diff --git a/iris/proofmode/ltac_tactics.v b/iris/proofmode/ltac_tactics.v index 3d3ab10589cc6c00410bfcc18a43d58f9c5d3d47..33e03541cea1a8d329ea23bcb41d102f4ca7bde7 100644 --- a/iris/proofmode/ltac_tactics.v +++ b/iris/proofmode/ltac_tactics.v @@ -1839,7 +1839,7 @@ Tactic Notation "iLöb" "as" constr (IH) "forall" "(" ne_ident_list(xs) ")" := Tactic Notation "iLöb" "as" constr (IH) "forall" constr(Hs) := _iLöb0 Hs IH. Tactic Notation "iLöb" "as" constr (IH) "forall" "(" ne_ident_list(xs) ")" constr(Hs) := - _iLöb0 xs Hs IH. + _iLöb xs Hs IH. (** * Assert *) (* The argument [p] denotes whether [Q] is persistent. It can either be a diff --git a/tests/proofmode.v b/tests/proofmode.v index e78302a57fd3e9d545b2577f58cfdc782d188165..d9d4ff403c8676e7498b394dee226c9b0c2ab8ab 100644 --- a/tests/proofmode.v +++ b/tests/proofmode.v @@ -875,6 +875,17 @@ Proof. by iExists (S n). Qed. +Lemma test_iLöb_forall `{!BiLöb PROP} P (n : nat) : P ⊢ ⌜ n = n âŒ. +Proof. + iIntros "HP". iLöb as "IH" forall (n) "HP". +Restart. + iIntros "HP". iLöb as "IH" forall "HP". +Restart. + iIntros "HP". iLöb as "IH" forall (n). +Restart. + iIntros "HP". iLöb as "IH". +Abort. + Lemma test_iInduction_wf (x : nat) P Q : â–¡ P -∗ Q -∗ ⌜ (x + 0 = x)%nat âŒ. Proof.