diff --git a/_CoqProject b/_CoqProject index f01a9bc225191ea7c4f9cec35a2baf92f72ecdfa..894e7004117ad53b1f2bcaf1c067f5142ca5e24e 100644 --- a/_CoqProject +++ b/_CoqProject @@ -44,8 +44,8 @@ theories/si_logic/bi.v theories/bi/notation.v theories/bi/interface.v theories/bi/derived_connectives.v -theories/bi/derived_laws_bi.v -theories/bi/derived_laws_sbi.v +theories/bi/derived_laws.v +theories/bi/derived_laws_later.v theories/bi/plainly.v theories/bi/internal_eq.v theories/bi/big_op.v @@ -138,8 +138,12 @@ theories/proofmode/sel_patterns.v theories/proofmode/tactics.v theories/proofmode/notation.v theories/proofmode/classes.v -theories/proofmode/class_instances_bi.v -theories/proofmode/class_instances_sbi.v +theories/proofmode/class_instances.v +theories/proofmode/class_instances_later.v +theories/proofmode/class_instances_updates.v +theories/proofmode/class_instances_embedding.v +theories/proofmode/class_instances_plainly.v +theories/proofmode/class_instances_internal_eq.v theories/proofmode/frame_instances.v theories/proofmode/monpred.v theories/proofmode/modalities.v diff --git a/theories/bi/bi.v b/theories/bi/bi.v index 9fde00f1a5c85fb916f191363ba4ef5ddf431a44..8f5aa1aa0fc72846c4cc3cd612ef2e95d2756b1e 100644 --- a/theories/bi/bi.v +++ b/theories/bi/bi.v @@ -1,9 +1,9 @@ -From iris.bi Require Export derived_laws_bi derived_laws_sbi big_op. +From iris.bi Require Export derived_laws derived_laws_later big_op. From iris.bi Require Export updates internal_eq plainly embedding. Set Default Proof Using "Type". Module Import bi. Export bi.interface.bi. - Export bi.derived_laws_bi.bi. - Export bi.derived_laws_sbi.bi. + Export bi.derived_laws.bi. + Export bi.derived_laws_later.bi. End bi. diff --git a/theories/bi/big_op.v b/theories/bi/big_op.v index 4bb1940211dcc1cb9beceeb6b55e8026ce9341df..a118ac19e392b758c9326ba07429597fa39a4a32 100644 --- a/theories/bi/big_op.v +++ b/theories/bi/big_op.v @@ -1,8 +1,8 @@ From stdpp Require Import countable fin_sets functions. -From iris.bi Require Import derived_laws_sbi. +From iris.bi Require Import derived_laws_later. From iris.algebra Require Export big_op. Set Default Proof Using "Type". -Import interface.bi derived_laws_bi.bi derived_laws_sbi.bi. +Import interface.bi derived_laws.bi derived_laws_later.bi. (** Notations for unary variants *) Notation "'[∗' 'list]' k ↦ x ∈ l , P" := @@ -65,7 +65,7 @@ Notation "'[∗' 'map]' x1 ; x2 ∈ m1 ; m2 , P" := (big_sepM2 (λ _ x1 x2, P) m1 m2) : bi_scope. (** * Properties *) -Section bi_big_op. +Section big_op. Context {PROP : bi}. Implicit Types P Q : PROP. Implicit Types Ps Qs : list PROP. @@ -231,6 +231,20 @@ Section sep_list. [∗] replicate (length l) P ⊣⊢ [∗ list] y ∈ l, P. Proof. induction l as [|x l]=> //=; by f_equiv. Qed. + Lemma big_sepL_later `{BiAffine PROP} Φ l : + â–· ([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ ([∗ list] k↦x ∈ l, â–· Φ k x). + Proof. apply (big_opL_commute _). Qed. + Lemma big_sepL_later_2 Φ l : + ([∗ list] k↦x ∈ l, â–· Φ k x) ⊢ â–· [∗ list] k↦x ∈ l, Φ k x. + Proof. by rewrite (big_opL_commute _). Qed. + + Lemma big_sepL_laterN `{BiAffine PROP} Φ n l : + â–·^n ([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ ([∗ list] k↦x ∈ l, â–·^n Φ k x). + Proof. apply (big_opL_commute _). Qed. + Lemma big_sepL_laterN_2 Φ n l : + ([∗ list] k↦x ∈ l, â–·^n Φ k x) ⊢ â–·^n [∗ list] k↦x ∈ l, Φ k x. + Proof. by rewrite (big_opL_commute _). Qed. + Global Instance big_sepL_nil_persistent Φ : Persistent ([∗ list] k↦x ∈ [], Φ k x). Proof. simpl; apply _. Qed. @@ -249,6 +263,16 @@ Section sep_list. Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed. Global Instance big_sepL_affine_id Ps : TCForall Affine Ps → Affine ([∗] Ps). Proof. induction 1; simpl; apply _. Qed. + + Global Instance big_sepL_nil_timeless `{!Timeless (emp%I : PROP)} Φ : + Timeless ([∗ list] k↦x ∈ [], Φ k x). + Proof. simpl; apply _. Qed. + Global Instance big_sepL_timeless `{!Timeless (emp%I : PROP)} Φ l : + (∀ k x, Timeless (Φ k x)) → Timeless ([∗ list] k↦x ∈ l, Φ k x). + Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed. + Global Instance big_sepL_timeless_id `{!Timeless (emp%I : PROP)} Ps : + TCForall Timeless Ps → Timeless ([∗] Ps). + Proof. induction 1; simpl; apply _. Qed. End sep_list. Section sep_list_more. @@ -519,6 +543,34 @@ Section sep_list2. apply forall_intro=> k. by rewrite (forall_elim (S k)). Qed. + Lemma big_sepL2_later_1 `{BiAffine PROP} Φ l1 l2 : + (â–· [∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) ⊢ â—‡ [∗ list] k↦y1;y2 ∈ l1;l2, â–· Φ k y1 y2. + Proof. + rewrite !big_sepL2_alt later_and big_sepL_later (timeless ⌜ _ âŒ%I). + rewrite except_0_and. auto using and_mono, except_0_intro. + Qed. + + Lemma big_sepL2_later_2 Φ l1 l2 : + ([∗ list] k↦y1;y2 ∈ l1;l2, â–· Φ k y1 y2) ⊢ â–· [∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2. + Proof. + rewrite !big_sepL2_alt later_and big_sepL_later_2. + auto using and_mono, later_intro. + Qed. + + Lemma big_sepL2_laterN_2 Φ n l1 l2 : + ([∗ list] k↦y1;y2 ∈ l1;l2, â–·^n Φ k y1 y2) ⊢ â–·^n [∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2. + Proof. + rewrite !big_sepL2_alt laterN_and big_sepL_laterN_2. + auto using and_mono, laterN_intro. + Qed. + + Lemma big_sepL2_flip Φ l1 l2 : + ([∗ list] k↦y1;y2 ∈ l2; l1, Φ k y2 y1) ⊣⊢ ([∗ list] k↦y1;y2 ∈ l1; l2, Φ k y1 y2). + Proof. + revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2]//=; simplify_eq. + by rewrite IH. + Qed. + Global Instance big_sepL2_nil_persistent Φ : Persistent ([∗ list] k↦y1;y2 ∈ []; [], Φ k y1 y2). Proof. simpl; apply _. Qed. @@ -534,6 +586,14 @@ Section sep_list2. (∀ k x1 x2, Affine (Φ k x1 x2)) → Affine ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2). Proof. rewrite big_sepL2_alt. apply _. Qed. + + Global Instance big_sepL2_nil_timeless `{!Timeless (emp%I : PROP)} Φ : + Timeless ([∗ list] k↦y1;y2 ∈ []; [], Φ k y1 y2). + Proof. simpl; apply _. Qed. + Global Instance big_sepL2_timeless `{!Timeless (emp%I : PROP)} Φ l1 l2 : + (∀ k x1 x2, Timeless (Φ k x1 x2)) → + Timeless ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2). + Proof. rewrite big_sepL2_alt. apply _. Qed. End sep_list2. Section and_list. @@ -936,6 +996,20 @@ Section map. by rewrite pure_True // True_impl. Qed. + Lemma big_sepM_later `{BiAffine PROP} Φ m : + â–· ([∗ map] k↦x ∈ m, Φ k x) ⊣⊢ ([∗ map] k↦x ∈ m, â–· Φ k x). + Proof. apply (big_opM_commute _). Qed. + Lemma big_sepM_later_2 Φ m : + ([∗ map] k↦x ∈ m, â–· Φ k x) ⊢ â–· [∗ map] k↦x ∈ m, Φ k x. + Proof. by rewrite big_opM_commute. Qed. + + Lemma big_sepM_laterN `{BiAffine PROP} Φ n m : + â–·^n ([∗ map] k↦x ∈ m, Φ k x) ⊣⊢ ([∗ map] k↦x ∈ m, â–·^n Φ k x). + Proof. apply (big_opM_commute _). Qed. + Lemma big_sepM_laterN_2 Φ n m : + ([∗ map] k↦x ∈ m, â–·^n Φ k x) ⊢ â–·^n [∗ map] k↦x ∈ m, Φ k x. + Proof. by rewrite big_opM_commute. Qed. + Global Instance big_sepM_empty_persistent Φ : Persistent ([∗ map] k↦x ∈ ∅, Φ k x). Proof. rewrite big_opM_eq /big_opM_def map_to_list_empty. apply _. Qed. @@ -949,6 +1023,13 @@ Section map. Global Instance big_sepM_affine Φ m : (∀ k x, Affine (Φ k x)) → Affine ([∗ map] k↦x ∈ m, Φ k x). Proof. rewrite big_opM_eq. intros. apply big_sepL_affine=> _ [??]; apply _. Qed. + + Global Instance big_sepM_empty_timeless `{!Timeless (emp%I : PROP)} Φ : + Timeless ([∗ map] k↦x ∈ ∅, Φ k x). + Proof. rewrite big_opM_eq /big_opM_def map_to_list_empty. apply _. Qed. + Global Instance big_sepM_timeless `{!Timeless (emp%I : PROP)} Φ m : + (∀ k x, Timeless (Φ k x)) → Timeless ([∗ map] k↦x ∈ m, Φ k x). + Proof. rewrite big_opM_eq. intros. apply big_sepL_timeless=> _ [??]; apply _. Qed. End map. (** ** Big ops over two maps *) @@ -963,6 +1044,14 @@ Section map2. set_unfold=>k. by rewrite !elem_of_dom. Qed. + Lemma big_sepM2_flip Φ m1 m2 : + ([∗ map] k↦y1;y2 ∈ m2; m1, Φ k y2 y1) ⊣⊢ ([∗ map] k↦y1;y2 ∈ m1; m2, Φ k y1 y2). + Proof. + rewrite big_sepM2_eq /big_sepM2_def. apply and_proper; [apply pure_proper; naive_solver |]. + rewrite -map_zip_with_flip map_zip_with_map_zip big_sepM_fmap. + apply big_sepM_proper. by intros k [b a]. + Qed. + (** The lemmas [big_sepM2_mono], [big_sepM2_ne] and [big_sepM2_proper] are more generic than the instances as they also give [mi !! k = Some yi] in the premise. *) Lemma big_sepM2_mono Φ Ψ m1 m2 : @@ -1282,6 +1371,31 @@ Section map2. destruct (m1 !! k) as [x1|], (m2 !! k) as [x2|]; naive_solver. Qed. + Lemma big_sepM2_later_1 `{BiAffine PROP} Φ m1 m2 : + (â–· [∗ map] k↦x1;x2 ∈ m1;m2, Φ k x1 x2) + ⊢ â—‡ ([∗ map] k↦x1;x2 ∈ m1;m2, â–· Φ k x1 x2). + Proof. + rewrite big_sepM2_eq /big_sepM2_def later_and (timeless ⌜_âŒ%I). + rewrite big_sepM_later except_0_and. + auto using and_mono_r, except_0_intro. + Qed. + Lemma big_sepM2_later_2 Φ m1 m2 : + ([∗ map] k↦x1;x2 ∈ m1;m2, â–· Φ k x1 x2) + ⊢ â–· [∗ map] k↦x1;x2 ∈ m1;m2, Φ k x1 x2. + Proof. + rewrite big_sepM2_eq /big_sepM2_def later_and -(later_intro ⌜_âŒ%I). + apply and_mono_r. by rewrite big_opM_commute. + Qed. + + Lemma big_sepM2_laterN_2 Φ n m1 m2 : + ([∗ map] k↦x1;x2 ∈ m1;m2, â–·^n Φ k x1 x2) + ⊢ â–·^n [∗ map] k↦x1;x2 ∈ m1;m2, Φ k x1 x2. + Proof. + induction n as [|n IHn]; first done. + rewrite later_laterN -IHn -big_sepM2_later_2. + apply big_sepM2_mono. eauto. + Qed. + Global Instance big_sepM2_empty_persistent Φ : Persistent ([∗ map] k↦y1;y2 ∈ ∅; ∅, Φ k y1 y2). Proof. rewrite big_sepM2_empty. apply _. Qed. @@ -1297,6 +1411,14 @@ Section map2. (∀ k x1 x2, Affine (Φ k x1 x2)) → Affine ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2). Proof. rewrite big_sepM2_eq /big_sepM2_def. apply _. Qed. + + Global Instance big_sepM2_empty_timeless `{!Timeless (emp%I : PROP)} Φ : + Timeless ([∗ map] k↦x1;x2 ∈ ∅;∅, Φ k x1 x2). + Proof. rewrite big_sepM2_eq /big_sepM2_def map_zip_with_empty. apply _. Qed. + Global Instance big_sepM2_timeless `{!Timeless (emp%I : PROP)} Φ m1 m2 : + (∀ k x1 x2, Timeless (Φ k x1 x2)) → + Timeless ([∗ map] k↦x1;x2 ∈ m1;m2, Φ k x1 x2). + Proof. intros. rewrite big_sepM2_eq /big_sepM2_def. apply _. Qed. End map2. (** ** Big ops over finite sets *) @@ -1452,6 +1574,20 @@ Section gset. by rewrite pure_True ?True_impl; last set_solver. Qed. + Lemma big_sepS_later `{BiAffine PROP} Φ X : + â–· ([∗ set] y ∈ X, Φ y) ⊣⊢ ([∗ set] y ∈ X, â–· Φ y). + Proof. apply (big_opS_commute _). Qed. + Lemma big_sepS_later_2 Φ X : + ([∗ set] y ∈ X, â–· Φ y) ⊢ â–· ([∗ set] y ∈ X, Φ y). + Proof. by rewrite big_opS_commute. Qed. + + Lemma big_sepS_laterN `{BiAffine PROP} Φ n X : + â–·^n ([∗ set] y ∈ X, Φ y) ⊣⊢ ([∗ set] y ∈ X, â–·^n Φ y). + Proof. apply (big_opS_commute _). Qed. + Lemma big_sepS_laterN_2 Φ n X : + ([∗ set] y ∈ X, â–·^n Φ y) ⊢ â–·^n ([∗ set] y ∈ X, Φ y). + Proof. by rewrite big_opS_commute. Qed. + Global Instance big_sepS_empty_persistent Φ : Persistent ([∗ set] x ∈ ∅, Φ x). Proof. rewrite big_opS_eq /big_opS_def elements_empty. apply _. Qed. @@ -1464,6 +1600,13 @@ Section gset. Global Instance big_sepS_affine Φ X : (∀ x, Affine (Φ x)) → Affine ([∗ set] x ∈ X, Φ x). Proof. rewrite big_opS_eq /big_opS_def. apply _. Qed. + + Global Instance big_sepS_empty_timeless `{!Timeless (emp%I : PROP)} Φ : + Timeless ([∗ set] x ∈ ∅, Φ x). + Proof. rewrite big_opS_eq /big_opS_def elements_empty. apply _. Qed. + Global Instance big_sepS_timeless `{!Timeless (emp%I : PROP)} Φ X : + (∀ x, Timeless (Φ x)) → Timeless ([∗ set] x ∈ X, Φ x). + Proof. rewrite big_opS_eq /big_opS_def. apply _. Qed. End gset. Lemma big_sepM_dom `{Countable K} {A} (Φ : K → PROP) (m : gmap K A) : @@ -1536,6 +1679,20 @@ Section gmultiset. ([∗ mset] y ∈ X, Φ y ∧ Ψ y) ⊢ ([∗ mset] y ∈ X, Φ y) ∧ ([∗ mset] y ∈ X, Ψ y). Proof. auto using and_intro, big_sepMS_mono, and_elim_l, and_elim_r. Qed. + Lemma big_sepMS_later `{BiAffine PROP} Φ X : + â–· ([∗ mset] y ∈ X, Φ y) ⊣⊢ ([∗ mset] y ∈ X, â–· Φ y). + Proof. apply (big_opMS_commute _). Qed. + Lemma big_sepMS_later_2 Φ X : + ([∗ mset] y ∈ X, â–· Φ y) ⊢ â–· [∗ mset] y ∈ X, Φ y. + Proof. by rewrite big_opMS_commute. Qed. + + Lemma big_sepMS_laterN `{BiAffine PROP} Φ n X : + â–·^n ([∗ mset] y ∈ X, Φ y) ⊣⊢ ([∗ mset] y ∈ X, â–·^n Φ y). + Proof. apply (big_opMS_commute _). Qed. + Lemma big_sepMS_laterN_2 Φ n X : + ([∗ mset] y ∈ X, â–·^n Φ y) ⊢ â–·^n [∗ mset] y ∈ X, Φ y. + Proof. by rewrite big_opMS_commute. Qed. + Lemma big_sepMS_persistently `{BiAffine PROP} Φ X : <pers> ([∗ mset] y ∈ X, Φ y) ⊣⊢ [∗ mset] y ∈ X, <pers> (Φ y). Proof. apply (big_opMS_commute _). Qed. @@ -1552,208 +1709,6 @@ Section gmultiset. Global Instance big_sepMS_affine Φ X : (∀ x, Affine (Φ x)) → Affine ([∗ mset] x ∈ X, Φ x). Proof. rewrite big_opMS_eq /big_opMS_def. apply _. Qed. -End gmultiset. -End bi_big_op. - -(** * Properties for step-indexed BIs*) -Section sbi_big_op. -Context {PROP : bi}. -Implicit Types Ps Qs : list PROP. -Implicit Types A : Type. - -(** ** Big ops over lists *) -Section list. - Context {A : Type}. - Implicit Types l : list A. - Implicit Types Φ Ψ : nat → A → PROP. - - Lemma big_sepL_later `{BiAffine PROP} Φ l : - â–· ([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ ([∗ list] k↦x ∈ l, â–· Φ k x). - Proof. apply (big_opL_commute _). Qed. - Lemma big_sepL_later_2 Φ l : - ([∗ list] k↦x ∈ l, â–· Φ k x) ⊢ â–· [∗ list] k↦x ∈ l, Φ k x. - Proof. by rewrite (big_opL_commute _). Qed. - - Lemma big_sepL_laterN `{BiAffine PROP} Φ n l : - â–·^n ([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ ([∗ list] k↦x ∈ l, â–·^n Φ k x). - Proof. apply (big_opL_commute _). Qed. - Lemma big_sepL_laterN_2 Φ n l : - ([∗ list] k↦x ∈ l, â–·^n Φ k x) ⊢ â–·^n [∗ list] k↦x ∈ l, Φ k x. - Proof. by rewrite (big_opL_commute _). Qed. - - Global Instance big_sepL_nil_timeless `{!Timeless (emp%I : PROP)} Φ : - Timeless ([∗ list] k↦x ∈ [], Φ k x). - Proof. simpl; apply _. Qed. - Global Instance big_sepL_timeless `{!Timeless (emp%I : PROP)} Φ l : - (∀ k x, Timeless (Φ k x)) → Timeless ([∗ list] k↦x ∈ l, Φ k x). - Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed. - Global Instance big_sepL_timeless_id `{!Timeless (emp%I : PROP)} Ps : - TCForall Timeless Ps → Timeless ([∗] Ps). - Proof. induction 1; simpl; apply _. Qed. -End list. - -Section list2. - Context {A B : Type}. - Implicit Types Φ Ψ : nat → A → B → PROP. - - Lemma big_sepL2_later_1 `{BiAffine PROP} Φ l1 l2 : - (â–· [∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) ⊢ â—‡ [∗ list] k↦y1;y2 ∈ l1;l2, â–· Φ k y1 y2. - Proof. - rewrite !big_sepL2_alt later_and big_sepL_later (timeless ⌜ _ âŒ%I). - rewrite except_0_and. auto using and_mono, except_0_intro. - Qed. - - Lemma big_sepL2_later_2 Φ l1 l2 : - ([∗ list] k↦y1;y2 ∈ l1;l2, â–· Φ k y1 y2) ⊢ â–· [∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2. - Proof. - rewrite !big_sepL2_alt later_and big_sepL_later_2. - auto using and_mono, later_intro. - Qed. - - Lemma big_sepL2_laterN_2 Φ n l1 l2 : - ([∗ list] k↦y1;y2 ∈ l1;l2, â–·^n Φ k y1 y2) ⊢ â–·^n [∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2. - Proof. - rewrite !big_sepL2_alt laterN_and big_sepL_laterN_2. - auto using and_mono, laterN_intro. - Qed. - - Lemma big_sepL2_flip Φ l1 l2 : - ([∗ list] k↦y1;y2 ∈ l2; l1, Φ k y2 y1) ⊣⊢ ([∗ list] k↦y1;y2 ∈ l1; l2, Φ k y1 y2). - Proof. - revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2]//=; simplify_eq. - by rewrite IH. - Qed. - - Global Instance big_sepL2_nil_timeless `{!Timeless (emp%I : PROP)} Φ : - Timeless ([∗ list] k↦y1;y2 ∈ []; [], Φ k y1 y2). - Proof. simpl; apply _. Qed. - Global Instance big_sepL2_timeless `{!Timeless (emp%I : PROP)} Φ l1 l2 : - (∀ k x1 x2, Timeless (Φ k x1 x2)) → - Timeless ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2). - Proof. rewrite big_sepL2_alt. apply _. Qed. -End list2. - -(** ** Big ops over finite maps *) -Section gmap. - Context `{Countable K} {A : Type}. - Implicit Types m : gmap K A. - Implicit Types Φ Ψ : K → A → PROP. - - Lemma big_sepM_later `{BiAffine PROP} Φ m : - â–· ([∗ map] k↦x ∈ m, Φ k x) ⊣⊢ ([∗ map] k↦x ∈ m, â–· Φ k x). - Proof. apply (big_opM_commute _). Qed. - Lemma big_sepM_later_2 Φ m : - ([∗ map] k↦x ∈ m, â–· Φ k x) ⊢ â–· [∗ map] k↦x ∈ m, Φ k x. - Proof. by rewrite big_opM_commute. Qed. - - Lemma big_sepM_laterN `{BiAffine PROP} Φ n m : - â–·^n ([∗ map] k↦x ∈ m, Φ k x) ⊣⊢ ([∗ map] k↦x ∈ m, â–·^n Φ k x). - Proof. apply (big_opM_commute _). Qed. - Lemma big_sepM_laterN_2 Φ n m : - ([∗ map] k↦x ∈ m, â–·^n Φ k x) ⊢ â–·^n [∗ map] k↦x ∈ m, Φ k x. - Proof. by rewrite big_opM_commute. Qed. - - Global Instance big_sepM_empty_timeless `{!Timeless (emp%I : PROP)} Φ : - Timeless ([∗ map] k↦x ∈ ∅, Φ k x). - Proof. rewrite big_opM_eq /big_opM_def map_to_list_empty. apply _. Qed. - Global Instance big_sepM_timeless `{!Timeless (emp%I : PROP)} Φ m : - (∀ k x, Timeless (Φ k x)) → Timeless ([∗ map] k↦x ∈ m, Φ k x). - Proof. rewrite big_opM_eq. intros. apply big_sepL_timeless=> _ [??]; apply _. Qed. -End gmap. - -Section gmap2. - Context `{Countable K} {A B : Type}. - Implicit Types Φ Ψ : K → A → B → PROP. - - Lemma big_sepM2_later_1 `{BiAffine PROP} Φ m1 m2 : - (â–· [∗ map] k↦x1;x2 ∈ m1;m2, Φ k x1 x2) - ⊢ â—‡ ([∗ map] k↦x1;x2 ∈ m1;m2, â–· Φ k x1 x2). - Proof. - rewrite big_sepM2_eq /big_sepM2_def later_and (timeless ⌜_âŒ%I). - rewrite big_sepM_later except_0_and. - auto using and_mono_r, except_0_intro. - Qed. - Lemma big_sepM2_later_2 Φ m1 m2 : - ([∗ map] k↦x1;x2 ∈ m1;m2, â–· Φ k x1 x2) - ⊢ â–· [∗ map] k↦x1;x2 ∈ m1;m2, Φ k x1 x2. - Proof. - rewrite big_sepM2_eq /big_sepM2_def later_and -(later_intro ⌜_âŒ%I). - apply and_mono_r. by rewrite big_opM_commute. - Qed. - - Lemma big_sepM2_laterN_2 Φ n m1 m2 : - ([∗ map] k↦x1;x2 ∈ m1;m2, â–·^n Φ k x1 x2) - ⊢ â–·^n [∗ map] k↦x1;x2 ∈ m1;m2, Φ k x1 x2. - Proof. - induction n as [|n IHn]; first done. - rewrite later_laterN -IHn -big_sepM2_later_2. - apply big_sepM2_mono. eauto. - Qed. - - Lemma big_sepM2_flip Φ m1 m2 : - ([∗ map] k↦y1;y2 ∈ m2; m1, Φ k y2 y1) ⊣⊢ ([∗ map] k↦y1;y2 ∈ m1; m2, Φ k y1 y2). - Proof. - rewrite big_sepM2_eq /big_sepM2_def. apply and_proper; [apply pure_proper; naive_solver |]. - rewrite -map_zip_with_flip map_zip_with_map_zip big_sepM_fmap. - apply big_sepM_proper. by intros k [b a]. - Qed. - - Global Instance big_sepM2_empty_timeless `{!Timeless (emp%I : PROP)} Φ : - Timeless ([∗ map] k↦x1;x2 ∈ ∅;∅, Φ k x1 x2). - Proof. rewrite big_sepM2_eq /big_sepM2_def map_zip_with_empty. apply _. Qed. - Global Instance big_sepM2_timeless `{!Timeless (emp%I : PROP)} Φ m1 m2 : - (∀ k x1 x2, Timeless (Φ k x1 x2)) → - Timeless ([∗ map] k↦x1;x2 ∈ m1;m2, Φ k x1 x2). - Proof. intros. rewrite big_sepM2_eq /big_sepM2_def. apply _. Qed. -End gmap2. - -(** ** Big ops over finite sets *) -Section gset. - Context `{Countable A}. - Implicit Types X : gset A. - Implicit Types Φ : A → PROP. - - Lemma big_sepS_later `{BiAffine PROP} Φ X : - â–· ([∗ set] y ∈ X, Φ y) ⊣⊢ ([∗ set] y ∈ X, â–· Φ y). - Proof. apply (big_opS_commute _). Qed. - Lemma big_sepS_later_2 Φ X : - ([∗ set] y ∈ X, â–· Φ y) ⊢ â–· ([∗ set] y ∈ X, Φ y). - Proof. by rewrite big_opS_commute. Qed. - - Lemma big_sepS_laterN `{BiAffine PROP} Φ n X : - â–·^n ([∗ set] y ∈ X, Φ y) ⊣⊢ ([∗ set] y ∈ X, â–·^n Φ y). - Proof. apply (big_opS_commute _). Qed. - Lemma big_sepS_laterN_2 Φ n X : - ([∗ set] y ∈ X, â–·^n Φ y) ⊢ â–·^n ([∗ set] y ∈ X, Φ y). - Proof. by rewrite big_opS_commute. Qed. - - Global Instance big_sepS_empty_timeless `{!Timeless (emp%I : PROP)} Φ : - Timeless ([∗ set] x ∈ ∅, Φ x). - Proof. rewrite big_opS_eq /big_opS_def elements_empty. apply _. Qed. - Global Instance big_sepS_timeless `{!Timeless (emp%I : PROP)} Φ X : - (∀ x, Timeless (Φ x)) → Timeless ([∗ set] x ∈ X, Φ x). - Proof. rewrite big_opS_eq /big_opS_def. apply _. Qed. -End gset. - -(** ** Big ops over finite multisets *) -Section gmultiset. - Context `{Countable A}. - Implicit Types X : gmultiset A. - Implicit Types Φ : A → PROP. - - Lemma big_sepMS_later `{BiAffine PROP} Φ X : - â–· ([∗ mset] y ∈ X, Φ y) ⊣⊢ ([∗ mset] y ∈ X, â–· Φ y). - Proof. apply (big_opMS_commute _). Qed. - Lemma big_sepMS_later_2 Φ X : - ([∗ mset] y ∈ X, â–· Φ y) ⊢ â–· [∗ mset] y ∈ X, Φ y. - Proof. by rewrite big_opMS_commute. Qed. - - Lemma big_sepMS_laterN `{BiAffine PROP} Φ n X : - â–·^n ([∗ mset] y ∈ X, Φ y) ⊣⊢ ([∗ mset] y ∈ X, â–·^n Φ y). - Proof. apply (big_opMS_commute _). Qed. - Lemma big_sepMS_laterN_2 Φ n X : - ([∗ mset] y ∈ X, â–·^n Φ y) ⊢ â–·^n [∗ mset] y ∈ X, Φ y. - Proof. by rewrite big_opMS_commute. Qed. Global Instance big_sepMS_empty_timeless `{!Timeless (emp%I : PROP)} Φ : Timeless ([∗ mset] x ∈ ∅, Φ x). @@ -1762,4 +1717,4 @@ Section gmultiset. (∀ x, Timeless (Φ x)) → Timeless ([∗ mset] x ∈ X, Φ x). Proof. rewrite big_opMS_eq /big_opMS_def. apply _. Qed. End gmultiset. -End sbi_big_op. +End big_op. diff --git a/theories/bi/derived_connectives.v b/theories/bi/derived_connectives.v index 4a64793a0cc79df75d0f6564b205ee2216d61097..b6c10d542eddc892f94d3645be889c87a3015a6b 100644 --- a/theories/bi/derived_connectives.v +++ b/theories/bi/derived_connectives.v @@ -119,7 +119,7 @@ Notation "mP -∗? Q" := (bi_wandM mP Q) (** This class is required for the [iLöb] tactic. For most logics this class should not be inhabited directly, but the instance [Contractive (â–·) → BiLöb PROP] -in [derived_laws_sbi] should be used. A direct instance of the class is useful +in [derived_laws_later] should be used. A direct instance of the class is useful when considering a BI logic with a discrete OFE, instead of a OFE that takes step-indexing of the logic in account.*) Class BiLöb (PROP : bi) := diff --git a/theories/bi/derived_laws_bi.v b/theories/bi/derived_laws.v similarity index 99% rename from theories/bi/derived_laws_bi.v rename to theories/bi/derived_laws.v index 1127e290b4b9f33db6276c7f74b8d6b877c800b8..40641c9b975a54c79f0e2b5c1fe7298add4d6ff9 100644 --- a/theories/bi/derived_laws_bi.v +++ b/theories/bi/derived_laws.v @@ -10,7 +10,7 @@ From iris.algebra Require Import monoid. Module bi. Import interface.bi. -Section bi_derived. +Section derived. Context {PROP : bi}. Implicit Types φ : Prop. Implicit Types P Q R : PROP. @@ -1551,5 +1551,5 @@ Qed. Global Instance limit_preserving_Persistent {A:ofeT} `{Cofe A} (Φ : A → PROP) : NonExpansive Φ → LimitPreserving (λ x, Persistent (Φ x)). Proof. intros. apply limit_preserving_entails; solve_proper. Qed. -End bi_derived. +End derived. End bi. diff --git a/theories/bi/derived_laws_sbi.v b/theories/bi/derived_laws_later.v similarity index 99% rename from theories/bi/derived_laws_sbi.v rename to theories/bi/derived_laws_later.v index 19bafd7bfde2abab9adff074be32961ce5b47cc3..7f3d4bd4e93b9a0d60a7f2cef929fb4be8622e58 100644 --- a/theories/bi/derived_laws_sbi.v +++ b/theories/bi/derived_laws_later.v @@ -1,10 +1,11 @@ -From iris.bi Require Export derived_laws_bi. +From iris.bi Require Export derived_laws. From iris.algebra Require Import monoid. Module bi. Import interface.bi. -Import derived_laws_bi.bi. -Section sbi_derived. +Import derived_laws.bi. + +Section later_derived. Context {PROP : bi}. Implicit Types φ : Prop. Implicit Types P Q R : PROP. @@ -398,5 +399,5 @@ Proof. split; try apply _. apply laterN_intro. Qed. Global Instance bi_except_0_sep_entails_homomorphism : MonoidHomomorphism bi_sep bi_sep (flip (⊢)) (@bi_except_0 PROP). Proof. split; try apply _. apply except_0_intro. Qed. -End sbi_derived. +End later_derived. End bi. diff --git a/theories/bi/embedding.v b/theories/bi/embedding.v index 24f4c237f29151889720cc74c3656b67cc75e8e8..9862bcd959f05e81187e958f753729ccb387388f 100644 --- a/theories/bi/embedding.v +++ b/theories/bi/embedding.v @@ -1,4 +1,4 @@ -From iris.bi Require Import interface derived_laws_sbi big_op. +From iris.bi Require Import interface derived_laws_later big_op. From iris.bi Require Import plainly updates internal_eq. From iris.algebra Require Import monoid. diff --git a/theories/bi/interface.v b/theories/bi/interface.v index 5a460db1ca45961fad65dd39457c41e327478644..c0044e908c5eecde2697d9c080af039c8194d1b4 100644 --- a/theories/bi/interface.v +++ b/theories/bi/interface.v @@ -121,7 +121,7 @@ Section bi_mixin. identity function, as the Löb axiom or contractiveness of later is not part of [BiLaterMixin]. For step-indexed BIs one should separately prove an instance of the class [BiLöb PROP] or [Contractive (â–·)]. (Note that there is an - instance [Contractive (â–·) → BiLöb PROP] in [derived_laws_sbi].) + instance [Contractive (â–·) → BiLöb PROP] in [derived_laws_later].) For non step-indexed BIs one can get a "free" instance of [BiLaterMixin] using the smart constructor [bi_later_mixin_id] below. *) diff --git a/theories/bi/internal_eq.v b/theories/bi/internal_eq.v index 6e97b92e65b31f04af244213095d902e2788b051..6ecd8ec6f4a8cca9bd468c85124b177d36e471ee 100644 --- a/theories/bi/internal_eq.v +++ b/theories/bi/internal_eq.v @@ -1,5 +1,5 @@ -From iris.bi Require Import derived_laws_sbi big_op. -Import interface.bi derived_laws_bi.bi derived_laws_sbi.bi. +From iris.bi Require Import derived_laws_later big_op. +Import interface.bi derived_laws.bi derived_laws_later.bi. (** This file defines a type class for BIs with a notion of internal equality. Internal equality is not part of the [bi] canonical structure as [internal_eq] diff --git a/theories/bi/lib/fractional.v b/theories/bi/lib/fractional.v index ec7b4666ac4e3ba9b1dc67ff1908d1eca9301c72..51253b19f4c192a4da0bb62e86b1ea5c1f38f937 100644 --- a/theories/bi/lib/fractional.v +++ b/theories/bi/lib/fractional.v @@ -1,5 +1,5 @@ From iris.bi Require Export bi. -From iris.proofmode Require Import classes class_instances_bi. +From iris.proofmode Require Import classes class_instances. Set Default Proof Using "Type". Class Fractional {PROP : bi} (Φ : Qp → PROP) := diff --git a/theories/bi/plainly.v b/theories/bi/plainly.v index f99e4b68a5c74ec6909a8ca971caa2ca2f27a72e..a5b5af0210bf293e7b5abf9ac2c7cf67c656cf2c 100644 --- a/theories/bi/plainly.v +++ b/theories/bi/plainly.v @@ -1,6 +1,6 @@ -From iris.bi Require Import derived_laws_sbi big_op internal_eq. +From iris.bi Require Import derived_laws_later big_op internal_eq. From iris.algebra Require Import monoid. -Import interface.bi derived_laws_bi.bi derived_laws_sbi.bi. +Import interface.bi derived_laws.bi derived_laws_later.bi. Class Plainly (A : Type) := plainly : A → A. Hint Mode Plainly ! : typeclass_instances. diff --git a/theories/bi/updates.v b/theories/bi/updates.v index 7b2498dafe59a76bb95e473b08da7b811b664722..51f54aa594416bc12dfbfd5497455cb50f101db5 100644 --- a/theories/bi/updates.v +++ b/theories/bi/updates.v @@ -1,6 +1,6 @@ From stdpp Require Import coPset. -From iris.bi Require Import interface derived_laws_sbi big_op plainly. -Import interface.bi derived_laws_bi.bi derived_laws_sbi.bi. +From iris.bi Require Import interface derived_laws_later big_op plainly. +Import interface.bi derived_laws.bi derived_laws_later.bi. (* We first define operational type classes for the notations, and then later bundle these operational type classes with the laws. *) diff --git a/theories/proofmode/class_instances_bi.v b/theories/proofmode/class_instances.v similarity index 81% rename from theories/proofmode/class_instances_bi.v rename to theories/proofmode/class_instances.v index 30f3d187957a5ffd587f672309bac73a26edaf91..e3e88c265dee97f73af548b8d574c4d0e5c36f99 100644 --- a/theories/proofmode/class_instances_bi.v +++ b/theories/proofmode/class_instances.v @@ -1,6 +1,7 @@ From stdpp Require Import nat_cancel. -From iris.bi Require Import bi tactics telescopes. -From iris.proofmode Require Import base modality_instances classes ltac_tactics. +From iris.bi Require Import bi telescopes. +From iris.proofmode Require Import base modality_instances classes. +From iris.proofmode Require Import ltac_tactics. Set Default Proof Using "Type". Import bi. @@ -25,7 +26,7 @@ Proof. by rewrite /FromExist. Qed. Hint Extern 0 (FromExist _ _) => notypeclasses refine (from_exist_exist _) : typeclass_instances. -Section bi_instances. +Section class_instances. Context {PROP : bi}. Implicit Types P Q R : PROP. Implicit Types mP : option PROP. @@ -52,17 +53,6 @@ Proof. apply as_emp_valid_forall. Qed. -(* We add a useless hypothesis [BiEmbed PROP PROP'] in order to make - sure this instance is not used when there is no embedding between - PROP and PROP'. - The first [`{BiEmbed PROP PROP'}] is not considered as a premise by - Coq TC search mechanism because the rest of the hypothesis is dependent - on it. *) -Global Instance as_emp_valid_embed `{BiEmbed PROP PROP'} (φ : Prop) (P : PROP) : - BiEmbed PROP PROP' → - AsEmpValid0 φ P → AsEmpValid φ ⎡P⎤. -Proof. rewrite /AsEmpValid0 /AsEmpValid=> _ ->. rewrite embed_emp_valid //. Qed. - (** FromAffinely *) Global Instance from_affinely_affine P : Affine P → FromAffinely P P. Proof. intros. by rewrite /FromAffinely affinely_elim. Qed. @@ -155,10 +145,6 @@ Proof. by rewrite bi_tforall_forall forall_elim. Qed. -Global Instance from_assumption_bupd `{BiBUpd PROP} p P Q : - FromAssumption p P Q → KnownRFromAssumption p P (|==> Q). -Proof. rewrite /KnownRFromAssumption /FromAssumption=>->. apply bupd_intro. Qed. - (** IntoPure *) Global Instance into_pure_pure φ : @IntoPure PROP ⌜φ⌠φ. Proof. by rewrite /IntoPure. Qed. @@ -209,9 +195,6 @@ Proof. rewrite /IntoPure=> ->. by rewrite absorbingly_pure. Qed. Global Instance into_pure_persistently P φ : IntoPure P φ → IntoPure (<pers> P) φ. Proof. rewrite /IntoPure=> ->. apply: persistently_elim. Qed. -Global Instance into_pure_embed `{BiEmbed PROP PROP'} P φ : - IntoPure P φ → IntoPure ⎡P⎤ φ. -Proof. rewrite /IntoPure=> ->. by rewrite embed_pure. Qed. (** FromPure *) Global Instance from_pure_emp : @FromPure PROP true emp True. @@ -303,13 +286,6 @@ Proof. rewrite /FromPure=> <- /=. rewrite -affinely_affinely_if. by rewrite -persistent_absorbingly_affinely_2. Qed. -Global Instance from_pure_embed `{BiEmbed PROP PROP'} a P φ : - FromPure a P φ → FromPure a ⎡P⎤ φ. -Proof. rewrite /FromPure=> <-. by rewrite -embed_pure embed_affinely_if_2. Qed. - -Global Instance from_pure_bupd `{BiBUpd PROP} a P φ : - FromPure a P φ → FromPure a (|==> P) φ. -Proof. rewrite /FromPure=> <-. apply bupd_intro. Qed. (** IntoPersistent *) Global Instance into_persistent_persistently p P Q : @@ -329,11 +305,6 @@ Proof. eauto using persistently_mono, intuitionistically_elim, intuitionistically_into_persistently_1. Qed. -Global Instance into_persistent_embed `{BiEmbed PROP PROP'} p P Q : - IntoPersistent p P Q → IntoPersistent p ⎡P⎤ ⎡Q⎤ | 0. -Proof. - rewrite /IntoPersistent -embed_persistently -embed_persistently_if=> -> //. -Qed. Global Instance into_persistent_here P : IntoPersistent true P P | 1. Proof. by rewrite /IntoPersistent. Qed. Global Instance into_persistent_persistent P : @@ -361,34 +332,6 @@ Global Instance from_modal_absorbingly P : FromModal modality_id (<absorb> P) (<absorb> P) P. Proof. by rewrite /FromModal /= -absorbingly_intro. Qed. -(* When having a modality nested in an embedding, e.g. [ ⎡|==> P⎤ ], we prefer -the embedding over the modality. *) -Global Instance from_modal_embed `{BiEmbed PROP PROP'} (P : PROP) : - FromModal (@modality_embed PROP PROP' _) ⎡P⎤ ⎡P⎤ P. -Proof. by rewrite /FromModal. Qed. - -Global Instance from_modal_id_embed `{BiEmbed PROP PROP'} `(sel : A) P Q : - FromModal modality_id sel P Q → - FromModal modality_id sel ⎡P⎤ ⎡Q⎤ | 100. -Proof. by rewrite /FromModal /= =><-. Qed. - -Global Instance from_modal_affinely_embed `{BiEmbed PROP PROP'} `(sel : A) P Q : - FromModal modality_affinely sel P Q → - FromModal modality_affinely sel ⎡P⎤ ⎡Q⎤ | 100. -Proof. rewrite /FromModal /= =><-. by rewrite embed_affinely_2. Qed. -Global Instance from_modal_persistently_embed `{BiEmbed PROP PROP'} `(sel : A) P Q : - FromModal modality_persistently sel P Q → - FromModal modality_persistently sel ⎡P⎤ ⎡Q⎤ | 100. -Proof. rewrite /FromModal /= =><-. by rewrite embed_persistently. Qed. -Global Instance from_modal_intuitionistically_embed `{BiEmbed PROP PROP'} `(sel : A) P Q : - FromModal modality_intuitionistically sel P Q → - FromModal modality_intuitionistically sel ⎡P⎤ ⎡Q⎤ | 100. -Proof. rewrite /FromModal /= =><-. by rewrite embed_intuitionistically_2. Qed. - -Global Instance from_modal_bupd `{BiBUpd PROP} P : - FromModal modality_id (|==> P) (|==> P) P. -Proof. by rewrite /FromModal /= -bupd_intro. Qed. - (** IntoWand *) Global Instance into_wand_wand' p q (P Q P' Q' : PROP) : IntoWand' p q (P -∗ Q) P' Q' → IntoWand p q (P -∗ Q) P' Q' | 100. @@ -508,69 +451,16 @@ Global Instance into_wand_persistently_false q R P Q : Absorbing R → IntoWand false q R P Q → IntoWand false q (<pers> R) P Q. Proof. intros ?. by rewrite /IntoWand persistently_elim. Qed. -Global Instance into_wand_embed `{BiEmbed PROP PROP'} p q R P Q : - IntoWand p q R P Q → IntoWand p q ⎡R⎤ ⎡P⎤ ⎡Q⎤. -Proof. by rewrite /IntoWand !embed_intuitionistically_if_2 -embed_wand=> ->. Qed. - -(* There are two versions for [IntoWand ⎡RR⎤ ...] with the argument being -[<affine> ⎡PP⎤]. When the wand [⎡RR⎤] resides in the intuitionistic context -the result of wand elimination will have the affine modality. Otherwise, it -won't. Note that when the wand [⎡RR⎤] is under an affine modality, the instance -[into_wand_affine] would already have been used. *) -Global Instance into_wand_affine_embed_true `{BiEmbed PROP PROP'} q (PP QQ RR : PROP) : - IntoWand true q RR PP QQ → IntoWand true q ⎡RR⎤ (<affine> ⎡PP⎤) (<affine> ⎡QQ⎤) | 100. -Proof. - rewrite /IntoWand /=. - rewrite -(intuitionistically_idemp ⎡ _ ⎤%I) embed_intuitionistically_2=> ->. - apply bi.wand_intro_l. destruct q; simpl. - - rewrite affinely_elim -(intuitionistically_idemp ⎡ _ ⎤%I). - rewrite embed_intuitionistically_2 intuitionistically_sep_2 -embed_sep. - by rewrite wand_elim_r intuitionistically_affinely. - - by rewrite intuitionistically_affinely affinely_sep_2 -embed_sep wand_elim_r. -Qed. -Global Instance into_wand_affine_embed_false `{BiEmbed PROP PROP'} q (PP QQ RR : PROP) : - IntoWand false q RR (<affine> PP) QQ → IntoWand false q ⎡RR⎤ (<affine> ⎡PP⎤) ⎡QQ⎤ | 100. -Proof. - rewrite /IntoWand /= => ->. - by rewrite embed_affinely_2 embed_intuitionistically_if_2 embed_wand. -Qed. - - -Global Instance into_wand_bupd `{BiBUpd PROP} p q R P Q : - IntoWand false false R P Q → IntoWand p q (|==> R) (|==> P) (|==> Q). -Proof. - rewrite /IntoWand /= => HR. rewrite !intuitionistically_if_elim HR. - apply wand_intro_l. by rewrite bupd_sep wand_elim_r. -Qed. -Global Instance into_wand_bupd_persistent `{BiBUpd PROP} p q R P Q : - IntoWand false q R P Q → IntoWand p q (|==> R) P (|==> Q). -Proof. - rewrite /IntoWand /= => HR. rewrite intuitionistically_if_elim HR. - apply wand_intro_l. by rewrite bupd_frame_l wand_elim_r. -Qed. -Global Instance into_wand_bupd_args `{BiBUpd PROP} p q R P Q : - IntoWand p false R P Q → IntoWand' p q R (|==> P) (|==> Q). -Proof. - rewrite /IntoWand' /IntoWand /= => ->. - apply wand_intro_l. by rewrite intuitionistically_if_elim bupd_wand_r. -Qed. - (** FromWand *) Global Instance from_wand_wand P1 P2 : FromWand (P1 -∗ P2) P1 P2. Proof. by rewrite /FromWand. Qed. Global Instance from_wand_wandM mP1 P2 : FromWand (mP1 -∗? P2) (default emp mP1)%I P2. Proof. by rewrite /FromWand wandM_sound. Qed. -Global Instance from_wand_embed `{BiEmbed PROP PROP'} P Q1 Q2 : - FromWand P Q1 Q2 → FromWand ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. -Proof. by rewrite /FromWand -embed_wand => <-. Qed. (** FromImpl *) Global Instance from_impl_impl P1 P2 : FromImpl (P1 → P2) P1 P2. Proof. by rewrite /FromImpl. Qed. -Global Instance from_impl_embed `{BiEmbed PROP PROP'} P Q1 Q2 : - FromImpl P Q1 Q2 → FromImpl ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. -Proof. by rewrite /FromImpl -embed_impl => <-. Qed. (** FromAnd *) Global Instance from_and_and P1 P2 : FromAnd (P1 ∧ P2) P1 P2 | 100. @@ -602,10 +492,6 @@ Global Instance from_and_persistently_sep P Q1 Q2 : FromAnd (<pers> P) (<pers> Q1) (<pers> Q2) | 11. Proof. rewrite /FromAnd=> <-. by rewrite -persistently_and persistently_and_sep. Qed. -Global Instance from_and_embed `{BiEmbed PROP PROP'} P Q1 Q2 : - FromAnd P Q1 Q2 → FromAnd ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. -Proof. by rewrite /FromAnd -embed_and => <-. Qed. - Global Instance from_and_big_sepL_cons_persistent {A} (Φ : nat → A → PROP) l x l' : IsCons l x l' → Persistent (Φ 0 x) → @@ -671,10 +557,6 @@ Global Instance from_sep_persistently P Q1 Q2 : FromSep (<pers> P) (<pers> Q1) (<pers> Q2). Proof. rewrite /FromSep=> <-. by rewrite persistently_sep_2. Qed. -Global Instance from_sep_embed `{BiEmbed PROP PROP'} P Q1 Q2 : - FromSep P Q1 Q2 → FromSep ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. -Proof. by rewrite /FromSep -embed_sep => <-. Qed. - Global Instance from_sep_big_sepL_cons {A} (Φ : nat → A → PROP) l x l' : IsCons l x l' → FromSep ([∗ list] k ↦ y ∈ l, Φ k y) (Φ 0 x) ([∗ list] k ↦ y ∈ l', Φ (S k) y). @@ -703,10 +585,6 @@ Global Instance from_sep_big_sepMS_disj_union `{Countable A} (Φ : A → PROP) X FromSep ([∗ mset] y ∈ X1 ⊎ X2, Φ y) ([∗ mset] y ∈ X1, Φ y) ([∗ mset] y ∈ X2, Φ y). Proof. by rewrite /FromSep big_sepMS_disj_union. Qed. -Global Instance from_sep_bupd `{BiBUpd PROP} P Q1 Q2 : - FromSep P Q1 Q2 → FromSep (|==> P) (|==> Q1) (|==> Q2). -Proof. rewrite /FromSep=><-. apply bupd_sep. Qed. - (** IntoAnd *) Global Instance into_and_and p P Q : IntoAnd p (P ∧ Q) P Q | 10. Proof. by rewrite /IntoAnd intuitionistically_if_and. Qed. @@ -758,12 +636,6 @@ Proof. - rewrite -persistently_and !intuitionistically_persistently_elim //. - intros ->. by rewrite persistently_and. Qed. -Global Instance into_and_embed `{BiEmbed PROP PROP'} p P Q1 Q2 : - IntoAnd p P Q1 Q2 → IntoAnd p ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. -Proof. - rewrite /IntoAnd -embed_and=> HP. apply intuitionistically_if_intro'. - by rewrite embed_intuitionistically_if_2 HP intuitionistically_if_elim. -Qed. (** IntoSep *) Global Instance into_sep_sep P Q : IntoSep (P ∗ Q) P Q. @@ -796,10 +668,6 @@ Qed. Global Instance into_sep_pure φ ψ : @IntoSep PROP ⌜φ ∧ ψ⌠⌜φ⌠⌜ψâŒ. Proof. by rewrite /IntoSep pure_and persistent_and_sep_1. Qed. -Global Instance into_sep_embed `{BiEmbed PROP PROP'} P Q1 Q2 : - IntoSep P Q1 Q2 → IntoSep ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. -Proof. rewrite /IntoSep -embed_sep=> -> //. Qed. - Global Instance into_sep_affinely `{BiPositive PROP} P Q1 Q2 : IntoSep P Q1 Q2 → IntoSep (<affine> P) (<affine> Q1) (<affine> Q2) | 0. Proof. rewrite /IntoSep /= => ->. by rewrite affinely_sep. Qed. @@ -875,16 +743,6 @@ Global Instance from_or_persistently P Q1 Q2 : FromOr P Q1 Q2 → FromOr (<pers> P) (<pers> Q1) (<pers> Q2). Proof. rewrite /FromOr=> <-. by rewrite persistently_or. Qed. -Global Instance from_or_embed `{BiEmbed PROP PROP'} P Q1 Q2 : - FromOr P Q1 Q2 → FromOr ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. -Proof. by rewrite /FromOr -embed_or => <-. Qed. - -Global Instance from_or_bupd `{BiBUpd PROP} P Q1 Q2 : - FromOr P Q1 Q2 → FromOr (|==> P) (|==> Q1) (|==> Q2). -Proof. - rewrite /FromOr=><-. - apply or_elim; apply bupd_mono; auto using or_intro_l, or_intro_r. -Qed. (** IntoOr *) Global Instance into_or_or P Q : IntoOr (P ∨ Q) P Q. @@ -904,9 +762,6 @@ Global Instance into_or_persistently P Q1 Q2 : IntoOr P Q1 Q2 → IntoOr (<pers> P) (<pers> Q1) (<pers> Q2). Proof. rewrite /IntoOr=>->. by rewrite persistently_or. Qed. -Global Instance into_or_embed `{BiEmbed PROP PROP'} P Q1 Q2 : - IntoOr P Q1 Q2 → IntoOr ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. -Proof. by rewrite /IntoOr -embed_or => <-. Qed. (** FromExist *) Global Instance from_exist_texist {TT : tele} (Φ : TT → PROP) : @@ -927,15 +782,6 @@ Proof. rewrite /FromExist=> <-. by rewrite absorbingly_exist. Qed. Global Instance from_exist_persistently {A} P (Φ : A → PROP) : FromExist P Φ → FromExist (<pers> P) (λ a, <pers> (Φ a))%I. Proof. rewrite /FromExist=> <-. by rewrite persistently_exist. Qed. -Global Instance from_exist_embed `{BiEmbed PROP PROP'} {A} P (Φ : A → PROP) : - FromExist P Φ → FromExist ⎡P⎤ (λ a, ⎡Φ a⎤%I). -Proof. by rewrite /FromExist -embed_exist => <-. Qed. - -Global Instance from_exist_bupd `{BiBUpd PROP} {A} P (Φ : A → PROP) : - FromExist P Φ → FromExist (|==> P) (λ a, |==> Φ a)%I. -Proof. - rewrite /FromExist=><-. apply exist_elim=> a. by rewrite -(exist_intro a). -Qed. (** IntoExist *) Global Instance into_exist_exist {A} (Φ : A → PROP) : IntoExist (∃ a, Φ a) Φ. @@ -971,9 +817,6 @@ Proof. rewrite /IntoExist=> HP. by rewrite HP absorbingly_exist. Qed. Global Instance into_exist_persistently {A} P (Φ : A → PROP) : IntoExist P Φ → IntoExist (<pers> P) (λ a, <pers> (Φ a))%I. Proof. rewrite /IntoExist=> HP. by rewrite HP persistently_exist. Qed. -Global Instance into_exist_embed `{BiEmbed PROP PROP'} {A} P (Φ : A → PROP) : - IntoExist P Φ → IntoExist ⎡P⎤ (λ a, ⎡Φ a⎤%I). -Proof. by rewrite /IntoExist -embed_exist => <-. Qed. (** IntoForall *) Global Instance into_forall_forall {A} (Φ : A → PROP) : IntoForall (∀ a, Φ a) Φ. @@ -990,9 +833,6 @@ Proof. rewrite /IntoForall=> HP. by rewrite HP intuitionistically_forall. Qed. Global Instance into_forall_persistently {A} P (Φ : A → PROP) : IntoForall P Φ → IntoForall (<pers> P) (λ a, <pers> (Φ a))%I. Proof. rewrite /IntoForall=> HP. by rewrite HP persistently_forall. Qed. -Global Instance into_forall_embed `{BiEmbed PROP PROP'} {A} P (Φ : A → PROP) : - IntoForall P Φ → IntoForall ⎡P⎤ (λ a, ⎡Φ a⎤%I). -Proof. by rewrite /IntoForall -embed_forall => <-. Qed. Global Instance into_forall_impl_pure a φ P Q : FromPureT a P φ → @@ -1062,13 +902,6 @@ Qed. Global Instance from_forall_persistently {A} P (Φ : A → PROP) : FromForall P Φ → FromForall (<pers> P) (λ a, <pers> (Φ a))%I. Proof. rewrite /FromForall=> <-. by rewrite persistently_forall. Qed. -Global Instance from_forall_embed `{BiEmbed PROP PROP'} {A} P (Φ : A → PROP) : - FromForall P Φ → FromForall ⎡P⎤ (λ a, ⎡Φ a⎤%I). -Proof. by rewrite /FromForall -embed_forall => <-. Qed. - -(** IntoInv *) -Global Instance into_inv_embed {PROP' : bi} `{BiEmbed PROP PROP'} P N : - IntoInv P N → IntoInv ⎡P⎤ N := {}. (** ElimModal *) Global Instance elim_modal_wand φ p p' P P' Q Q' R : @@ -1098,24 +931,6 @@ Proof. absorbingly_sep_l wand_elim_r absorbing_absorbingly. Qed. -Global Instance elim_modal_bupd `{BiBUpd PROP} p P Q : - ElimModal True p false (|==> P) P (|==> Q) (|==> Q). -Proof. - by rewrite /ElimModal - intuitionistically_if_elim bupd_frame_r wand_elim_r bupd_trans. -Qed. - -Global Instance elim_modal_embed_bupd_goal `{BiEmbedBUpd PROP PROP'} - p p' φ (P P' : PROP') (Q Q' : PROP) : - ElimModal φ p p' P P' (|==> ⎡Q⎤)%I (|==> ⎡Q'⎤)%I → - ElimModal φ p p' P P' ⎡|==> Q⎤ ⎡|==> Q'⎤. -Proof. by rewrite /ElimModal !embed_bupd. Qed. -Global Instance elim_modal_embed_bupd_hyp `{BiEmbedBUpd PROP PROP'} - p p' φ (P : PROP) (P' Q Q' : PROP') : - ElimModal φ p p' (|==> ⎡P⎤)%I P' Q Q' → - ElimModal φ p p' ⎡|==> P⎤ P' Q Q'. -Proof. by rewrite /ElimModal !embed_bupd. Qed. - (** AddModal *) Global Instance add_modal_wand P P' Q R : AddModal P P' Q → AddModal P P' (R -∗ Q). @@ -1134,18 +949,10 @@ Qed. Global Instance add_modal_tforall {TT : tele} P P' (Φ : TT → PROP) : (∀ x, AddModal P P' (Φ x)) → AddModal P P' (∀.. x, Φ x). Proof. rewrite /AddModal bi_tforall_forall. apply add_modal_forall. Qed. -Global Instance add_modal_embed_bupd_goal `{BiEmbedBUpd PROP PROP'} - (P P' : PROP') (Q : PROP) : - AddModal P P' (|==> ⎡Q⎤)%I → AddModal P P' ⎡|==> Q⎤. -Proof. by rewrite /AddModal !embed_bupd. Qed. - -Global Instance add_modal_bupd `{BiBUpd PROP} P Q : AddModal (|==> P) P (|==> Q). -Proof. by rewrite /AddModal bupd_frame_r wand_elim_r bupd_trans. Qed. (** ElimInv *) Global Instance elim_inv_acc_without_close {X : Type} - φ Pinv Pin - M1 M2 α β mγ Q (Q' : X → PROP) : + φ Pinv Pin (M1 M2 : PROP → PROP) α β mγ Q (Q' : X → PROP) : IntoAcc (X:=X) Pinv φ Pin M1 M2 α β mγ → ElimAcc (X:=X) M1 M2 α β mγ Q Q' → ElimInv φ Pinv Pin α None Q Q'. @@ -1161,8 +968,7 @@ Qed. [None] or [Some _] there, so we want to reduce the combinator before showing the goal to the user. *) Global Instance elim_inv_acc_with_close {X : Type} - φ1 φ2 Pinv Pin - M1 M2 α β mγ Q Q' : + φ1 φ2 Pinv Pin (M1 M2 : PROP → PROP) α β mγ Q Q' : IntoAcc Pinv φ1 Pin M1 M2 α β mγ → (∀ R, ElimModal φ2 false false (M1 R) R Q Q') → ElimInv (X:=X) (φ1 ∧ φ2) Pinv Pin @@ -1175,12 +981,4 @@ Proof. iMod (Hacc with "Hinv Hin") as (x) "[Hα Hclose]"; first done. iApply "Hcont". simpl. iSplitL "Hα"; done. Qed. - -(** IntoEmbed *) -Global Instance into_embed_embed {PROP' : bi} `{BiEmbed PROP PROP'} P : - IntoEmbed ⎡P⎤ P. -Proof. by rewrite /IntoEmbed. Qed. -Global Instance into_embed_affinely `{BiEmbedBUpd PROP PROP'} (P : PROP') (Q : PROP) : - IntoEmbed P Q → IntoEmbed (<affine> P) (<affine> Q). -Proof. rewrite /IntoEmbed=> ->. by rewrite embed_affinely_2. Qed. -End bi_instances. +End class_instances. diff --git a/theories/proofmode/class_instances_embedding.v b/theories/proofmode/class_instances_embedding.v new file mode 100644 index 0000000000000000000000000000000000000000..6e964003e154d4c1c45866ec35ae162d30835dd2 --- /dev/null +++ b/theories/proofmode/class_instances_embedding.v @@ -0,0 +1,211 @@ +From iris.bi Require Import bi. +From iris.proofmode Require Import modality_instances classes. +Set Default Proof Using "Type". +Import bi. + +(** We add a useless hypothesis [BiEmbed PROP PROP'] in order to make sure this +instance is not used when there is no embedding between [PROP] and [PROP']. The +first [`{BiEmbed PROP PROP'}] is not considered as a premise by Coq TC search +mechanism because the rest of the hypothesis is dependent on it. *) +Global Instance as_emp_valid_embed `{!BiEmbed PROP PROP'} (φ : Prop) (P : PROP) : + BiEmbed PROP PROP' → + AsEmpValid0 φ P → AsEmpValid φ ⎡P⎤. +Proof. rewrite /AsEmpValid0 /AsEmpValid=> _ ->. rewrite embed_emp_valid //. Qed. + +Section class_instances_embedding. +Context `{!BiEmbed PROP PROP'}. +Implicit Types P Q R : PROP. + +Global Instance into_pure_embed P φ : + IntoPure P φ → IntoPure ⎡P⎤ φ. +Proof. rewrite /IntoPure=> ->. by rewrite embed_pure. Qed. + +Global Instance from_pure_embed a P φ : + FromPure a P φ → FromPure a ⎡P⎤ φ. +Proof. rewrite /FromPure=> <-. by rewrite -embed_pure embed_affinely_if_2. Qed. + +Global Instance into_persistent_embed p P Q : + IntoPersistent p P Q → IntoPersistent p ⎡P⎤ ⎡Q⎤ | 0. +Proof. + rewrite /IntoPersistent -embed_persistently -embed_persistently_if=> -> //. +Qed. + +(* When having a modality nested in an embedding, e.g. [ ⎡|==> P⎤ ], we prefer +the embedding over the modality. *) +Global Instance from_modal_embed P : + FromModal (@modality_embed PROP PROP' _) ⎡P⎤ ⎡P⎤ P. +Proof. by rewrite /FromModal. Qed. + +Global Instance from_modal_id_embed `(sel : A) P Q : + FromModal modality_id sel P Q → + FromModal modality_id sel ⎡P⎤ ⎡Q⎤ | 100. +Proof. by rewrite /FromModal /= =><-. Qed. + +Global Instance from_modal_affinely_embed `(sel : A) P Q : + FromModal modality_affinely sel P Q → + FromModal modality_affinely sel ⎡P⎤ ⎡Q⎤ | 100. +Proof. rewrite /FromModal /= =><-. by rewrite embed_affinely_2. Qed. +Global Instance from_modal_persistently_embed `(sel : A) P Q : + FromModal modality_persistently sel P Q → + FromModal modality_persistently sel ⎡P⎤ ⎡Q⎤ | 100. +Proof. rewrite /FromModal /= =><-. by rewrite embed_persistently. Qed. +Global Instance from_modal_intuitionistically_embed `(sel : A) P Q : + FromModal modality_intuitionistically sel P Q → + FromModal modality_intuitionistically sel ⎡P⎤ ⎡Q⎤ | 100. +Proof. rewrite /FromModal /= =><-. by rewrite embed_intuitionistically_2. Qed. + +Global Instance into_wand_embed p q R P Q : + IntoWand p q R P Q → IntoWand p q ⎡R⎤ ⎡P⎤ ⎡Q⎤. +Proof. by rewrite /IntoWand !embed_intuitionistically_if_2 -embed_wand=> ->. Qed. + +(* There are two versions for [IntoWand ⎡R⎤ ...] with the argument being +[<affine> ⎡P⎤]. When the wand [⎡R⎤] resides in the intuitionistic context +the result of wand elimination will have the affine modality. Otherwise, it +won't. Note that when the wand [⎡R⎤] is under an affine modality, the instance +[into_wand_affine] would already have been used. *) +Global Instance into_wand_affine_embed_true q P Q R : + IntoWand true q R P Q → IntoWand true q ⎡R⎤ (<affine> ⎡P⎤) (<affine> ⎡Q⎤) | 100. +Proof. + rewrite /IntoWand /=. + rewrite -(intuitionistically_idemp ⎡ _ ⎤%I) embed_intuitionistically_2=> ->. + apply bi.wand_intro_l. destruct q; simpl. + - rewrite affinely_elim -(intuitionistically_idemp ⎡ _ ⎤%I). + rewrite embed_intuitionistically_2 intuitionistically_sep_2 -embed_sep. + by rewrite wand_elim_r intuitionistically_affinely. + - by rewrite intuitionistically_affinely affinely_sep_2 -embed_sep wand_elim_r. +Qed. +Global Instance into_wand_affine_embed_false q P Q R : + IntoWand false q R (<affine> P) Q → + IntoWand false q ⎡R⎤ (<affine> ⎡P⎤) ⎡Q⎤ | 100. +Proof. + rewrite /IntoWand /= => ->. + by rewrite embed_affinely_2 embed_intuitionistically_if_2 embed_wand. +Qed. + +Global Instance from_wand_embed P Q1 Q2 : + FromWand P Q1 Q2 → FromWand ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. +Proof. by rewrite /FromWand -embed_wand => <-. Qed. + +Global Instance from_impl_embed P Q1 Q2 : + FromImpl P Q1 Q2 → FromImpl ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. +Proof. by rewrite /FromImpl -embed_impl => <-. Qed. + +Global Instance from_and_embed P Q1 Q2 : + FromAnd P Q1 Q2 → FromAnd ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. +Proof. by rewrite /FromAnd -embed_and => <-. Qed. + +Global Instance from_sep_embed P Q1 Q2 : + FromSep P Q1 Q2 → FromSep ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. +Proof. by rewrite /FromSep -embed_sep => <-. Qed. + +Global Instance into_and_embed p P Q1 Q2 : + IntoAnd p P Q1 Q2 → IntoAnd p ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. +Proof. + rewrite /IntoAnd -embed_and=> HP. apply intuitionistically_if_intro'. + by rewrite embed_intuitionistically_if_2 HP intuitionistically_if_elim. +Qed. + +Global Instance into_sep_embed P Q1 Q2 : + IntoSep P Q1 Q2 → IntoSep ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. +Proof. rewrite /IntoSep -embed_sep=> -> //. Qed. + +Global Instance from_or_embed P Q1 Q2 : + FromOr P Q1 Q2 → FromOr ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. +Proof. by rewrite /FromOr -embed_or => <-. Qed. + +Global Instance into_or_embed P Q1 Q2 : + IntoOr P Q1 Q2 → IntoOr ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. +Proof. by rewrite /IntoOr -embed_or => <-. Qed. + +Global Instance from_exist_embed {A} P (Φ : A → PROP) : + FromExist P Φ → FromExist ⎡P⎤ (λ a, ⎡Φ a⎤%I). +Proof. by rewrite /FromExist -embed_exist => <-. Qed. + +Global Instance into_exist_embed {A} P (Φ : A → PROP) : + IntoExist P Φ → IntoExist ⎡P⎤ (λ a, ⎡Φ a⎤%I). +Proof. by rewrite /IntoExist -embed_exist => <-. Qed. + +Global Instance into_forall_embed {A} P (Φ : A → PROP) : + IntoForall P Φ → IntoForall ⎡P⎤ (λ a, ⎡Φ a⎤%I). +Proof. by rewrite /IntoForall -embed_forall => <-. Qed. + +Global Instance from_forall_embed {A} P (Φ : A → PROP) : + FromForall P Φ → FromForall ⎡P⎤ (λ a, ⎡Φ a⎤%I). +Proof. by rewrite /FromForall -embed_forall => <-. Qed. + +Global Instance into_inv_embed P N : IntoInv P N → IntoInv ⎡P⎤ N := {}. + +Global Instance is_except_0_embed `{!BiEmbedLater PROP PROP'} P : + IsExcept0 P → IsExcept0 ⎡P⎤. +Proof. by rewrite /IsExcept0 -embed_except_0=>->. Qed. + +Global Instance from_modal_later_embed `{!BiEmbedLater PROP PROP'} `(sel : A) n P Q : + FromModal (modality_laterN n) sel P Q → + FromModal (modality_laterN n) sel ⎡P⎤ ⎡Q⎤. +Proof. rewrite /FromModal /= =><-. by rewrite embed_laterN. Qed. + +Global Instance from_modal_plainly_embed + `{!BiPlainly PROP, !BiPlainly PROP', !BiEmbedPlainly PROP PROP'} `(sel : A) P Q : + FromModal modality_plainly sel P Q → + FromModal (PROP2:=PROP') modality_plainly sel ⎡P⎤ ⎡Q⎤ | 100. +Proof. rewrite /FromModal /= =><-. by rewrite embed_plainly. Qed. + +Global Instance into_internal_eq_embed + `{!BiInternalEq PROP, !BiInternalEq PROP', !BiEmbedInternalEq PROP PROP'} + {A : ofeT} (x y : A) (P : PROP) : + IntoInternalEq P x y → IntoInternalEq (⎡P⎤ : PROP')%I x y. +Proof. rewrite /IntoInternalEq=> ->. by rewrite embed_internal_eq. Qed. + +Global Instance into_except_0_embed `{!BiEmbedLater PROP PROP'} P Q : + IntoExcept0 P Q → IntoExcept0 ⎡P⎤ ⎡Q⎤. +Proof. rewrite /IntoExcept0=> ->. by rewrite embed_except_0. Qed. + +Global Instance elim_modal_embed_bupd_goal + `{!BiBUpd PROP, !BiBUpd PROP', !BiEmbedBUpd PROP PROP'} + p p' φ (P P' : PROP') (Q Q' : PROP) : + ElimModal φ p p' P P' (|==> ⎡Q⎤)%I (|==> ⎡Q'⎤)%I → + ElimModal φ p p' P P' ⎡|==> Q⎤ ⎡|==> Q'⎤. +Proof. by rewrite /ElimModal !embed_bupd. Qed. +Global Instance elim_modal_embed_bupd_hyp + `{!BiBUpd PROP, !BiBUpd PROP', !BiEmbedBUpd PROP PROP'} + p p' φ (P : PROP) (P' Q Q' : PROP') : + ElimModal φ p p' (|==> ⎡P⎤)%I P' Q Q' → + ElimModal φ p p' ⎡|==> P⎤ P' Q Q'. +Proof. by rewrite /ElimModal !embed_bupd. Qed. + +Global Instance elim_modal_embed_fupd_goal + `{!BiFUpd PROP, !BiFUpd PROP', !BiEmbedFUpd PROP PROP'} + p p' φ E1 E2 E3 (P P' : PROP') (Q Q' : PROP) : + ElimModal φ p p' P P' (|={E1,E3}=> ⎡Q⎤)%I (|={E2,E3}=> ⎡Q'⎤)%I → + ElimModal φ p p' P P' ⎡|={E1,E3}=> Q⎤ ⎡|={E2,E3}=> Q'⎤. +Proof. by rewrite /ElimModal !embed_fupd. Qed. +Global Instance elim_modal_embed_fupd_hyp + `{!BiFUpd PROP, !BiFUpd PROP', !BiEmbedFUpd PROP PROP'} + p p' φ E1 E2 (P : PROP) (P' Q Q' : PROP') : + ElimModal φ p p' (|={E1,E2}=> ⎡P⎤)%I P' Q Q' → + ElimModal φ p p' ⎡|={E1,E2}=> P⎤ P' Q Q'. +Proof. by rewrite /ElimModal embed_fupd. Qed. + +Global Instance add_modal_embed_bupd_goal + `{!BiBUpd PROP, !BiBUpd PROP', !BiEmbedBUpd PROP PROP'} + (P P' : PROP') (Q : PROP) : + AddModal P P' (|==> ⎡Q⎤)%I → AddModal P P' ⎡|==> Q⎤. +Proof. by rewrite /AddModal !embed_bupd. Qed. + +Global Instance add_modal_embed_fupd_goal + `{!BiFUpd PROP, !BiFUpd PROP', !BiEmbedFUpd PROP PROP'} + E1 E2 (P P' : PROP') (Q : PROP) : + AddModal P P' (|={E1,E2}=> ⎡Q⎤)%I → AddModal P P' ⎡|={E1,E2}=> Q⎤. +Proof. by rewrite /AddModal !embed_fupd. Qed. + +Global Instance into_embed_embed P : IntoEmbed ⎡P⎤ P. +Proof. by rewrite /IntoEmbed. Qed. +Global Instance into_embed_affinely + `{!BiBUpd PROP, !BiBUpd PROP', !BiEmbedBUpd PROP PROP'} (P : PROP') (Q : PROP) : + IntoEmbed P Q → IntoEmbed (<affine> P) (<affine> Q). +Proof. rewrite /IntoEmbed=> ->. by rewrite embed_affinely_2. Qed. + +Global Instance into_later_embed`{!BiEmbedLater PROP PROP'} n P Q : + IntoLaterN false n P Q → IntoLaterN false n ⎡P⎤ ⎡Q⎤. +Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite embed_laterN. Qed. +End class_instances_embedding. diff --git a/theories/proofmode/class_instances_internal_eq.v b/theories/proofmode/class_instances_internal_eq.v new file mode 100644 index 0000000000000000000000000000000000000000..c33c76c7929de18128c85c4b968a358ad75208d0 --- /dev/null +++ b/theories/proofmode/class_instances_internal_eq.v @@ -0,0 +1,50 @@ +From stdpp Require Import nat_cancel. +From iris.bi Require Import bi. +From iris.proofmode Require Import modality_instances classes. +Set Default Proof Using "Type". +Import bi. + +Section class_instances_internal_eq. +Context `{!BiInternalEq PROP}. +Implicit Types P Q R : PROP. + +Global Instance from_pure_internal_eq {A : ofeT} (a b : A) : + @FromPure PROP false (a ≡ b) (a ≡ b). +Proof. by rewrite /FromPure pure_internal_eq. Qed. + +Global Instance into_pure_eq {A : ofeT} (a b : A) : + Discrete a → @IntoPure PROP (a ≡ b) (a ≡ b). +Proof. intros. by rewrite /IntoPure discrete_eq. Qed. + +Global Instance from_modal_Next {A : ofeT} (x y : A) : + FromModal (PROP1:=PROP) (PROP2:=PROP) (modality_laterN 1) + (â–·^1 (x ≡ y) : PROP)%I (Next x ≡ Next y) (x ≡ y). +Proof. by rewrite /FromModal /= later_equivI. Qed. + +Global Instance into_laterN_Next {A : ofeT} only_head n n' (x y : A) : + NatCancel n 1 n' 0 → + IntoLaterN (PROP:=PROP) only_head n (Next x ≡ Next y) (x ≡ y) | 2. +Proof. + rewrite /MakeLaterN /IntoLaterN /MaybeIntoLaterN /NatCancel Nat.add_0_r. + move=> <-. rewrite later_equivI. by rewrite Nat.add_comm /= -laterN_intro. +Qed. + +Global Instance into_internal_eq_internal_eq {A : ofeT} (x y : A) : + @IntoInternalEq PROP _ A (x ≡ y) x y. +Proof. by rewrite /IntoInternalEq. Qed. +Global Instance into_internal_eq_affinely {A : ofeT} (x y : A) P : + IntoInternalEq P x y → IntoInternalEq (<affine> P) x y. +Proof. rewrite /IntoInternalEq=> ->. by rewrite affinely_elim. Qed. +Global Instance into_internal_eq_intuitionistically {A : ofeT} (x y : A) P : + IntoInternalEq P x y → IntoInternalEq (â–¡ P) x y. +Proof. rewrite /IntoInternalEq=> ->. by rewrite intuitionistically_elim. Qed. +Global Instance into_internal_eq_absorbingly {A : ofeT} (x y : A) P : + IntoInternalEq P x y → IntoInternalEq (<absorb> P) x y. +Proof. rewrite /IntoInternalEq=> ->. by rewrite absorbingly_internal_eq. Qed. +Global Instance into_internal_eq_plainly `{BiPlainly PROP} {A : ofeT} (x y : A) P : + IntoInternalEq P x y → IntoInternalEq (â– P) x y. +Proof. rewrite /IntoInternalEq=> ->. by rewrite plainly_elim. Qed. +Global Instance into_internal_eq_persistently {A : ofeT} (x y : A) P : + IntoInternalEq P x y → IntoInternalEq (<pers> P) x y. +Proof. rewrite /IntoInternalEq=> ->. by rewrite persistently_elim. Qed. +End class_instances_internal_eq. \ No newline at end of file diff --git a/theories/proofmode/class_instances_sbi.v b/theories/proofmode/class_instances_later.v similarity index 56% rename from theories/proofmode/class_instances_sbi.v rename to theories/proofmode/class_instances_later.v index 3e40fc8dcb29cd5855821f6a53570e7388984d46..7b2271f5b086d612af47399e9375f301d6ff2ad9 100644 --- a/theories/proofmode/class_instances_sbi.v +++ b/theories/proofmode/class_instances_later.v @@ -1,10 +1,10 @@ From stdpp Require Import nat_cancel. -From iris.bi Require Import bi tactics. -From iris.proofmode Require Import base modality_instances classes class_instances_bi ltac_tactics. +From iris.bi Require Import bi. +From iris.proofmode Require Import modality_instances classes. Set Default Proof Using "Type". Import bi. -Section sbi_instances. +Section class_instances_later. Context {PROP : bi}. Implicit Types P Q R : PROP. @@ -19,27 +19,7 @@ Global Instance from_assumption_except_0 p P Q : FromAssumption p P Q → KnownRFromAssumption p P (â—‡ Q)%I. Proof. rewrite /KnownRFromAssumption /FromAssumption=>->. apply except_0_intro. Qed. -Global Instance from_assumption_fupd `{BiBUpdFUpd PROP} E p P Q : - FromAssumption p P (|==> Q) → KnownRFromAssumption p P (|={E}=> Q)%I. -Proof. rewrite /KnownRFromAssumption /FromAssumption=>->. apply bupd_fupd. Qed. - -Global Instance from_assumption_plainly_l_true `{BiPlainly PROP} P Q : - FromAssumption true P Q → KnownLFromAssumption true (â– P) Q. -Proof. - rewrite /KnownLFromAssumption /FromAssumption /= =><-. - rewrite intuitionistically_plainly_elim //. -Qed. -Global Instance from_assumption_plainly_l_false `{BiPlainly PROP, BiAffine PROP} P Q : - FromAssumption true P Q → KnownLFromAssumption false (â– P) Q. -Proof. - rewrite /KnownLFromAssumption /FromAssumption /= =><-. - rewrite plainly_elim_persistently intuitionistically_into_persistently //. -Qed. - (** FromPure *) -Global Instance from_pure_internal_eq `{!BiInternalEq PROP} {A : ofeT} (a b : A) : - @FromPure PROP false (a ≡ b) (a ≡ b). -Proof. by rewrite /FromPure pure_internal_eq. Qed. Global Instance from_pure_later a P φ : FromPure a P φ → FromPure a (â–· P) φ. Proof. rewrite /FromPure=> ->. apply later_intro. Qed. Global Instance from_pure_laterN a n P φ : FromPure a P φ → FromPure a (â–·^n P) φ. @@ -47,23 +27,6 @@ Proof. rewrite /FromPure=> ->. apply laterN_intro. Qed. Global Instance from_pure_except_0 a P φ : FromPure a P φ → FromPure a (â—‡ P) φ. Proof. rewrite /FromPure=> ->. apply except_0_intro. Qed. -Global Instance from_pure_fupd `{BiFUpd PROP} a E P φ : - FromPure a P φ → FromPure a (|={E}=> P) φ. -Proof. rewrite /FromPure. intros <-. apply fupd_intro. Qed. - -Global Instance from_pure_plainly `{BiPlainly PROP} P φ : - FromPure false P φ → FromPure false (â– P) φ. -Proof. rewrite /FromPure=> <-. by rewrite plainly_pure. Qed. - -(** IntoPure *) -Global Instance into_pure_eq `{!BiInternalEq PROP} {A : ofeT} (a b : A) : - Discrete a → @IntoPure PROP (a ≡ b) (a ≡ b). -Proof. intros. by rewrite /IntoPure discrete_eq. Qed. - -Global Instance into_pure_plainly `{BiPlainly PROP} P φ : - IntoPure P φ → IntoPure (â– P) φ. -Proof. rewrite /IntoPure=> ->. apply: plainly_elim. Qed. - (** IntoWand *) Global Instance into_wand_later p q R P Q : IntoWand p q R P Q → IntoWand p q (â–· R) (â–· P) (â–· Q). @@ -92,33 +55,6 @@ Proof. (laterN_intro _ (â–¡?p R)%I) -laterN_wand HR. Qed. -Global Instance into_wand_fupd `{BiFUpd PROP} E p q R P Q : - IntoWand false false R P Q → - IntoWand p q (|={E}=> R) (|={E}=> P) (|={E}=> Q). -Proof. - rewrite /IntoWand /= => HR. rewrite !intuitionistically_if_elim HR. - apply wand_intro_l. by rewrite fupd_sep wand_elim_r. -Qed. -Global Instance into_wand_fupd_persistent `{BiFUpd PROP} E1 E2 p q R P Q : - IntoWand false q R P Q → IntoWand p q (|={E1,E2}=> R) P (|={E1,E2}=> Q). -Proof. - rewrite /IntoWand /= => HR. rewrite intuitionistically_if_elim HR. - apply wand_intro_l. by rewrite fupd_frame_l wand_elim_r. -Qed. -Global Instance into_wand_fupd_args `{BiFUpd PROP} E1 E2 p q R P Q : - IntoWand p false R P Q → IntoWand' p q R (|={E1,E2}=> P) (|={E1,E2}=> Q). -Proof. - rewrite /IntoWand' /IntoWand /= => ->. - apply wand_intro_l. by rewrite intuitionistically_if_elim fupd_wand_r. -Qed. - -Global Instance into_wand_plainly_true `{BiPlainly PROP} q R P Q : - IntoWand true q R P Q → IntoWand true q (â– R) P Q. -Proof. rewrite /IntoWand /= intuitionistically_plainly_elim //. Qed. -Global Instance into_wand_plainly_false `{BiPlainly PROP} q R P Q : - Absorbing R → IntoWand false q R P Q → IntoWand false q (â– R) P Q. -Proof. intros ?. by rewrite /IntoWand plainly_elim. Qed. - (** FromAnd *) Global Instance from_and_later P Q1 Q2 : FromAnd P Q1 Q2 → FromAnd (â–· P) (â–· Q1) (â–· Q2). @@ -130,10 +66,6 @@ Global Instance from_and_except_0 P Q1 Q2 : FromAnd P Q1 Q2 → FromAnd (â—‡ P) (â—‡ Q1) (â—‡ Q2). Proof. rewrite /FromAnd=><-. by rewrite except_0_and. Qed. -Global Instance from_and_plainly `{BiPlainly PROP} P Q1 Q2 : - FromAnd P Q1 Q2 → FromAnd (â– P) (â– Q1) (â– Q2). -Proof. rewrite /FromAnd=> <-. by rewrite plainly_and. Qed. - (** FromSep *) Global Instance from_sep_later P Q1 Q2 : FromSep P Q1 Q2 → FromSep (â–· P) (â–· Q1) (â–· Q2). @@ -145,14 +77,6 @@ Global Instance from_sep_except_0 P Q1 Q2 : FromSep P Q1 Q2 → FromSep (â—‡ P) (â—‡ Q1) (â—‡ Q2). Proof. rewrite /FromSep=><-. by rewrite except_0_sep. Qed. -Global Instance from_sep_fupd `{BiFUpd PROP} E P Q1 Q2 : - FromSep P Q1 Q2 → FromSep (|={E}=> P) (|={E}=> Q1) (|={E}=> Q2). -Proof. rewrite /FromSep =><-. apply fupd_sep. Qed. - -Global Instance from_sep_plainly `{BiPlainly PROP} P Q1 Q2 : - FromSep P Q1 Q2 → FromSep (â– P) (â– Q1) (â– Q2). -Proof. rewrite /FromSep=> <-. by rewrite plainly_sep_2. Qed. - (** IntoAnd *) Global Instance into_and_later p P Q1 Q2 : IntoAnd p P Q1 Q2 → IntoAnd p (â–· P) (â–· Q1) (â–· Q2). @@ -176,15 +100,6 @@ Proof. intuitionistically_if_elim except_0_and. Qed. -Global Instance into_and_plainly `{BiPlainly PROP} p P Q1 Q2 : - IntoAnd p P Q1 Q2 → IntoAnd p (â– P) (â– Q1) (â– Q2). -Proof. - rewrite /IntoAnd /=. destruct p; simpl. - - rewrite -plainly_and -[(â–¡ â– P)%I]intuitionistically_idemp intuitionistically_plainly =>->. - rewrite [(â–¡ (_ ∧ _))%I]intuitionistically_elim //. - - intros ->. by rewrite plainly_and. -Qed. - (** IntoSep *) Global Instance into_sep_later P Q1 Q2 : IntoSep P Q1 Q2 → IntoSep (â–· P) (â–· Q1) (â–· Q2). @@ -208,18 +123,6 @@ Proof. by rewrite -(False_elim Q1) -(False_elim Q2). Qed. -Global Instance into_sep_plainly `{BiPlainly PROP, BiPositive PROP} P Q1 Q2 : - IntoSep P Q1 Q2 → IntoSep (â– P) (â– Q1) (â– Q2). -Proof. rewrite /IntoSep /= => ->. by rewrite plainly_sep. Qed. - -Global Instance into_sep_plainly_affine `{BiPlainly PROP} P Q1 Q2 : - IntoSep P Q1 Q2 → - TCOr (Affine Q1) (Absorbing Q2) → TCOr (Absorbing Q1) (Affine Q2) → - IntoSep (â– P) (â– Q1) (â– Q2). -Proof. - rewrite /IntoSep /= => -> ??. by rewrite sep_and plainly_and plainly_and_sep_l_1. -Qed. - (** FromOr *) Global Instance from_or_later P Q1 Q2 : FromOr P Q1 Q2 → FromOr (â–· P) (â–· Q1) (â–· Q2). @@ -231,17 +134,6 @@ Global Instance from_or_except_0 P Q1 Q2 : FromOr P Q1 Q2 → FromOr (â—‡ P) (â—‡ Q1) (â—‡ Q2). Proof. rewrite /FromOr=><-. by rewrite except_0_or. Qed. -Global Instance from_or_fupd `{BiFUpd PROP} E1 E2 P Q1 Q2 : - FromOr P Q1 Q2 → FromOr (|={E1,E2}=> P) (|={E1,E2}=> Q1) (|={E1,E2}=> Q2). -Proof. - rewrite /FromOr=><-. apply or_elim; apply fupd_mono; - [apply bi.or_intro_l|apply bi.or_intro_r]. -Qed. - -Global Instance from_or_plainly `{BiPlainly PROP} P Q1 Q2 : - FromOr P Q1 Q2 → FromOr (â– P) (â– Q1) (â– Q2). -Proof. rewrite /FromOr=> <-. by rewrite -plainly_or_2. Qed. - (** IntoOr *) Global Instance into_or_later P Q1 Q2 : IntoOr P Q1 Q2 → IntoOr (â–· P) (â–· Q1) (â–· Q2). @@ -253,10 +145,6 @@ Global Instance into_or_except_0 P Q1 Q2 : IntoOr P Q1 Q2 → IntoOr (â—‡ P) (â—‡ Q1) (â—‡ Q2). Proof. rewrite /IntoOr=>->. by rewrite except_0_or. Qed. -Global Instance into_or_plainly `{BiPlainly PROP, BiPlainlyExist PROP} P Q1 Q2 : - IntoOr P Q1 Q2 → IntoOr (â– P) (â– Q1) (â– Q2). -Proof. rewrite /IntoOr=>->. by rewrite plainly_or. Qed. - (** FromExist *) Global Instance from_exist_later {A} P (Φ : A → PROP) : FromExist P Φ → FromExist (â–· P) (λ a, â–· (Φ a))%I. @@ -272,16 +160,6 @@ Global Instance from_exist_except_0 {A} P (Φ : A → PROP) : FromExist P Φ → FromExist (â—‡ P) (λ a, â—‡ (Φ a))%I. Proof. rewrite /FromExist=> <-. by rewrite except_0_exist_2. Qed. -Global Instance from_exist_fupd `{BiFUpd PROP} {A} E1 E2 P (Φ : A → PROP) : - FromExist P Φ → FromExist (|={E1,E2}=> P) (λ a, |={E1,E2}=> Φ a)%I. -Proof. - rewrite /FromExist=><-. apply exist_elim=> a. by rewrite -(exist_intro a). -Qed. - -Global Instance from_exist_plainly `{BiPlainly PROP} {A} P (Φ : A → PROP) : - FromExist P Φ → FromExist (â– P) (λ a, â– (Φ a))%I. -Proof. rewrite /FromExist=> <-. by rewrite -plainly_exist_2. Qed. - (** IntoExist *) Global Instance into_exist_later {A} P (Φ : A → PROP) : IntoExist P Φ → Inhabited A → IntoExist (â–· P) (λ a, â–· (Φ a))%I. @@ -293,10 +171,6 @@ Global Instance into_exist_except_0 {A} P (Φ : A → PROP) : IntoExist P Φ → Inhabited A → IntoExist (â—‡ P) (λ a, â—‡ (Φ a))%I. Proof. rewrite /IntoExist=> HP ?. by rewrite HP except_0_exist. Qed. -Global Instance into_exist_plainly `{BiPlainlyExist PROP} {A} P (Φ : A → PROP) : - IntoExist P Φ → IntoExist (â– P) (λ a, â– (Φ a))%I. -Proof. rewrite /IntoExist=> HP. by rewrite HP plainly_exist. Qed. - (** IntoForall *) Global Instance into_forall_later {A} P (Φ : A → PROP) : IntoForall P Φ → IntoForall (â–· P) (λ a, â–· (Φ a))%I. @@ -310,10 +184,6 @@ Global Instance into_forall_except_0 {A} P (Φ : A → PROP) : IntoForall P Φ → IntoForall (â—‡ P) (λ a, â—‡ (Φ a))%I. Proof. rewrite /IntoForall=> HP. by rewrite HP except_0_forall. Qed. -Global Instance into_forall_plainly `{BiPlainly PROP} {A} P (Φ : A → PROP) : - IntoForall P Φ → IntoForall (â– P) (λ a, â– (Φ a))%I. -Proof. rewrite /IntoForall=> HP. by rewrite HP plainly_forall. Qed. - (** FromForall *) Global Instance from_forall_later {A} P (Φ : A → PROP) : FromForall P Φ → FromForall (â–· P)%I (λ a, â–· (Φ a))%I. @@ -327,44 +197,11 @@ Global Instance from_forall_except_0 {A} P (Φ : A → PROP) : FromForall P Φ → FromForall (â—‡ P)%I (λ a, â—‡ (Φ a))%I. Proof. rewrite /FromForall=> <-. by rewrite except_0_forall. Qed. -Global Instance from_forall_plainly `{BiPlainly PROP} {A} P (Φ : A → PROP) : - FromForall P Φ → FromForall (â– P)%I (λ a, â– (Φ a))%I. -Proof. rewrite /FromForall=> <-. by rewrite plainly_forall. Qed. - -Global Instance from_forall_fupd `{BiFUpdPlainly PROP} E1 E2 {A} P (Φ : A → PROP) : - (* Some cases in which [E2 ⊆ E1] holds *) - TCOr (TCEq E1 E2) (TCOr (TCEq E1 ⊤) (TCEq E2 ∅)) → - FromForall P Φ → (∀ x, Plain (Φ x)) → - FromForall (|={E1,E2}=> P)%I (λ a, |={E1,E2}=> (Φ a))%I. -Proof. - rewrite /FromForall=> -[->|[->|->]] <- ?; rewrite fupd_plain_forall; set_solver. -Qed. - -Global Instance from_forall_step_fupd `{BiFUpdPlainly PROP} E1 E2 {A} P (Φ : A → PROP) : - (* Some cases in which [E2 ⊆ E1] holds *) - TCOr (TCEq E1 E2) (TCOr (TCEq E1 ⊤) (TCEq E2 ∅)) → - FromForall P Φ → (∀ x, Plain (Φ x)) → - FromForall (|={E1,E2}â–·=> P)%I (λ a, |={E1,E2}â–·=> (Φ a))%I. -Proof. - rewrite /FromForall=> -[->|[->|->]] <- ?; rewrite step_fupd_plain_forall; set_solver. -Qed. - (** IsExcept0 *) Global Instance is_except_0_except_0 P : IsExcept0 (â—‡ P). Proof. by rewrite /IsExcept0 except_0_idemp. Qed. Global Instance is_except_0_later P : IsExcept0 (â–· P). Proof. by rewrite /IsExcept0 except_0_later. Qed. -Global Instance is_except_0_embed `{BiEmbedLater PROP PROP'} P : - IsExcept0 P → IsExcept0 ⎡P⎤. -Proof. by rewrite /IsExcept0 -embed_except_0=>->. Qed. -Global Instance is_except_0_bupd `{BiBUpd PROP} P : IsExcept0 P → IsExcept0 (|==> P). -Proof. - rewrite /IsExcept0=> HP. - by rewrite -{2}HP -(except_0_idemp P) -except_0_bupd -(except_0_intro P). -Qed. -Global Instance is_except_0_fupd `{BiFUpd PROP} E1 E2 P : - IsExcept0 (|={E1,E2}=> P). -Proof. by rewrite /IsExcept0 except_0_fupd. Qed. (** FromModal *) Global Instance from_modal_later P : @@ -373,62 +210,9 @@ Proof. by rewrite /FromModal. Qed. Global Instance from_modal_laterN n P : FromModal (modality_laterN n) (â–·^n P) (â–·^n P) P. Proof. by rewrite /FromModal. Qed. -Global Instance from_modal_Next `{!BiInternalEq PROP} {A : ofeT} (x y : A) : - FromModal (PROP1:=PROP) (PROP2:=PROP) (modality_laterN 1) - (â–·^1 (x ≡ y) : PROP)%I (Next x ≡ Next y) (x ≡ y). -Proof. by rewrite /FromModal /= later_equivI. Qed. - Global Instance from_modal_except_0 P : FromModal modality_id (â—‡ P) (â—‡ P) P. Proof. by rewrite /FromModal /= -except_0_intro. Qed. -Global Instance from_modal_fupd E P `{BiFUpd PROP} : - FromModal modality_id (|={E}=> P) (|={E}=> P) P. -Proof. by rewrite /FromModal /= -fupd_intro. Qed. - -Global Instance from_modal_later_embed `{BiEmbedLater PROP PROP'} `(sel : A) n P Q : - FromModal (modality_laterN n) sel P Q → - FromModal (modality_laterN n) sel ⎡P⎤ ⎡Q⎤. -Proof. rewrite /FromModal /= =><-. by rewrite embed_laterN. Qed. - -Global Instance from_modal_plainly `{BiPlainly PROP} P : - FromModal modality_plainly (â– P) (â– P) P | 2. -Proof. by rewrite /FromModal. Qed. - -Global Instance from_modal_plainly_embed `{!BiPlainly PROP, !BiPlainly PROP', - !BiEmbed PROP PROP', !BiEmbedPlainly PROP PROP'} `(sel : A) P Q : - FromModal modality_plainly sel P Q → - FromModal (PROP2:=PROP') modality_plainly sel ⎡P⎤ ⎡Q⎤ | 100. -Proof. rewrite /FromModal /= =><-. by rewrite embed_plainly. Qed. - -(** IntoInternalEq *) -Section internal_eq. - Context `{!BiInternalEq PROP}. - - Global Instance into_internal_eq_internal_eq {A : ofeT} (x y : A) : - @IntoInternalEq PROP _ A (x ≡ y) x y. - Proof. by rewrite /IntoInternalEq. Qed. - Global Instance into_internal_eq_affinely {A : ofeT} (x y : A) P : - IntoInternalEq P x y → IntoInternalEq (<affine> P) x y. - Proof. rewrite /IntoInternalEq=> ->. by rewrite affinely_elim. Qed. - Global Instance into_internal_eq_intuitionistically {A : ofeT} (x y : A) P : - IntoInternalEq P x y → IntoInternalEq (â–¡ P) x y. - Proof. rewrite /IntoInternalEq=> ->. by rewrite intuitionistically_elim. Qed. - Global Instance into_internal_eq_absorbingly {A : ofeT} (x y : A) P : - IntoInternalEq P x y → IntoInternalEq (<absorb> P) x y. - Proof. rewrite /IntoInternalEq=> ->. by rewrite absorbingly_internal_eq. Qed. - Global Instance into_internal_eq_plainly `{BiPlainly PROP} {A : ofeT} (x y : A) P : - IntoInternalEq P x y → IntoInternalEq (â– P) x y. - Proof. rewrite /IntoInternalEq=> ->. by rewrite plainly_elim. Qed. - Global Instance into_internal_eq_persistently {A : ofeT} (x y : A) P : - IntoInternalEq P x y → IntoInternalEq (<pers> P) x y. - Proof. rewrite /IntoInternalEq=> ->. by rewrite persistently_elim. Qed. - Global Instance into_internal_eq_embed - `{!BiInternalEq PROP', BiEmbedInternalEq PROP PROP'} - {A : ofeT} (x y : A) (P : PROP) : - IntoInternalEq P x y → IntoInternalEq (⎡P⎤ : PROP')%I x y. - Proof. rewrite /IntoInternalEq=> ->. by rewrite embed_internal_eq. Qed. -End internal_eq. - (** IntoExcept0 *) Global Instance into_except_0_except_0 P : IntoExcept0 (â—‡ P) P. Proof. by rewrite /IntoExcept0. Qed. @@ -446,15 +230,9 @@ Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_intuitionistically_2. Qed. Global Instance into_except_0_absorbingly P Q : IntoExcept0 P Q → IntoExcept0 (<absorb> P) (<absorb> Q). Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_absorbingly. Qed. -Global Instance into_except_0_plainly `{BiPlainly PROP, BiPlainlyExist PROP} P Q : - IntoExcept0 P Q → IntoExcept0 (â– P) (â– Q). -Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_plainly. Qed. Global Instance into_except_0_persistently P Q : IntoExcept0 P Q → IntoExcept0 (<pers> P) (<pers> Q). Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_persistently. Qed. -Global Instance into_except_0_embed `{BiEmbedLater PROP PROP'} P Q : - IntoExcept0 P Q → IntoExcept0 ⎡P⎤ ⎡Q⎤. -Proof. rewrite /IntoExcept0=> ->. by rewrite embed_except_0. Qed. (** ElimModal *) Global Instance elim_modal_timeless p P Q : @@ -464,42 +242,8 @@ Proof. by rewrite except_0_intuitionistically_if_2 -except_0_sep wand_elim_r. Qed. -Global Instance elim_modal_bupd_plain_goal `{BiBUpdPlainly PROP} p P Q : - Plain Q → ElimModal True p false (|==> P) P Q Q. -Proof. - intros. by rewrite /ElimModal intuitionistically_if_elim - bupd_frame_r wand_elim_r bupd_plain. -Qed. -Global Instance elim_modal_bupd_plain `{BiBUpdPlainly PROP} p P Q : - Plain P → ElimModal True p p (|==> P) P Q Q. -Proof. intros. by rewrite /ElimModal bupd_plain wand_elim_r. Qed. -Global Instance elim_modal_bupd_fupd `{BiBUpdFUpd PROP} p E1 E2 P Q : - ElimModal True p false (|==> P) P (|={E1,E2}=> Q) (|={E1,E2}=> Q) | 10. -Proof. - by rewrite /ElimModal intuitionistically_if_elim - (bupd_fupd E1) fupd_frame_r wand_elim_r fupd_trans. -Qed. - -Global Instance elim_modal_fupd_fupd `{BiFUpd PROP} p E1 E2 E3 P Q : - ElimModal True p false (|={E1,E2}=> P) P (|={E1,E3}=> Q) (|={E2,E3}=> Q). -Proof. - by rewrite /ElimModal intuitionistically_if_elim - fupd_frame_r wand_elim_r fupd_trans. -Qed. - -Global Instance elim_modal_embed_fupd_goal `{BiEmbedFUpd PROP PROP'} - p p' φ E1 E2 E3 (P P' : PROP') (Q Q' : PROP) : - ElimModal φ p p' P P' (|={E1,E3}=> ⎡Q⎤)%I (|={E2,E3}=> ⎡Q'⎤)%I → - ElimModal φ p p' P P' ⎡|={E1,E3}=> Q⎤ ⎡|={E2,E3}=> Q'⎤. -Proof. by rewrite /ElimModal !embed_fupd. Qed. -Global Instance elim_modal_embed_fupd_hyp `{BiEmbedFUpd PROP PROP'} - p p' φ E1 E2 (P : PROP) (P' Q Q' : PROP') : - ElimModal φ p p' (|={E1,E2}=> ⎡P⎤)%I P' Q Q' → - ElimModal φ p p' ⎡|={E1,E2}=> P⎤ P' Q Q'. -Proof. by rewrite /ElimModal embed_fupd. Qed. - (** AddModal *) -(* High priority to add a â–· rather than a â—‡ when P is timeless. *) +(* High priority to add a [â–·] rather than a [â—‡] when [P] is timeless. *) Global Instance add_modal_later_except_0 P Q : Timeless P → AddModal (â–· P) P (â—‡ Q) | 0. Proof. @@ -523,28 +267,6 @@ Proof. by rewrite -except_0_sep wand_elim_r except_0_later. Qed. -Global Instance add_modal_fupd `{BiFUpd PROP} E1 E2 P Q : - AddModal (|={E1}=> P) P (|={E1,E2}=> Q). -Proof. by rewrite /AddModal fupd_frame_r wand_elim_r fupd_trans. Qed. - -Global Instance add_modal_embed_fupd_goal `{BiEmbedFUpd PROP PROP'} - E1 E2 (P P' : PROP') (Q : PROP) : - AddModal P P' (|={E1,E2}=> ⎡Q⎤)%I → AddModal P P' ⎡|={E1,E2}=> Q⎤. -Proof. by rewrite /AddModal !embed_fupd. Qed. - -(** ElimAcc *) -Global Instance elim_acc_fupd `{BiFUpd PROP} {X} E1 E2 E α β mγ Q : - (* FIXME: Why %I? ElimAcc sets the right scopes! *) - ElimAcc (X:=X) (fupd E1 E2) (fupd E2 E1) α β mγ - (|={E1,E}=> Q) - (λ x, |={E2}=> β x ∗ (mγ x -∗? |={E1,E}=> Q))%I. -Proof. - rewrite /ElimAcc. - iIntros "Hinner >Hacc". iDestruct "Hacc" as (x) "[Hα Hclose]". - iMod ("Hinner" with "Hα") as "[Hβ Hfin]". - iMod ("Hclose" with "Hβ") as "Hγ". by iApply "Hfin". -Qed. - (** IntoAcc *) (* TODO: We could have instances from "unfolded" accessors with or without the first binder. *) @@ -577,15 +299,6 @@ Proof. move=> Hn [_ ->|->] <-; by rewrite -!laterN_plus -Hn Nat.add_comm. Qed. -Global Instance into_laterN_Next `{!BiInternalEq PROP} - {A : ofeT} only_head n n' (x y : A) : - NatCancel n 1 n' 0 → - IntoLaterN (PROP:=PROP) only_head n (Next x ≡ Next y) (x ≡ y) | 2. -Proof. - rewrite /MakeLaterN /IntoLaterN /MaybeIntoLaterN /NatCancel Nat.add_0_r. - move=> <-. rewrite later_equivI. by rewrite Nat.add_comm /= -laterN_intro. -Qed. - Global Instance into_laterN_and_l n P1 P2 Q1 Q2 : IntoLaterN false n P1 Q1 → MaybeIntoLaterN false n P2 Q2 → IntoLaterN false n (P1 ∧ P2) (Q1 ∧ Q2) | 10. @@ -625,15 +338,9 @@ Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_intuitionist Global Instance into_later_absorbingly n P Q : IntoLaterN false n P Q → IntoLaterN false n (<absorb> P) (<absorb> Q). Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_absorbingly. Qed. -Global Instance into_later_plainly `{BiPlainly PROP} n P Q : - IntoLaterN false n P Q → IntoLaterN false n (â– P) (â– Q). -Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_plainly. Qed. Global Instance into_later_persistently n P Q : IntoLaterN false n P Q → IntoLaterN false n (<pers> P) (<pers> Q). Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_persistently. Qed. -Global Instance into_later_embed`{BiEmbedLater PROP PROP'} n P Q : - IntoLaterN false n P Q → IntoLaterN false n ⎡P⎤ ⎡Q⎤. -Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite embed_laterN. Qed. Global Instance into_laterN_sep_l n P1 P2 Q1 Q2 : IntoLaterN false n P1 Q1 → MaybeIntoLaterN false n P2 Q2 → @@ -693,4 +400,4 @@ Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> ?. rewrite big_opMS_commute. by apply big_sepMS_mono. Qed. -End sbi_instances. +End class_instances_later. diff --git a/theories/proofmode/class_instances_plainly.v b/theories/proofmode/class_instances_plainly.v new file mode 100644 index 0000000000000000000000000000000000000000..0559fc027096340b00c6837d18f2bfb4f9a1dc86 --- /dev/null +++ b/theories/proofmode/class_instances_plainly.v @@ -0,0 +1,101 @@ +From iris.bi Require Import bi. +From iris.proofmode Require Import modality_instances classes. +Set Default Proof Using "Type". +Import bi. + +Section class_instances_plainly. +Context `{!BiPlainly PROP}. +Implicit Types P Q R : PROP. + +Global Instance from_assumption_plainly_l_true P Q : + FromAssumption true P Q → KnownLFromAssumption true (â– P) Q. +Proof. + rewrite /KnownLFromAssumption /FromAssumption /= =><-. + rewrite intuitionistically_plainly_elim //. +Qed. +Global Instance from_assumption_plainly_l_false `{BiAffine PROP} P Q : + FromAssumption true P Q → KnownLFromAssumption false (â– P) Q. +Proof. + rewrite /KnownLFromAssumption /FromAssumption /= =><-. + rewrite plainly_elim_persistently intuitionistically_into_persistently //. +Qed. + +Global Instance from_pure_plainly P φ : + FromPure false P φ → FromPure false (â– P) φ. +Proof. rewrite /FromPure=> <-. by rewrite plainly_pure. Qed. + +Global Instance into_pure_plainly P φ : + IntoPure P φ → IntoPure (â– P) φ. +Proof. rewrite /IntoPure=> ->. apply: plainly_elim. Qed. + +Global Instance into_wand_plainly_true q R P Q : + IntoWand true q R P Q → IntoWand true q (â– R) P Q. +Proof. rewrite /IntoWand /= intuitionistically_plainly_elim //. Qed. +Global Instance into_wand_plainly_false q R P Q : + Absorbing R → IntoWand false q R P Q → IntoWand false q (â– R) P Q. +Proof. intros ?. by rewrite /IntoWand plainly_elim. Qed. + +Global Instance from_and_plainly P Q1 Q2 : + FromAnd P Q1 Q2 → FromAnd (â– P) (â– Q1) (â– Q2). +Proof. rewrite /FromAnd=> <-. by rewrite plainly_and. Qed. + +Global Instance from_sep_plainly P Q1 Q2 : + FromSep P Q1 Q2 → FromSep (â– P) (â– Q1) (â– Q2). +Proof. rewrite /FromSep=> <-. by rewrite plainly_sep_2. Qed. + +Global Instance into_and_plainly p P Q1 Q2 : + IntoAnd p P Q1 Q2 → IntoAnd p (â– P) (â– Q1) (â– Q2). +Proof. + rewrite /IntoAnd /=. destruct p; simpl. + - rewrite -plainly_and -[(â–¡ â– P)%I]intuitionistically_idemp intuitionistically_plainly =>->. + rewrite [(â–¡ (_ ∧ _))%I]intuitionistically_elim //. + - intros ->. by rewrite plainly_and. +Qed. + +Global Instance into_sep_plainly `{!BiPositive PROP} P Q1 Q2 : + IntoSep P Q1 Q2 → IntoSep (â– P) (â– Q1) (â– Q2). +Proof. rewrite /IntoSep /= => ->. by rewrite plainly_sep. Qed. +Global Instance into_sep_plainly_affine P Q1 Q2 : + IntoSep P Q1 Q2 → + TCOr (Affine Q1) (Absorbing Q2) → TCOr (Absorbing Q1) (Affine Q2) → + IntoSep (â– P) (â– Q1) (â– Q2). +Proof. + rewrite /IntoSep /= => -> ??. by rewrite sep_and plainly_and plainly_and_sep_l_1. +Qed. + +Global Instance from_or_plainly P Q1 Q2 : + FromOr P Q1 Q2 → FromOr (â– P) (â– Q1) (â– Q2). +Proof. rewrite /FromOr=> <-. by rewrite -plainly_or_2. Qed. + +Global Instance into_or_plainly `{!BiPlainlyExist PROP} P Q1 Q2 : + IntoOr P Q1 Q2 → IntoOr (â– P) (â– Q1) (â– Q2). +Proof. rewrite /IntoOr=>->. by rewrite plainly_or. Qed. + +Global Instance from_exist_plainly {A} P (Φ : A → PROP) : + FromExist P Φ → FromExist (â– P) (λ a, â– (Φ a))%I. +Proof. rewrite /FromExist=> <-. by rewrite -plainly_exist_2. Qed. + +Global Instance into_exist_plainly `{!BiPlainlyExist PROP} {A} P (Φ : A → PROP) : + IntoExist P Φ → IntoExist (â– P) (λ a, â– (Φ a))%I. +Proof. rewrite /IntoExist=> HP. by rewrite HP plainly_exist. Qed. + +Global Instance into_forall_plainly {A} P (Φ : A → PROP) : + IntoForall P Φ → IntoForall (â– P) (λ a, â– (Φ a))%I. +Proof. rewrite /IntoForall=> HP. by rewrite HP plainly_forall. Qed. + +Global Instance from_forall_plainly {A} P (Φ : A → PROP) : + FromForall P Φ → FromForall (â– P)%I (λ a, â– (Φ a))%I. +Proof. rewrite /FromForall=> <-. by rewrite plainly_forall. Qed. + +Global Instance from_modal_plainly P : + FromModal modality_plainly (â– P) (â– P) P | 2. +Proof. by rewrite /FromModal. Qed. + +Global Instance into_except_0_plainly `{!BiPlainlyExist PROP} P Q : + IntoExcept0 P Q → IntoExcept0 (â– P) (â– Q). +Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_plainly. Qed. + +Global Instance into_later_plainly n P Q : + IntoLaterN false n P Q → IntoLaterN false n (â– P) (â– Q). +Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_plainly. Qed. +End class_instances_plainly. diff --git a/theories/proofmode/class_instances_updates.v b/theories/proofmode/class_instances_updates.v new file mode 100644 index 0000000000000000000000000000000000000000..3d9d0bf7d37fd6afc312597e60fba6d3dfe294ab --- /dev/null +++ b/theories/proofmode/class_instances_updates.v @@ -0,0 +1,182 @@ +From stdpp Require Import nat_cancel. +From iris.bi Require Import bi. +From iris.proofmode Require Import modality_instances classes. +From iris.proofmode Require Import ltac_tactics class_instances. +Set Default Proof Using "Type". +Import bi. + +Section class_instances_updates. +Context {PROP : bi}. +Implicit Types P Q R : PROP. + +Global Instance from_assumption_bupd `{!BiBUpd PROP} p P Q : + FromAssumption p P Q → KnownRFromAssumption p P (|==> Q). +Proof. rewrite /KnownRFromAssumption /FromAssumption=>->. apply bupd_intro. Qed. +Global Instance from_assumption_fupd + `{!BiBUpd PROP, !BiFUpd PROP, !BiBUpdFUpd PROP} E p P Q : + FromAssumption p P (|==> Q) → KnownRFromAssumption p P (|={E}=> Q)%I. +Proof. rewrite /KnownRFromAssumption /FromAssumption=>->. apply bupd_fupd. Qed. + +Global Instance from_pure_bupd `{!BiBUpd PROP} a P φ : + FromPure a P φ → FromPure a (|==> P) φ. +Proof. rewrite /FromPure=> <-. apply bupd_intro. Qed. +Global Instance from_pure_fupd `{!BiFUpd PROP} a E P φ : + FromPure a P φ → FromPure a (|={E}=> P) φ. +Proof. rewrite /FromPure. intros <-. apply fupd_intro. Qed. + +Global Instance into_wand_bupd `{!BiBUpd PROP} p q R P Q : + IntoWand false false R P Q → IntoWand p q (|==> R) (|==> P) (|==> Q). +Proof. + rewrite /IntoWand /= => HR. rewrite !intuitionistically_if_elim HR. + apply wand_intro_l. by rewrite bupd_sep wand_elim_r. +Qed. +Global Instance into_wand_fupd `{!BiFUpd PROP} E p q R P Q : + IntoWand false false R P Q → + IntoWand p q (|={E}=> R) (|={E}=> P) (|={E}=> Q). +Proof. + rewrite /IntoWand /= => HR. rewrite !intuitionistically_if_elim HR. + apply wand_intro_l. by rewrite fupd_sep wand_elim_r. +Qed. + +Global Instance into_wand_bupd_persistent `{!BiBUpd PROP} p q R P Q : + IntoWand false q R P Q → IntoWand p q (|==> R) P (|==> Q). +Proof. + rewrite /IntoWand /= => HR. rewrite intuitionistically_if_elim HR. + apply wand_intro_l. by rewrite bupd_frame_l wand_elim_r. +Qed. +Global Instance into_wand_fupd_persistent `{!BiFUpd PROP} E1 E2 p q R P Q : + IntoWand false q R P Q → IntoWand p q (|={E1,E2}=> R) P (|={E1,E2}=> Q). +Proof. + rewrite /IntoWand /= => HR. rewrite intuitionistically_if_elim HR. + apply wand_intro_l. by rewrite fupd_frame_l wand_elim_r. +Qed. + +Global Instance into_wand_bupd_args `{!BiBUpd PROP} p q R P Q : + IntoWand p false R P Q → IntoWand' p q R (|==> P) (|==> Q). +Proof. + rewrite /IntoWand' /IntoWand /= => ->. + apply wand_intro_l. by rewrite intuitionistically_if_elim bupd_wand_r. +Qed. +Global Instance into_wand_fupd_args `{!BiFUpd PROP} E1 E2 p q R P Q : + IntoWand p false R P Q → IntoWand' p q R (|={E1,E2}=> P) (|={E1,E2}=> Q). +Proof. + rewrite /IntoWand' /IntoWand /= => ->. + apply wand_intro_l. by rewrite intuitionistically_if_elim fupd_wand_r. +Qed. + +Global Instance from_sep_bupd `{!BiBUpd PROP} P Q1 Q2 : + FromSep P Q1 Q2 → FromSep (|==> P) (|==> Q1) (|==> Q2). +Proof. rewrite /FromSep=><-. apply bupd_sep. Qed. +Global Instance from_sep_fupd `{!BiFUpd PROP} E P Q1 Q2 : + FromSep P Q1 Q2 → FromSep (|={E}=> P) (|={E}=> Q1) (|={E}=> Q2). +Proof. rewrite /FromSep =><-. apply fupd_sep. Qed. + +Global Instance from_or_bupd `{!BiBUpd PROP} P Q1 Q2 : + FromOr P Q1 Q2 → FromOr (|==> P) (|==> Q1) (|==> Q2). +Proof. + rewrite /FromOr=><-. + apply or_elim; apply bupd_mono; auto using or_intro_l, or_intro_r. +Qed. +Global Instance from_or_fupd `{!BiFUpd PROP} E1 E2 P Q1 Q2 : + FromOr P Q1 Q2 → FromOr (|={E1,E2}=> P) (|={E1,E2}=> Q1) (|={E1,E2}=> Q2). +Proof. + rewrite /FromOr=><-. apply or_elim; apply fupd_mono; + [apply bi.or_intro_l|apply bi.or_intro_r]. +Qed. + +Global Instance from_exist_bupd `{!BiBUpd PROP} {A} P (Φ : A → PROP) : + FromExist P Φ → FromExist (|==> P) (λ a, |==> Φ a)%I. +Proof. + rewrite /FromExist=><-. apply exist_elim=> a. by rewrite -(exist_intro a). +Qed. +Global Instance from_exist_fupd `{!BiFUpd PROP} {A} E1 E2 P (Φ : A → PROP) : + FromExist P Φ → FromExist (|={E1,E2}=> P) (λ a, |={E1,E2}=> Φ a)%I. +Proof. + rewrite /FromExist=><-. apply exist_elim=> a. by rewrite -(exist_intro a). +Qed. + +Global Instance from_forall_fupd + `{!BiFUpd PROP, !BiPlainly PROP, !BiFUpdPlainly PROP} E1 E2 {A} P (Φ : A → PROP) : + (* Some cases in which [E2 ⊆ E1] holds *) + TCOr (TCEq E1 E2) (TCOr (TCEq E1 ⊤) (TCEq E2 ∅)) → + FromForall P Φ → (∀ x, Plain (Φ x)) → + FromForall (|={E1,E2}=> P)%I (λ a, |={E1,E2}=> (Φ a))%I. +Proof. + rewrite /FromForall=> -[->|[->|->]] <- ?; rewrite fupd_plain_forall; set_solver. +Qed. +Global Instance from_forall_step_fupd + `{!BiFUpd PROP, !BiPlainly PROP, !BiFUpdPlainly PROP} E1 E2 {A} P (Φ : A → PROP) : + (* Some cases in which [E2 ⊆ E1] holds *) + TCOr (TCEq E1 E2) (TCOr (TCEq E1 ⊤) (TCEq E2 ∅)) → + FromForall P Φ → (∀ x, Plain (Φ x)) → + FromForall (|={E1,E2}â–·=> P)%I (λ a, |={E1,E2}â–·=> (Φ a))%I. +Proof. + rewrite /FromForall=> -[->|[->|->]] <- ?; rewrite step_fupd_plain_forall; set_solver. +Qed. + +Global Instance is_except_0_bupd `{!BiBUpd PROP} P : IsExcept0 P → IsExcept0 (|==> P). +Proof. + rewrite /IsExcept0=> HP. + by rewrite -{2}HP -(except_0_idemp P) -except_0_bupd -(except_0_intro P). +Qed. +Global Instance is_except_0_fupd `{!BiFUpd PROP} E1 E2 P : + IsExcept0 (|={E1,E2}=> P). +Proof. by rewrite /IsExcept0 except_0_fupd. Qed. + +Global Instance from_modal_bupd `{!BiBUpd PROP} P : + FromModal modality_id (|==> P) (|==> P) P. +Proof. by rewrite /FromModal /= -bupd_intro. Qed. +Global Instance from_modal_fupd E P `{!BiFUpd PROP} : + FromModal modality_id (|={E}=> P) (|={E}=> P) P. +Proof. by rewrite /FromModal /= -fupd_intro. Qed. + +Global Instance elim_modal_bupd `{!BiBUpd PROP} p P Q : + ElimModal True p false (|==> P) P (|==> Q) (|==> Q). +Proof. + by rewrite /ElimModal + intuitionistically_if_elim bupd_frame_r wand_elim_r bupd_trans. +Qed. + +Global Instance elim_modal_bupd_plain_goal + `{!BiBUpd PROP, !BiPlainly PROP, !BiBUpdPlainly PROP} p P Q : + Plain Q → ElimModal True p false (|==> P) P Q Q. +Proof. + intros. by rewrite /ElimModal intuitionistically_if_elim + bupd_frame_r wand_elim_r bupd_plain. +Qed. +Global Instance elim_modal_bupd_plain + `{!BiBUpd PROP, !BiPlainly PROP, !BiBUpdPlainly PROP} p P Q : + Plain P → ElimModal True p p (|==> P) P Q Q. +Proof. intros. by rewrite /ElimModal bupd_plain wand_elim_r. Qed. +Global Instance elim_modal_bupd_fupd + `{!BiBUpd PROP, !BiFUpd PROP, !BiBUpdFUpd PROP} p E1 E2 P Q : + ElimModal True p false (|==> P) P (|={E1,E2}=> Q) (|={E1,E2}=> Q) | 10. +Proof. + by rewrite /ElimModal intuitionistically_if_elim + (bupd_fupd E1) fupd_frame_r wand_elim_r fupd_trans. +Qed. +Global Instance elim_modal_fupd_fupd `{!BiFUpd PROP} p E1 E2 E3 P Q : + ElimModal True p false (|={E1,E2}=> P) P (|={E1,E3}=> Q) (|={E2,E3}=> Q). +Proof. + by rewrite /ElimModal intuitionistically_if_elim + fupd_frame_r wand_elim_r fupd_trans. +Qed. + +Global Instance add_modal_bupd `{!BiBUpd PROP} P Q : AddModal (|==> P) P (|==> Q). +Proof. by rewrite /AddModal bupd_frame_r wand_elim_r bupd_trans. Qed. + +Global Instance add_modal_fupd `{!BiFUpd PROP} E1 E2 P Q : + AddModal (|={E1}=> P) P (|={E1,E2}=> Q). +Proof. by rewrite /AddModal fupd_frame_r wand_elim_r fupd_trans. Qed. + +Global Instance elim_acc_fupd `{!BiFUpd PROP} {X} E1 E2 E α β mγ Q : + ElimAcc (X:=X) (fupd E1 E2) (fupd E2 E1) α β mγ + (|={E1,E}=> Q) + (λ x, |={E2}=> β x ∗ (mγ x -∗? |={E1,E}=> Q))%I. +Proof. + rewrite /ElimAcc. + iIntros "Hinner >Hacc". iDestruct "Hacc" as (x) "[Hα Hclose]". + iMod ("Hinner" with "Hα") as "[Hβ Hfin]". + iMod ("Hclose" with "Hβ") as "Hγ". by iApply "Hfin". +Qed. +End class_instances_updates. diff --git a/theories/proofmode/coq_tactics.v b/theories/proofmode/coq_tactics.v index 5159c0a588fb4c3cc6b1f517bd708063a669345c..cc180547136fb42d0114b3294f8c825e666eeb63 100644 --- a/theories/proofmode/coq_tactics.v +++ b/theories/proofmode/coq_tactics.v @@ -8,7 +8,7 @@ Import env_notations. Local Open Scope lazy_bool_scope. (* Coq versions of the tactics *) -Section bi_tactics. +Section tactics. Context {PROP : bi}. Implicit Types Γ : env PROP. Implicit Types Δ : envs PROP. @@ -791,8 +791,68 @@ Proof. - setoid_rewrite <-(right_id emp%I _ (Pout _)). auto. Qed. -End bi_tactics. +(** * Rewriting *) +Lemma tac_rewrite `{!BiInternalEq PROP} Δ i p Pxy d Q : + envs_lookup i Δ = Some (p, Pxy) → + ∀ {A : ofeT} (x y : A) (Φ : A → PROP), + IntoInternalEq Pxy x y → + (Q ⊣⊢ Φ (if d is Left then y else x)) → + NonExpansive Φ → + envs_entails Δ (Φ (if d is Left then x else y)) → envs_entails Δ Q. +Proof. + intros ? A x y ? HPxy -> ?. rewrite envs_entails_eq. + apply internal_eq_rewrite'; auto. rewrite {1}envs_lookup_sound //. + rewrite (into_internal_eq Pxy x y) intuitionistically_if_elim sep_elim_l. + destruct d; auto using internal_eq_sym. +Qed. +Lemma tac_rewrite_in `{!BiInternalEq PROP} Δ i p Pxy j q P d Q : + envs_lookup i Δ = Some (p, Pxy) → + envs_lookup j Δ = Some (q, P) → + ∀ {A : ofeT} (x y : A) (Φ : A → PROP), + IntoInternalEq Pxy x y → + (P ⊣⊢ Φ (if d is Left then y else x)) → + NonExpansive Φ → + match envs_simple_replace j q (Esnoc Enil j (Φ (if d is Left then x else y))) Δ with + | None => False + | Some Δ' => envs_entails Δ' Q + end → + envs_entails Δ Q. +Proof. + rewrite envs_entails_eq /IntoInternalEq => ?? A x y Φ HPxy HP ? Hentails. + destruct (envs_simple_replace _ _ _ _) as [Δ'|] eqn:?; last done. rewrite -Hentails. + rewrite -(idemp bi_and (of_envs Δ)) {2}(envs_lookup_sound _ i) //. + rewrite (envs_simple_replace_singleton_sound _ _ j) //=. + rewrite HP HPxy (intuitionistically_if_elim _ (_ ≡ _)%I) sep_elim_l. + rewrite persistent_and_affinely_sep_r -assoc. apply wand_elim_r'. + rewrite -persistent_and_affinely_sep_r. apply impl_elim_r'. destruct d. + - apply (internal_eq_rewrite x y (λ y, â–¡?q Φ y -∗ of_envs Δ')%I). solve_proper. + - rewrite internal_eq_sym. + eapply (internal_eq_rewrite y x (λ y, â–¡?q Φ y -∗ of_envs Δ')%I). solve_proper. +Qed. + +(** * Löb *) +Lemma tac_löb Δ i Q : + BiLöb PROP → + env_spatial_is_nil Δ = true → + match envs_app true (Esnoc Enil i (â–· Q)%I) Δ with + | None => False + | Some Δ' => envs_entails Δ' Q + end → + envs_entails Δ Q. +Proof. + destruct (envs_app _ _ _) eqn:?; last done. + rewrite envs_entails_eq => ?? HQ. + rewrite (env_spatial_is_nil_intuitionistically Δ) //. + rewrite -(persistently_and_emp_elim Q). apply and_intro; first apply: affine. + rewrite -(löb (<pers> Q)%I) later_persistently. apply impl_intro_l. + rewrite envs_app_singleton_sound //; simpl; rewrite HQ. + rewrite persistently_and_intuitionistically_sep_l -{1}intuitionistically_idemp. + rewrite intuitionistically_sep_2 wand_elim_r intuitionistically_into_persistently_1 //. +Qed. +End tactics. + +(** * Introduction of modalities *) (** The following _private_ classes are used internally by [tac_modal_intro] / [iModIntro] to transform the proofmode environments when introducing a modality. @@ -1015,56 +1075,9 @@ Section tac_modal_intro. Qed. End tac_modal_intro. -Section sbi_tactics. -Context {PROP : bi}. -Implicit Types Γ : env PROP. -Implicit Types Δ : envs PROP. -Implicit Types P Q : PROP. - -(** * Rewriting *) -Lemma tac_rewrite `{!BiInternalEq PROP} Δ i p Pxy d Q : - envs_lookup i Δ = Some (p, Pxy) → - ∀ {A : ofeT} (x y : A) (Φ : A → PROP), - IntoInternalEq Pxy x y → - (Q ⊣⊢ Φ (if d is Left then y else x)) → - NonExpansive Φ → - envs_entails Δ (Φ (if d is Left then x else y)) → envs_entails Δ Q. -Proof. - intros ? A x y ? HPxy -> ?. rewrite envs_entails_eq. - apply internal_eq_rewrite'; auto. rewrite {1}envs_lookup_sound //. - rewrite (into_internal_eq Pxy x y) intuitionistically_if_elim sep_elim_l. - destruct d; auto using internal_eq_sym. -Qed. - -Lemma tac_rewrite_in `{!BiInternalEq PROP} Δ i p Pxy j q P d Q : - envs_lookup i Δ = Some (p, Pxy) → - envs_lookup j Δ = Some (q, P) → - ∀ {A : ofeT} (x y : A) (Φ : A → PROP), - IntoInternalEq Pxy x y → - (P ⊣⊢ Φ (if d is Left then y else x)) → - NonExpansive Φ → - match envs_simple_replace j q (Esnoc Enil j (Φ (if d is Left then x else y))) Δ with - | None => False - | Some Δ' => envs_entails Δ' Q - end → - envs_entails Δ Q. -Proof. - rewrite envs_entails_eq /IntoInternalEq => ?? A x y Φ HPxy HP ? Hentails. - destruct (envs_simple_replace _ _ _ _) as [Δ'|] eqn:?; last done. rewrite -Hentails. - rewrite -(idemp bi_and (of_envs Δ)) {2}(envs_lookup_sound _ i) //. - rewrite (envs_simple_replace_singleton_sound _ _ j) //=. - rewrite HP HPxy (intuitionistically_if_elim _ (_ ≡ _)%I) sep_elim_l. - rewrite persistent_and_affinely_sep_r -assoc. apply wand_elim_r'. - rewrite -persistent_and_affinely_sep_r. apply impl_elim_r'. destruct d. - - apply (internal_eq_rewrite x y (λ y, â–¡?q Φ y -∗ of_envs Δ')%I). solve_proper. - - rewrite internal_eq_sym. - eapply (internal_eq_rewrite y x (λ y, â–¡?q Φ y -∗ of_envs Δ')%I). solve_proper. -Qed. - -(** * Later *) (** The class [MaybeIntoLaterNEnvs] is used by tactics that need to introduce -laters, e.g. the symbolic execution tactics. *) -Class MaybeIntoLaterNEnvs (n : nat) (Δ1 Δ2 : envs PROP) := { +laters, e.g., the symbolic execution tactics. *) +Class MaybeIntoLaterNEnvs {PROP : bi} (n : nat) (Δ1 Δ2 : envs PROP) := { into_later_intuitionistic : TransformIntuitionisticEnv (modality_laterN n) (MaybeIntoLaterN false n) (env_intuitionistic Δ1) (env_intuitionistic Δ2); @@ -1073,13 +1086,13 @@ Class MaybeIntoLaterNEnvs (n : nat) (Δ1 Δ2 : envs PROP) := { (MaybeIntoLaterN false n) (env_spatial Δ1) (env_spatial Δ2) false }. -Global Instance into_laterN_envs n Γp1 Γp2 Γs1 Γs2 m : +Global Instance into_laterN_envs {PROP : bi} n (Γp1 Γp2 Γs1 Γs2 : env PROP) m : TransformIntuitionisticEnv (modality_laterN n) (MaybeIntoLaterN false n) Γp1 Γp2 → TransformSpatialEnv (modality_laterN n) (MaybeIntoLaterN false n) Γs1 Γs2 false → MaybeIntoLaterNEnvs n (Envs Γp1 Γs1 m) (Envs Γp2 Γs2 m). Proof. by split. Qed. -Lemma into_laterN_env_sound n Δ1 Δ2 : +Lemma into_laterN_env_sound {PROP : bi} n (Δ1 Δ2 : envs PROP) : MaybeIntoLaterNEnvs n Δ1 Δ2 → of_envs Δ1 ⊢ â–·^n (of_envs Δ2). Proof. intros [[Hp ??] [Hs ??]]; rewrite !of_envs_eq /= !laterN_and !laterN_sep. @@ -1090,23 +1103,3 @@ Proof. + intros P Q. by rewrite laterN_and. - by rewrite Hs //= right_id. Qed. - -Lemma tac_löb Δ i Q : - BiLöb PROP → - env_spatial_is_nil Δ = true → - match envs_app true (Esnoc Enil i (â–· Q)%I) Δ with - | None => False - | Some Δ' => envs_entails Δ' Q - end → - envs_entails Δ Q. -Proof. - destruct (envs_app _ _ _) eqn:?; last done. - rewrite envs_entails_eq => ?? HQ. - rewrite (env_spatial_is_nil_intuitionistically Δ) //. - rewrite -(persistently_and_emp_elim Q). apply and_intro; first apply: affine. - rewrite -(löb (<pers> Q)%I) later_persistently. apply impl_intro_l. - rewrite envs_app_singleton_sound //; simpl; rewrite HQ. - rewrite persistently_and_intuitionistically_sep_l -{1}intuitionistically_idemp. - rewrite intuitionistically_sep_2 wand_elim_r intuitionistically_into_persistently_1 //. -Qed. -End sbi_tactics. diff --git a/theories/proofmode/tactics.v b/theories/proofmode/tactics.v index 22ece1b62360aa2cc02b921d35300e691ef53bdf..636885cb87bda5d3e9d7a1044becdd6924e41037 100644 --- a/theories/proofmode/tactics.v +++ b/theories/proofmode/tactics.v @@ -1,4 +1,7 @@ From iris.proofmode Require Export ltac_tactics. (* This [Require Import] is not a no-op: it exports typeclass instances from these files. *) -From iris.proofmode Require Import class_instances_bi class_instances_sbi frame_instances modality_instances. +From iris.proofmode Require Import class_instances class_instances_later + class_instances_updates class_instances_embedding + class_instances_plainly class_instances_internal_eq. +From iris.proofmode Require Import frame_instances modality_instances.