diff --git a/theories/bi/big_op.v b/theories/bi/big_op.v index 9bef2299ba5fa1284211faff0253e59584403575..5aafb22122e71b77f20833102902277bddd7341f 100644 --- a/theories/bi/big_op.v +++ b/theories/bi/big_op.v @@ -1027,6 +1027,13 @@ Section list2. Context {A B : Type}. Implicit Types Φ Ψ : nat → A → B → PROP. + Lemma big_sepL2_later_1 `{BiAffine PROP} Φ l1 l2 : + (â–· [∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) ⊢ â—‡ [∗ list] k↦y1;y2 ∈ l1;l2, â–· Φ k y1 y2. + Proof. + rewrite !big_sepL2_alt later_and big_sepL_later (timeless ⌜ _ âŒ%I). + rewrite except_0_and. auto using and_mono, except_0_intro. + Qed. + Lemma big_sepL2_later_2 Φ l1 l2 : ([∗ list] k↦y1;y2 ∈ l1;l2, â–· Φ k y1 y2) ⊢ â–· [∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2. Proof.