (P ⊢ Q) → P ⊢ P ∗ Q. Proof. intros. rewrite -persistent_and_sep_1; auto. Qed. -Lemma persistent_absorbingly_affinely P `{!Persistent P} : P ⊢ â–² bi_affinely P. +Lemma persistent_absorbingly_affinely P `{!Persistent P} : + P ⊢ bi_absorbingly (bi_affinely P). Proof. by rewrite {1}(persistent_persistently_2 P) -persistently_affinely persistently_elim_absorbingly. @@ -2005,7 +2010,7 @@ Lemma later_affinely_plainly_if_2 p P : â– ?p â–· P ⊢ â–· â– ?p P. Proof. destruct p; simpl; auto using later_affinely_plainly_2. Qed. Lemma later_affinely_persistently_if_2 p P : â–¡?p â–· P ⊢ â–· â–¡?p P. Proof. destruct p; simpl; auto using later_affinely_persistently_2. Qed. -Lemma later_absorbingly P : â–· â–² P ⊣⊢ â–² â–· P. +Lemma later_absorbingly P : â–· bi_absorbingly P ⊣⊢ bi_absorbingly (â–· P). Proof. by rewrite /bi_absorbingly later_sep later_True. Qed. Global Instance later_plain P : Plain P → Plain (â–· P). @@ -2080,7 +2085,7 @@ Lemma laterN_affinely_plainly_if_2 n p P : â– ?p â–·^n P ⊢ â–·^n â– ?p P. Proof. destruct p; simpl; auto using laterN_affinely_plainly_2. Qed. Lemma laterN_affinely_persistently_if_2 n p P : â–¡?p â–·^n P ⊢ â–·^n â–¡?p P. Proof. destruct p; simpl; auto using laterN_affinely_persistently_2. Qed. -Lemma laterN_absorbingly n P : â–·^n â–² P ⊣⊢ â–² â–·^n P. +Lemma laterN_absorbingly n P : â–·^n (bi_absorbingly P) ⊣⊢ bi_absorbingly (â–·^n P). Proof. by rewrite /bi_absorbingly laterN_sep laterN_True. Qed. Global Instance laterN_plain n P : Plain P → Plain (â–·^n P). @@ -2163,7 +2168,7 @@ Lemma except_0_affinely_plainly_if_2 p P : â– ?p â—‡ P ⊢ â—‡ â– ?p P. Proof. destruct p; simpl; auto using except_0_affinely_plainly_2. Qed. Lemma except_0_affinely_persistently_if_2 p P : â–¡?p â—‡ P ⊢ â—‡ â–¡?p P. Proof. destruct p; simpl; auto using except_0_affinely_persistently_2. Qed. -Lemma except_0_absorbingly P : â—‡ â–² P ⊣⊢ â–² â—‡ P. +Lemma except_0_absorbingly P : â—‡ (bi_absorbingly P) ⊣⊢ bi_absorbingly (â—‡ P). Proof. by rewrite /bi_absorbingly except_0_sep except_0_True. Qed. Lemma except_0_frame_l P Q : P ∗ â—‡ Q ⊢ â—‡ (P ∗ Q). @@ -2250,7 +2255,7 @@ Qed. Global Instance affinely_timeless P : Timeless (emp%I : PROP) → Timeless P → Timeless (bi_affinely P). Proof. rewrite /bi_affinely; apply _. Qed. -Global Instance absorbingly_timeless P : Timeless P → Timeless (â–² P). +Global Instance absorbingly_timeless P : Timeless P → Timeless (bi_absorbingly P). Proof. rewrite /bi_absorbingly; apply _. Qed. Global Instance eq_timeless {A : ofeT} (a b : A) : diff --git a/theories/proofmode/class_instances.v b/theories/proofmode/class_instances.v index 90f3c2737..035f37995 100644 --- a/theories/proofmode/class_instances.v +++ b/theories/proofmode/class_instances.v @@ -18,7 +18,7 @@ Global Instance into_absorbingly_True : @IntoAbsorbingly PROP True emp | 0. Proof. by rewrite /IntoAbsorbingly -absorbingly_True_emp absorbingly_pure. Qed. Global Instance into_absorbingly_absorbing P : Absorbing P → IntoAbsorbingly P P | 1. Proof. intros. by rewrite /IntoAbsorbingly absorbing_absorbingly. Qed. -Global Instance into_absorbingly_default P : IntoAbsorbingly (â–² P) P | 100. +Global Instance into_absorbingly_default P : IntoAbsorbingly (bi_absorbingly P) P | 100. Proof. by rewrite /IntoAbsorbingly. Qed. (* FromAssumption *) @@ -35,7 +35,7 @@ Global Instance from_assumption_affinely_r P Q : FromAssumption true P Q → FromAssumption true P (bi_affinely Q). Proof. rewrite /FromAssumption /= =><-. by rewrite affinely_idemp. Qed. Global Instance from_assumption_absorbingly_r p P Q : - FromAssumption p P Q → FromAssumption p P (â–² Q). + FromAssumption p P Q → FromAssumption p P (bi_absorbingly Q). Proof. rewrite /FromAssumption /= =><-. apply absorbingly_intro. Qed. Global Instance from_assumption_affinely_plainly_l p P Q : @@ -108,7 +108,7 @@ Proof. rewrite /FromPure /IntoPure=> <- ->. by rewrite pure_impl impl_wand_2. Qe Global Instance into_pure_affinely P φ : IntoPure P φ → IntoPure (bi_affinely P) φ. Proof. rewrite /IntoPure=> ->. apply affinely_elim. Qed. -Global Instance into_pure_absorbingly P φ : IntoPure P φ → IntoPure (â–² P) φ. +Global Instance into_pure_absorbingly P φ : IntoPure P φ → IntoPure (bi_absorbingly P) φ. Proof. rewrite /IntoPure=> ->. by rewrite absorbingly_pure. Qed. Global Instance into_pure_plainly P φ : IntoPure P φ → IntoPure (bi_plainly P) φ. Proof. rewrite /IntoPure=> ->. apply: plainly_elim. Qed. @@ -159,7 +159,7 @@ Proof. rewrite /FromPure=> <-. by rewrite persistently_pure. Qed. Global Instance from_pure_affinely P φ `{!Affine P} : FromPure P φ → FromPure (bi_affinely P) φ. Proof. by rewrite /FromPure affine_affinely. Qed. -Global Instance from_pure_absorbingly P φ : FromPure P φ → FromPure (â–² P) φ. +Global Instance from_pure_absorbingly P φ : FromPure P φ → FromPure (bi_absorbingly P) φ. Proof. rewrite /FromPure=> <-. by rewrite absorbingly_pure. Qed. (* IntoInternalEq *) @@ -170,7 +170,7 @@ Global Instance into_internal_eq_affinely {A : ofeT} (x y : A) P : IntoInternalEq P x y → IntoInternalEq (bi_affinely P) x y. Proof. rewrite /IntoInternalEq=> ->. by rewrite affinely_elim. Qed. Global Instance into_internal_eq_absorbingly {A : ofeT} (x y : A) P : - IntoInternalEq P x y → IntoInternalEq (â–² P) x y. + IntoInternalEq P x y → IntoInternalEq (bi_absorbingly P) x y. Proof. rewrite /IntoInternalEq=> ->. by rewrite absorbingly_internal_eq. Qed. Global Instance into_internal_eq_plainly {A : ofeT} (x y : A) P : IntoInternalEq P x y → IntoInternalEq (bi_plainly P) x y. @@ -353,7 +353,7 @@ Global Instance from_sep_affinely P Q1 Q2 : FromSep P Q1 Q2 → FromSep (bi_affinely P) (bi_affinely Q1) (bi_affinely Q2). Proof. rewrite /FromSep=> <-. by rewrite affinely_sep_2. Qed. Global Instance from_sep_absorbingly P Q1 Q2 : - FromSep P Q1 Q2 → FromSep (â–² P) (â–² Q1) (â–² Q2). + FromSep P Q1 Q2 → FromSep (bi_absorbingly P) (bi_absorbingly Q1) (bi_absorbingly Q2). Proof. rewrite /FromSep=> <-. by rewrite absorbingly_sep. Qed. Global Instance from_sep_plainly P Q1 Q2 : FromSep P Q1 Q2 → @@ -491,7 +491,7 @@ Global Instance from_or_affinely P Q1 Q2 : FromOr P Q1 Q2 → FromOr (bi_affinely P) (bi_affinely Q1) (bi_affinely Q2). Proof. rewrite /FromOr=> <-. by rewrite affinely_or. Qed. Global Instance from_or_absorbingly P Q1 Q2 : - FromOr P Q1 Q2 → FromOr (â–² P) (â–² Q1) (â–² Q2). + FromOr P Q1 Q2 → FromOr (bi_absorbingly P) (bi_absorbingly Q1) (bi_absorbingly Q2). Proof. rewrite /FromOr=> <-. by rewrite absorbingly_or. Qed. Global Instance from_or_plainly P Q1 Q2 : FromOr P Q1 Q2 → FromOr (bi_plainly P) (bi_plainly Q1) (bi_plainly Q2). @@ -510,7 +510,7 @@ Global Instance into_or_affinely P Q1 Q2 : IntoOr P Q1 Q2 → IntoOr (bi_affinely P) (bi_affinely Q1) (bi_affinely Q2). Proof. rewrite /IntoOr=>->. by rewrite affinely_or. Qed. Global Instance into_or_absorbingly P Q1 Q2 : - IntoOr P Q1 Q2 → IntoOr (â–² P) (â–² Q1) (â–² Q2). + IntoOr P Q1 Q2 → IntoOr (bi_absorbingly P) (bi_absorbingly Q1) (bi_absorbingly Q2). Proof. rewrite /IntoOr=>->. by rewrite absorbingly_or. Qed. Global Instance into_or_plainly P Q1 Q2 : IntoOr P Q1 Q2 → IntoOr (bi_plainly P) (bi_plainly Q1) (bi_plainly Q2). @@ -530,7 +530,7 @@ Global Instance from_exist_affinely {A} P (Φ : A → PROP) : FromExist P Φ → FromExist (bi_affinely P) (λ a, bi_affinely (Φ a))%I. Proof. rewrite /FromExist=> <-. by rewrite affinely_exist. Qed. Global Instance from_exist_absorbingly {A} P (Φ : A → PROP) : - FromExist P Φ → FromExist (â–² P) (λ a, â–² (Φ a))%I. + FromExist P Φ → FromExist (bi_absorbingly P) (λ a, bi_absorbingly (Φ a))%I. Proof. rewrite /FromExist=> <-. by rewrite absorbingly_exist. Qed. Global Instance from_exist_plainly {A} P (Φ : A → PROP) : FromExist P Φ → FromExist (bi_plainly P) (λ a, bi_plainly (Φ a))%I. @@ -562,7 +562,7 @@ Proof. rewrite -exist_intro //. apply sep_elim_r, _. Qed. Global Instance into_exist_absorbingly {A} P (Φ : A → PROP) : - IntoExist P Φ → IntoExist (â–² P) (λ a, â–² (Φ a))%I. + IntoExist P Φ → IntoExist (bi_absorbingly P) (λ a, bi_absorbingly (Φ a))%I. Proof. rewrite /IntoExist=> HP. by rewrite HP absorbingly_exist. Qed. Global Instance into_exist_plainly {A} P (Φ : A → PROP) : IntoExist P Φ → IntoExist (bi_plainly P) (λ a, bi_plainly (Φ a))%I. @@ -633,7 +633,7 @@ Global Instance forall_modal_wand {A} P P' (Φ Ψ : A → PROP) : Proof. rewrite /ElimModal=> H. apply forall_intro=> a. by rewrite (forall_elim a). Qed. -Global Instance elim_modal_absorbingly P Q : Absorbing Q → ElimModal (â–² P) P Q Q. +Global Instance elim_modal_absorbingly P Q : Absorbing Q → ElimModal (bi_absorbingly P) P Q Q. Proof. rewrite /ElimModal=> H. by rewrite absorbingly_sep_l wand_elim_r absorbing_absorbingly. Qed. @@ -666,11 +666,11 @@ Global Instance make_sep_emp_r P : MakeSep P emp P. Proof. by rewrite /MakeSep right_id. Qed. Global Instance make_sep_true_l P : Absorbing P → MakeSep True P P. Proof. intros. by rewrite /MakeSep True_sep. Qed. -Global Instance make_and_emp_l_absorbingly P : MakeSep True P (â–² P) | 10. +Global Instance make_and_emp_l_absorbingly P : MakeSep True P (bi_absorbingly P) | 10. Proof. intros. by rewrite /MakeSep. Qed. Global Instance make_sep_true_r P : Absorbing P → MakeSep P True P. Proof. intros. by rewrite /MakeSep sep_True. Qed. -Global Instance make_and_emp_r_absorbingly P : MakeSep P True (â–² P) | 10. +Global Instance make_and_emp_r_absorbingly P : MakeSep P True (bi_absorbingly P) | 10. Proof. intros. by rewrite /MakeSep comm. Qed. Global Instance make_sep_default P Q : MakeSep P Q (P ∗ Q) | 100. Proof. by rewrite /MakeSep. Qed. @@ -794,18 +794,18 @@ Proof. by rewrite -{1}affinely_idemp affinely_sep_2. Qed. -Class MakeAbsorbingly (P Q : PROP) := make_absorbingly : â–² P ⊣⊢ Q. +Class MakeAbsorbingly (P Q : PROP) := make_absorbingly : bi_absorbingly P ⊣⊢ Q. Arguments MakeAbsorbingly _%I _%I. Global Instance make_absorbingly_emp : MakeAbsorbingly emp True | 0. Proof. by rewrite /MakeAbsorbingly -absorbingly_True_emp absorbingly_pure. Qed. (* Note: there is no point in having an instance `Absorbing P → MakeAbsorbingly P P` because framing will never turn a proposition that is not absorbing into something that is absorbing. *) -Global Instance make_absorbingly_default P : MakeAbsorbingly P (â–² P) | 100. +Global Instance make_absorbingly_default P : MakeAbsorbingly P (bi_absorbingly P) | 100. Proof. by rewrite /MakeAbsorbingly. Qed. Global Instance frame_absorbingly p R P Q Q' : - Frame p R P Q → MakeAbsorbingly Q Q' → Frame p R (â–² P) Q'. + Frame p R P Q → MakeAbsorbingly Q Q' → Frame p R (bi_absorbingly P) Q'. Proof. rewrite /Frame /MakeAbsorbingly=> <- <- /=. by rewrite absorbingly_sep_r. Qed. Class MakePersistently (P Q : PROP) := make_persistently : bi_persistently P ⊣⊢ Q. @@ -834,7 +834,7 @@ Global Instance frame_forall {A} p R (Φ Ψ : A → PROP) : Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed. (* FromModal *) -Global Instance from_modal_absorbingly P : FromModal (â–² P) P. +Global Instance from_modal_absorbingly P : FromModal (bi_absorbingly P) P. Proof. apply absorbingly_intro. Qed. End bi_instances. @@ -1049,7 +1049,7 @@ Global Instance into_except_0_affinely P Q : IntoExcept0 P Q → IntoExcept0 (bi_affinely P) (bi_affinely Q). Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_affinely_2. Qed. Global Instance into_except_0_absorbingly P Q : - IntoExcept0 P Q → IntoExcept0 (â–² P) (â–² Q). + IntoExcept0 P Q → IntoExcept0 (bi_absorbingly P) (bi_absorbingly Q). Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_absorbingly. Qed. Global Instance into_except_0_plainly P Q : IntoExcept0 P Q → IntoExcept0 (bi_plainly P) (bi_plainly Q). @@ -1155,7 +1155,7 @@ Global Instance into_later_affinely n P Q : IntoLaterN n P Q → IntoLaterN n (bi_affinely P) (bi_affinely Q). Proof. rewrite /IntoLaterN=> ->. by rewrite laterN_affinely_2. Qed. Global Instance into_later_absorbingly n P Q : - IntoLaterN n P Q → IntoLaterN n (â–² P) (â–² Q). + IntoLaterN n P Q → IntoLaterN n (bi_absorbingly P) (bi_absorbingly Q). Proof. rewrite /IntoLaterN=> ->. by rewrite laterN_absorbingly. Qed. Global Instance into_later_plainly n P Q : IntoLaterN n P Q → IntoLaterN n (bi_plainly P) (bi_plainly Q). @@ -1244,7 +1244,7 @@ Global Instance from_later_persistently n P Q : FromLaterN n P Q → FromLaterN n (bi_persistently P) (bi_persistently Q). Proof. by rewrite /FromLaterN laterN_persistently=> ->. Qed. Global Instance from_later_absorbingly n P Q : - FromLaterN n P Q → FromLaterN n (â–² P) (â–² Q). + FromLaterN n P Q → FromLaterN n (bi_absorbingly P) (bi_absorbingly Q). Proof. by rewrite /FromLaterN laterN_absorbingly=> ->. Qed. Global Instance from_later_forall {A} n (Φ Ψ : A → PROP) : diff --git a/theories/proofmode/classes.v b/theories/proofmode/classes.v index 8f959e4e1..25b8d6990 100644 --- a/theories/proofmode/classes.v +++ b/theories/proofmode/classes.v @@ -74,7 +74,8 @@ Arguments from_affinely {_} _%I _%type_scope {_}. Hint Mode FromAffinely + ! - : typeclass_instances. Hint Mode FromAffinely + - ! : typeclass_instances. -Class IntoAbsorbingly {PROP : bi} (P Q : PROP) := into_absorbingly : P ⊢ â–² Q. +Class IntoAbsorbingly {PROP : bi} (P Q : PROP) := + into_absorbingly : P ⊢ bi_absorbingly Q. Arguments IntoAbsorbingly {_} _%I _%I. Arguments into_absorbingly {_} _%I _%I {_}. Hint Mode IntoAbsorbingly + ! - : typeclass_instances. diff --git a/theories/proofmode/coq_tactics.v b/theories/proofmode/coq_tactics.v index bfddbb9a4..08708214e 100644 --- a/theories/proofmode/coq_tactics.v +++ b/theories/proofmode/coq_tactics.v @@ -798,7 +798,7 @@ Qed. Lemma tac_specialize_persistent_helper Δ Δ'' j q P R R' Q : envs_lookup j Δ = Some (q,P) → - envs_entails Δ (â–² R) → + envs_entails Δ (bi_absorbingly R) → IntoPersistent false R R' → (if q then TCTrue else AffineBI PROP) → envs_replace j q true (Esnoc Enil j R') Δ = Some Δ'' → -- GitLab