diff --git a/theories/bi/embedding.v b/theories/bi/embedding.v index ee071f187b83628a4e13ce37317cab77b646368f..4201349f1703af21d348286ce1acc84704fd1a5a 100644 --- a/theories/bi/embedding.v +++ b/theories/bi/embedding.v @@ -15,8 +15,9 @@ Hint Mode Embed - ! : typeclass_instances. Record BiEmbedMixin (PROP1 PROP2 : bi) `(Embed PROP1 PROP2) := { bi_embed_mixin_ne : NonExpansive embed; bi_embed_mixin_mono : Proper ((⊢) ==> (⊢)) embed; - bi_embed_mixin_entails_inj :> Inj (⊢) (⊢) embed; - bi_embed_mixin_emp : ⎡emp⎤ ⊣⊢ emp; + bi_embed_mixin_emp_valid_inj (P : PROP1) : + bi_emp_valid (PROP:=PROP2) ⎡P⎤ → bi_emp_valid P; + bi_embed_mixin_emp_2 : emp ⊢ ⎡emp⎤; bi_embed_mixin_impl_2 P Q : (⎡P⎤ → ⎡Q⎤) ⊢ ⎡P → Q⎤; bi_embed_mixin_forall_2 A (Φ : A → PROP1) : (∀ x, ⎡Φ x⎤) ⊢ ⎡∀ x, Φ x⎤; bi_embed_mixin_exist_1 A (Φ : A → PROP1) : ⎡∃ x, Φ x⎤ ⊢ ∃ x, ⎡Φ x⎤; @@ -33,6 +34,12 @@ Hint Mode BiEmbed ! - : typeclass_instances. Hint Mode BiEmbed - ! : typeclass_instances. Arguments bi_embed_embed : simpl never. +Class BiEmbedEmp (PROP1 PROP2 : bi) `{BiEmbed PROP1 PROP2} := { + embed_emp_1 : ⎡ emp : PROP1 ⎤ ⊢ emp; +}. +Hint Mode BiEmbedEmp ! - - : typeclass_instances. +Hint Mode BiEmbedEmp - ! - : typeclass_instances. + Class SbiEmbed (PROP1 PROP2 : sbi) `{BiEmbed PROP1 PROP2} := { embed_internal_eq_1 (A : ofeT) (x y : A) : ⎡x ≡ y⎤ ⊢ x ≡ y; embed_later P : ⎡▷ P⎤ ⊣⊢ â–· ⎡P⎤; @@ -55,6 +62,13 @@ Class BiEmbedFUpd (PROP1 PROP2 : sbi) Hint Mode BiEmbedFUpd - ! - - - : typeclass_instances. Hint Mode BiEmbedFUpd ! - - - - : typeclass_instances. +Class BiEmbedPlainly (PROP1 PROP2 : sbi) + `{BiEmbed PROP1 PROP2, BiPlainly PROP1, BiPlainly PROP2} := { + embed_plainly_2 (P : PROP1) : ■⎡P⎤ ⊢ (⎡■P⎤ : PROP2) +}. +Hint Mode BiEmbedPlainly - ! - - - : typeclass_instances. +Hint Mode BiEmbedPlainly ! - - - - : typeclass_instances. + Section embed_laws. Context `{BiEmbed PROP1 PROP2}. Local Notation embed := (embed (A:=PROP1) (B:=PROP2)). @@ -65,10 +79,10 @@ Section embed_laws. Proof. eapply bi_embed_mixin_ne, bi_embed_mixin. Qed. Global Instance embed_mono : Proper ((⊢) ==> (⊢)) embed. Proof. eapply bi_embed_mixin_mono, bi_embed_mixin. Qed. - Global Instance embed_entails_inj : Inj (⊢) (⊢) embed. - Proof. eapply bi_embed_mixin_entails_inj, bi_embed_mixin. Qed. - Lemma embed_emp : ⎡emp⎤ ⊣⊢ emp. - Proof. eapply bi_embed_mixin_emp, bi_embed_mixin. Qed. + Lemma embed_emp_valid_inj P : (⎡P⎤ : PROP2)%I → P. + Proof. eapply bi_embed_mixin_emp_valid_inj, bi_embed_mixin. Qed. + Lemma embed_emp_2 : emp ⊢ ⎡emp⎤. + Proof. eapply bi_embed_mixin_emp_2, bi_embed_mixin. Qed. Lemma embed_impl_2 P Q : (⎡P⎤ → ⎡Q⎤) ⊢ ⎡P → Q⎤. Proof. eapply bi_embed_mixin_impl_2, bi_embed_mixin. Qed. Lemma embed_forall_2 A (Φ : A → PROP1) : (∀ x, ⎡Φ x⎤) ⊢ ⎡∀ x, Φ x⎤. @@ -93,17 +107,27 @@ Section embed. Proof. apply (ne_proper _). Qed. Global Instance embed_flip_mono : Proper (flip (⊢) ==> flip (⊢)) embed. Proof. solve_proper. Qed. + Global Instance embed_entails_inj : Inj (⊢) (⊢) embed. + Proof. + move=> P Q /bi.entails_wand. rewrite embed_wand_2. + by move=> /embed_emp_valid_inj /bi.wand_entails. + Qed. + Global Instance embed_inj : Inj (≡) (≡) embed. Proof. - intros P Q EQ. apply bi.equiv_spec, conj; apply (inj embed); - rewrite EQ //. + intros P Q EQ. apply bi.equiv_spec, conj; apply (inj embed); rewrite EQ //. Qed. Lemma embed_emp_valid (P : PROP1) : ⎡P⎤%I ↔ P. Proof. - by rewrite /bi_emp_valid -embed_emp; split=>?; [apply (inj embed)|f_equiv]. + rewrite /bi_emp_valid. split=> HP. + - by apply embed_emp_valid_inj. + - by rewrite embed_emp_2 HP. Qed. + Lemma embed_emp `{!BiEmbedEmp PROP1 PROP2} : ⎡ emp ⎤ ⊣⊢ emp. + Proof. apply (anti_symm _); eauto using embed_emp_1, embed_emp_2. Qed. + Lemma embed_forall A (Φ : A → PROP1) : ⎡∀ x, Φ x⎤ ⊣⊢ ∀ x, ⎡Φ x⎤. Proof. apply bi.equiv_spec; split; [|apply embed_forall_2]. @@ -141,18 +165,30 @@ Section embed. Proof. by rewrite embed_and !embed_impl. Qed. Lemma embed_wand_iff P Q : ⎡P ∗-∗ Q⎤ ⊣⊢ (⎡P⎤ ∗-∗ ⎡Q⎤). Proof. by rewrite embed_and !embed_wand. Qed. - Lemma embed_affinely P : ⎡<affine> P⎤ ⊣⊢ <affine> ⎡P⎤. - Proof. by rewrite embed_and embed_emp. Qed. + Lemma embed_affinely_2 P : <affine> ⎡P⎤ ⊢ ⎡<affine> P⎤. + Proof. by rewrite embed_and -embed_emp_2. Qed. + Lemma embed_affinely `{!BiEmbedEmp PROP1 PROP2} P : ⎡<affine> P⎤ ⊣⊢ <affine> ⎡P⎤. + Proof. by rewrite /bi_intuitionistically embed_and embed_emp. Qed. Lemma embed_absorbingly P : ⎡<absorb> P⎤ ⊣⊢ <absorb> ⎡P⎤. Proof. by rewrite embed_sep embed_pure. Qed. - Lemma embed_intuitionistically P : ⎡□ P⎤ ⊣⊢ â–¡ ⎡P⎤. - Proof. rewrite embed_and embed_emp embed_persistently //. Qed. + Lemma embed_intuitionistically_2 P : â–¡ ⎡P⎤ ⊢ ⎡□ P⎤. + Proof. by rewrite /bi_intuitionistically -embed_affinely_2 embed_persistently. Qed. + Lemma embed_intuitionistically `{!BiEmbedEmp PROP1 PROP2} P : ⎡□ P⎤ ⊣⊢ â–¡ ⎡P⎤. + Proof. by rewrite /bi_intuitionistically embed_affinely embed_persistently. Qed. + Lemma embed_persistently_if P b : ⎡<pers>?b P⎤ ⊣⊢ <pers>?b ⎡P⎤. Proof. destruct b; simpl; auto using embed_persistently. Qed. - Lemma embed_affinely_if P b : ⎡<affine>?b P⎤ ⊣⊢ <affine>?b ⎡P⎤. + Lemma embed_affinely_if_2 P b : <affine>?b ⎡P⎤ ⊢ ⎡<affine>?b P⎤. + Proof. destruct b; simpl; auto using embed_affinely_2. Qed. + Lemma embed_affinely_if `{!BiEmbedEmp PROP1 PROP2} P b : + ⎡<affine>?b P⎤ ⊣⊢ <affine>?b ⎡P⎤. Proof. destruct b; simpl; auto using embed_affinely. Qed. - Lemma embed_intuitionistically_if P b : ⎡□?b P⎤ ⊣⊢ â–¡?b ⎡P⎤. + Lemma embed_intuitionistically_if_2 P b : â–¡?b ⎡P⎤ ⊢ ⎡□?b P⎤. + Proof. destruct b; simpl; auto using embed_intuitionistically_2. Qed. + Lemma embed_intuitionistically_if `{!BiEmbedEmp PROP1 PROP2} P b : + ⎡□?b P⎤ ⊣⊢ â–¡?b ⎡P⎤. Proof. destruct b; simpl; auto using embed_intuitionistically. Qed. + Lemma embed_hforall {As} (Φ : himpl As PROP1): ⎡bi_hforall Φ⎤ ⊣⊢ bi_hforall (hcompose embed Φ). Proof. induction As=>//. rewrite /= embed_forall. by do 2 f_equiv. Qed. @@ -162,7 +198,7 @@ Section embed. Global Instance embed_persistent P : Persistent P → Persistent ⎡P⎤. Proof. intros ?. by rewrite /Persistent -embed_persistently -persistent. Qed. - Global Instance embed_affine P : Affine P → Affine ⎡P⎤. + Global Instance embed_affine `{!BiEmbedEmp PROP1 PROP2} P : Affine P → Affine ⎡P⎤. Proof. intros ?. by rewrite /Affine (affine P) embed_emp. Qed. Global Instance embed_absorbing P : Absorbing P → Absorbing ⎡P⎤. Proof. intros ?. by rewrite /Absorbing -embed_absorbingly absorbing. Qed. @@ -179,25 +215,50 @@ Section embed. by split; [split|]; try apply _; [setoid_rewrite embed_or|rewrite embed_pure]. Qed. - Global Instance embed_sep_homomorphism : - MonoidHomomorphism bi_sep bi_sep (≡) embed. + + Global Instance embed_sep_entails_homomorphism : + MonoidHomomorphism bi_sep bi_sep (flip (⊢)) embed. Proof. - by split; [split|]; try apply _; - [setoid_rewrite embed_sep|rewrite embed_emp]. - Qed. - - Lemma embed_big_sepL {A} (Φ : nat → A → PROP1) l : - ⎡[∗ list] k↦x ∈ l, Φ k x⎤ ⊣⊢ [∗ list] k↦x ∈ l, ⎡Φ k x⎤. - Proof. apply (big_opL_commute _). Qed. - Lemma embed_big_sepM `{Countable K} {A} (Φ : K → A → PROP1) (m : gmap K A) : - ⎡[∗ map] k↦x ∈ m, Φ k x⎤ ⊣⊢ [∗ map] k↦x ∈ m, ⎡Φ k x⎤. - Proof. apply (big_opM_commute _). Qed. - Lemma embed_big_sepS `{Countable A} (Φ : A → PROP1) (X : gset A) : - ⎡[∗ set] y ∈ X, Φ y⎤ ⊣⊢ [∗ set] y ∈ X, ⎡Φ y⎤. - Proof. apply (big_opS_commute _). Qed. - Lemma embed_big_sepMS `{Countable A} (Φ : A → PROP1) (X : gmultiset A) : - ⎡[∗ mset] y ∈ X, Φ y⎤ ⊣⊢ [∗ mset] y ∈ X, ⎡Φ y⎤. - Proof. apply (big_opMS_commute _). Qed. + split; [split|]; simpl; try apply _; + [by setoid_rewrite embed_sep|by rewrite embed_emp_2]. + Qed. + + Lemma embed_big_sepL_2 {A} (Φ : nat → A → PROP1) l : + ([∗ list] k↦x ∈ l, ⎡Φ k x⎤) ⊢ ⎡[∗ list] k↦x ∈ l, Φ k x⎤. + Proof. apply (big_opL_commute (R:=flip (⊢)) _). Qed. + Lemma embed_big_sepM_2 `{Countable K} {A} (Φ : K → A → PROP1) (m : gmap K A) : + ([∗ map] k↦x ∈ m, ⎡Φ k x⎤) ⊢ ⎡[∗ map] k↦x ∈ m, Φ k x⎤. + Proof. apply (big_opM_commute (R:=flip (⊢)) _). Qed. + Lemma embed_big_sepS_2 `{Countable A} (Φ : A → PROP1) (X : gset A) : + ([∗ set] y ∈ X, ⎡Φ y⎤) ⊢ ⎡[∗ set] y ∈ X, Φ y⎤. + Proof. apply (big_opS_commute (R:=flip (⊢)) _). Qed. + Lemma embed_big_sepMS_2 `{Countable A} (Φ : A → PROP1) (X : gmultiset A) : + ([∗ mset] y ∈ X, ⎡Φ y⎤) ⊢ ⎡[∗ mset] y ∈ X, Φ y⎤. + Proof. apply (big_opMS_commute (R:=flip (⊢)) _). Qed. + + Section big_ops_emp. + Context `{!BiEmbedEmp PROP1 PROP2}. + + Global Instance embed_sep_homomorphism : + MonoidHomomorphism bi_sep bi_sep (≡) embed. + Proof. + by split; [split|]; try apply _; + [setoid_rewrite embed_sep|rewrite embed_emp]. + Qed. + + Lemma embed_big_sepL {A} (Φ : nat → A → PROP1) l : + ⎡[∗ list] k↦x ∈ l, Φ k x⎤ ⊣⊢ [∗ list] k↦x ∈ l, ⎡Φ k x⎤. + Proof. apply (big_opL_commute _). Qed. + Lemma embed_big_sepM `{Countable K} {A} (Φ : K → A → PROP1) (m : gmap K A) : + ⎡[∗ map] k↦x ∈ m, Φ k x⎤ ⊣⊢ [∗ map] k↦x ∈ m, ⎡Φ k x⎤. + Proof. apply (big_opM_commute _). Qed. + Lemma embed_big_sepS `{Countable A} (Φ : A → PROP1) (X : gset A) : + ⎡[∗ set] y ∈ X, Φ y⎤ ⊣⊢ [∗ set] y ∈ X, ⎡Φ y⎤. + Proof. apply (big_opS_commute _). Qed. + Lemma embed_big_sepMS `{Countable A} (Φ : A → PROP1) (X : gmultiset A) : + ⎡[∗ mset] y ∈ X, Φ y⎤ ⊣⊢ [∗ mset] y ∈ X, ⎡Φ y⎤. + Proof. apply (big_opMS_commute _). Qed. + End big_ops_emp. End embed. Section sbi_embed. @@ -216,17 +277,41 @@ Section sbi_embed. Lemma embed_except_0 P : ⎡◇ P⎤ ⊣⊢ â—‡ ⎡P⎤. Proof. by rewrite embed_or embed_later embed_pure. Qed. - Lemma embed_plainly `{!BiPlainly PROP1, !BiPlainly PROP2} P : ⎡■P⎤ ⊣⊢ ■⎡P⎤. + (* Not an instance, since it may cause overlap *) + Lemma bi_embed_plainly_emp `{!BiPlainly PROP1, !BiPlainly PROP2} : + BiEmbedEmp PROP1 PROP2 → BiEmbedPlainly PROP1 PROP2. Proof. - rewrite !plainly_alt embed_internal_eq. apply (anti_symm _). - - rewrite -embed_affinely -embed_emp. apply bi.f_equiv, _. - - by rewrite -embed_affinely -embed_emp embed_interal_inj. + intros. constructor=> P. rewrite !plainly_alt embed_internal_eq. + by rewrite -embed_affinely -embed_emp embed_interal_inj. Qed. - Lemma embed_plainly_if `{!BiPlainly PROP1, !BiPlainly PROP2} p P : ⎡■?p P⎤ ⊣⊢ â– ?p ⎡P⎤. + + Lemma embed_plainly_1 `{!BiPlainly PROP1, !BiPlainly PROP2} P : ⎡■P⎤ ⊢ ■⎡P⎤. + Proof. + assert (∀ P, <affine> ⎡ P ⎤ ⊣⊢ (<affine> ⎡ <affine> P ⎤ : PROP2)) as Hhelp. + { intros P'. apply (anti_symm _). + - by rewrite -bi.affinely_idemp (embed_affinely_2 P'). + - by rewrite (bi.affinely_elim P'). } + assert (<affine> ⎡ emp ⎤ ⊣⊢ (emp : PROP2)) as Hemp. + { apply (anti_symm _). + - apply bi.affinely_elim_emp. + - apply bi.and_intro; auto using embed_emp_2. } + rewrite !plainly_alt embed_internal_eq. by rewrite Hhelp -Hemp -!bi.f_equiv. + Qed. + Lemma embed_plainly `{!BiPlainly PROP1, !BiPlainly PROP2, + !BiEmbedPlainly PROP1 PROP2} P : ⎡■P⎤ ⊣⊢ ■⎡P⎤. + Proof. + apply (anti_symm _). by apply embed_plainly_1. by apply embed_plainly_2. + Qed. + + Lemma embed_plainly_if `{!BiPlainly PROP1, !BiPlainly PROP2, + !BiEmbedPlainly PROP1 PROP2} p P : ⎡■?p P⎤ ⊣⊢ â– ?p ⎡P⎤. Proof. destruct p; simpl; auto using embed_plainly. Qed. + Lemma embed_plainly_if_1 `{!BiPlainly PROP1, !BiPlainly PROP2} p P : + ⎡■?p P⎤ ⊢ â– ?p ⎡P⎤. + Proof. destruct p; simpl; auto using embed_plainly_1. Qed. Lemma embed_plain `{!BiPlainly PROP1, !BiPlainly PROP2} P : Plain P → Plain ⎡P⎤. - Proof. intros ?. by rewrite /Plain -embed_plainly -plain. Qed. + Proof. intros ?. by rewrite /Plain {1}(plain P) embed_plainly_1. Qed. Global Instance embed_timeless P : Timeless P → Timeless ⎡P⎤. Proof. diff --git a/theories/bi/monpred.v b/theories/bi/monpred.v index 4e0df1b95d65efe7085bfc9cbe4ce19694a9f4df..828bf4eb0e0d8d4580c752ed1e01b3ced00ecddf 100644 --- a/theories/bi/monpred.v +++ b/theories/bi/monpred.v @@ -411,15 +411,17 @@ Proof. unfold Absorbing. unseal. split=> ? /=. apply absorbing, _. Qed. Definition monPred_embedding_mixin : BiEmbedMixin PROP monPredI monPred_embed. Proof. - split; try apply _; unseal; try done. - - move =>?? /= [/(_ inhabitant) ?] //. - - split=>? /=. + split; try apply _; rewrite /bi_emp_valid; unseal; try done. + - move=> P /= [/(_ inhabitant) ?] //. + - intros P Q. split=> i /=. by rewrite bi.forall_elim bi.pure_impl_forall bi.forall_elim. - - split=>? /=. + - intros P Q. split=> i /=. by rewrite bi.forall_elim bi.pure_impl_forall bi.forall_elim. Qed. Global Instance monPred_bi_embed : BiEmbed PROP monPredI := {| bi_embed_mixin := monPred_embedding_mixin |}. +Global Instance monPred_bi_embed_emp : BiEmbedEmp PROP monPredI. +Proof. split. by unseal. Qed. Lemma monPred_emp_unfold : emp%I = ⎡emp : PROP⎤%I. Proof. by unseal. Qed. @@ -936,6 +938,10 @@ Proof. apply bi.forall_intro=>?. by do 2 f_equiv. Qed. +Global Instance monPred_bi_embed_plainly `{BiPlainly PROP} : + BiEmbedPlainly PROP monPredSI. +Proof. apply bi_embed_plainly_emp, _. Qed. + Lemma monPred_plainly_unfold `{BiPlainly PROP} : plainly = λ P, ⎡ ∀ i, â– (P i) ⎤%I. Proof. by rewrite monPred_plainly_eq monPred_embed_eq. Qed. Lemma monPred_at_plainly `{BiPlainly PROP} i P : (â– P) i ⊣⊢ ∀ j, â– (P j). diff --git a/theories/proofmode/class_instances_bi.v b/theories/proofmode/class_instances_bi.v index 2696a0e3d83808b469140265f4187aa7a90860d7..e431e99a6dd829116fc40c3b6a34838f3807c3d4 100644 --- a/theories/proofmode/class_instances_bi.v +++ b/theories/proofmode/class_instances_bi.v @@ -215,7 +215,7 @@ Global Instance from_pure_absorbingly P φ : Proof. rewrite /FromPure=> <- /=. by rewrite persistent_absorbingly_affinely. Qed. Global Instance from_pure_embed `{BiEmbed PROP PROP'} a P φ : FromPure a P φ → FromPure a ⎡P⎤ φ. -Proof. rewrite /FromPure=> <-. by rewrite embed_affinely_if embed_pure. Qed. +Proof. rewrite /FromPure=> <-. by rewrite -embed_pure embed_affinely_if_2. Qed. (* IntoPersistent *) Global Instance into_persistent_persistently p P Q : @@ -281,7 +281,7 @@ Proof. by rewrite /FromModal /= =><-. Qed. Global Instance from_modal_affinely_embed `{BiEmbed PROP PROP'} `(sel : A) P Q : FromModal modality_affinely sel P Q → FromModal modality_affinely sel ⎡P⎤ ⎡Q⎤ | 100. -Proof. rewrite /FromModal /= =><-. by rewrite embed_affinely. Qed. +Proof. rewrite /FromModal /= =><-. by rewrite embed_affinely_2. Qed. Global Instance from_modal_persistently_embed `{BiEmbed PROP PROP'} `(sel : A) P Q : FromModal modality_persistently sel P Q → FromModal modality_persistently sel ⎡P⎤ ⎡Q⎤ | 100. @@ -289,9 +289,7 @@ Proof. rewrite /FromModal /= =><-. by rewrite embed_persistently. Qed. Global Instance from_modal_intuitionistically_embed `{BiEmbed PROP PROP'} `(sel : A) P Q : FromModal modality_intuitionistically sel P Q → FromModal modality_intuitionistically sel ⎡P⎤ ⎡Q⎤ | 100. -Proof. - rewrite /FromModal /= =><-. by rewrite embed_affinely embed_persistently. -Qed. +Proof. rewrite /FromModal /= =><-. by rewrite embed_intuitionistically_2. Qed. (* IntoWand *) Global Instance into_wand_wand p q P Q P' : @@ -364,9 +362,7 @@ Global Instance into_wand_persistently_false q R P Q : Proof. intros ?. by rewrite /IntoWand persistently_elim. Qed. Global Instance into_wand_embed `{BiEmbed PROP PROP'} p q R P Q : IntoWand p q R P Q → IntoWand p q ⎡R⎤ ⎡P⎤ ⎡Q⎤. -Proof. - rewrite /IntoWand -!embed_intuitionistically_if -embed_wand => -> //. -Qed. +Proof. by rewrite /IntoWand !embed_intuitionistically_if_2 -embed_wand=> ->. Qed. (* FromWand *) Global Instance from_wand_wand P1 P2 : FromWand (P1 -∗ P2) P1 P2. @@ -517,7 +513,8 @@ Qed. Global Instance into_and_embed `{BiEmbed PROP PROP'} p P Q1 Q2 : IntoAnd p P Q1 Q2 → IntoAnd p ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. Proof. - rewrite /IntoAnd -embed_and -!embed_intuitionistically_if=> -> //. + rewrite /IntoAnd -embed_and=> HP. apply intuitionistically_if_intro'. + by rewrite embed_intuitionistically_if_2 HP intuitionistically_if_elim. Qed. (* IntoSep *) diff --git a/theories/proofmode/class_instances_sbi.v b/theories/proofmode/class_instances_sbi.v index 9ae1b1d9583d1ea3b7f01ad5e14a0cb54c4b2a62..78b7091f7fb0666bdfe6b25b189f183a324d3933 100644 --- a/theories/proofmode/class_instances_sbi.v +++ b/theories/proofmode/class_instances_sbi.v @@ -416,8 +416,8 @@ Global Instance from_modal_plainly `{BiPlainly PROP} P : FromModal modality_plainly (â– P) (â– P) P | 2. Proof. by rewrite /FromModal. Qed. -Global Instance from_modal_plainly_embed - `{BiPlainly PROP, BiPlainly PROP', SbiEmbed PROP PROP'} `(sel : A) P Q : +Global Instance from_modal_plainly_embed `{BiPlainly PROP, BiPlainly PROP', + BiEmbedPlainly PROP PROP', !SbiEmbed PROP PROP'} `(sel : A) P Q : FromModal modality_plainly sel P Q → FromModal modality_plainly sel ⎡P⎤ ⎡Q⎤ | 100. Proof. rewrite /FromModal /= =><-. by rewrite embed_plainly. Qed. diff --git a/theories/proofmode/frame_instances.v b/theories/proofmode/frame_instances.v index 6326f2763403f87bcdff83bf489e4a1777bd3b57..387608462e5f3c803b7473b8b0769490978adfad 100644 --- a/theories/proofmode/frame_instances.v +++ b/theories/proofmode/frame_instances.v @@ -35,7 +35,7 @@ Qed. Global Instance make_embed_pure `{BiEmbed PROP PROP'} φ : KnownMakeEmbed ⌜φ⌠⌜φâŒ. Proof. apply embed_pure. Qed. -Global Instance make_embed_emp `{BiEmbed PROP PROP'} : +Global Instance make_embed_emp `{BiEmbedEmp PROP PROP'} : KnownMakeEmbed emp emp. Proof. apply embed_emp. Qed. Global Instance make_embed_default `{BiEmbed PROP PROP'} P : @@ -46,7 +46,7 @@ Global Instance frame_embed `{BiEmbed PROP PROP'} p P Q (Q' : PROP') R : Frame p R P Q → MakeEmbed Q Q' → Frame p ⎡R⎤ ⎡P⎤ Q'. Proof. rewrite /Frame /MakeEmbed => <- <-. - rewrite embed_sep embed_intuitionistically_if => //. + rewrite embed_sep embed_intuitionistically_if_2 => //. Qed. Global Instance frame_pure_embed `{BiEmbed PROP PROP'} p P Q (Q' : PROP') φ : Frame p ⌜φ⌠P Q → MakeEmbed Q Q' → Frame p ⌜φ⌠⎡P⎤ Q'. diff --git a/theories/proofmode/modality_instances.v b/theories/proofmode/modality_instances.v index 6018b7aaee6f7ebd95ae9b71236a8d7601ad1862..2cb4571d58079a36b9aae058a7e4025d6e73718d 100644 --- a/theories/proofmode/modality_instances.v +++ b/theories/proofmode/modality_instances.v @@ -39,9 +39,8 @@ Section bi_modalities. (MIEnvTransform IntoEmbed) (MIEnvTransform IntoEmbed). Proof. split; simpl; split_and?; - eauto using equiv_entails_sym, embed_emp, embed_sep, embed_and. - - intros P Q. rewrite /IntoEmbed=> ->. - by rewrite embed_affinely embed_persistently. + eauto using equiv_entails_sym, embed_emp_2, embed_sep, embed_and. + - intros P Q. rewrite /IntoEmbed=> ->. by rewrite embed_intuitionistically_2. - by intros P Q ->. Qed. Definition modality_embed `{BiEmbed PROP PROP'} :=