diff --git a/_CoqProject b/_CoqProject index da21ad5aff00407dcdd3c4d7f10257b7913b9cf0..6b739e43e9ec0775d9a4c3f88fe145a3a4c1fc84 100644 --- a/_CoqProject +++ b/_CoqProject @@ -36,6 +36,7 @@ theories/bi/fractional.v theories/bi/counter_examples.v theories/bi/fixpoint.v theories/bi/monpred.v +theories/bi/embedding.v theories/base_logic/upred.v theories/base_logic/derived.v theories/base_logic/base_logic.v @@ -91,10 +92,12 @@ theories/proofmode/tactics.v theories/proofmode/notation.v theories/proofmode/classes.v theories/proofmode/class_instances.v +theories/proofmode/monpred.v theories/tests/heap_lang.v theories/tests/one_shot.v theories/tests/proofmode.v theories/tests/proofmode_iris.v +theories/tests/proofmode_monpred.v theories/tests/list_reverse.v theories/tests/tree_sum.v theories/tests/ipm_paper.v diff --git a/theories/bi/bi.v b/theories/bi/bi.v index c0846ea376d94809ddf816012f093cf3b804fcba..4cef163c554776a75c9fd03b053716d240e90d0d 100644 --- a/theories/bi/bi.v +++ b/theories/bi/bi.v @@ -1,4 +1,4 @@ -From iris.bi Require Export derived_laws big_op updates. +From iris.bi Require Export derived_laws big_op updates embedding. Set Default Proof Using "Type". Module Import bi. diff --git a/theories/bi/embedding.v b/theories/bi/embedding.v new file mode 100644 index 0000000000000000000000000000000000000000..b42903ad94f6cfe31210790edbf689d190982382 --- /dev/null +++ b/theories/bi/embedding.v @@ -0,0 +1,161 @@ +From iris.algebra Require Import monoid. +From iris.bi Require Import interface derived_laws. +From stdpp Require Import hlist. + +(* Embeddings are often used to *define* the connectives of the + domain BI. Hence we cannot ask it to verify the properties of + embeddings. *) +Class BiEmbed (A B : Type) := bi_embed : A → B. +Arguments bi_embed {_ _ _} _%I : simpl never. +Notation "⎡ P ⎤" := (bi_embed P) : bi_scope. +Instance: Params (@bi_embed) 3. +Typeclasses Opaque bi_embed. + +Hint Mode BiEmbed ! - : typeclass_instances. +Hint Mode BiEmbed - ! : typeclass_instances. + +Class BiEmbedding (PROP1 PROP2 : bi) `{BiEmbed PROP1 PROP2} := { + bi_embed_ne :> NonExpansive bi_embed; + bi_embed_mono :> Proper ((⊢) ==> (⊢)) bi_embed; + bi_embed_entails_inj :> Inj (⊢) (⊢) bi_embed; + bi_embed_emp : ⎡emp⎤ ⊣⊢ emp; + bi_embed_impl_2 P Q : (⎡P⎤ → ⎡Q⎤) ⊢ ⎡P → Q⎤; + bi_embed_forall_2 A (Φ : A → PROP1) : (∀ x, ⎡Φ x⎤) ⊢ ⎡∀ x, Φ x⎤; + bi_embed_exist_1 A (Φ : A → PROP1) : ⎡∃ x, Φ x⎤ ⊢ ∃ x, ⎡Φ x⎤; + bi_embed_internal_eq_1 (A : ofeT) (x y : A) : ⎡x ≡ y⎤ ⊢ x ≡ y; + bi_embed_sep P Q : ⎡P ∗ Q⎤ ⊣⊢ ⎡P⎤ ∗ ⎡Q⎤; + bi_embed_wand_2 P Q : (⎡P⎤ -∗ ⎡Q⎤) ⊢ ⎡P -∗ Q⎤; + bi_embed_plainly P : ⎡bi_plainly P⎤ ⊣⊢ bi_plainly ⎡P⎤; + bi_embed_persistently P : ⎡bi_persistently P⎤ ⊣⊢ bi_persistently ⎡P⎤ +}. + +Class SbiEmbedding (PROP1 PROP2 : sbi) `{BiEmbed PROP1 PROP2} := { + sbi_embed_bi_embed :> BiEmbedding PROP1 PROP2; + sbi_embed_later P : ⎡▷ P⎤ ⊣⊢ â–· ⎡P⎤ +}. + +Section bi_embedding. + Context `{BiEmbedding PROP1 PROP2}. + Local Notation bi_embed := (bi_embed (A:=PROP1) (B:=PROP2)). + Local Notation "⎡ P ⎤" := (bi_embed P) : bi_scope. + Implicit Types P Q R : PROP1. + + Global Instance bi_embed_proper : Proper ((≡) ==> (≡)) bi_embed. + Proof. apply (ne_proper _). Qed. + Global Instance bi_embed_mono_flip : Proper (flip (⊢) ==> flip (⊢)) bi_embed. + Proof. solve_proper. Qed. + Global Instance bi_embed_inj : Inj (≡) (≡) bi_embed. + Proof. + intros P Q EQ. apply bi.equiv_spec, conj; apply (inj bi_embed); + rewrite EQ //. + Qed. + + Lemma bi_embed_valid (P : PROP1) : ⎡P⎤%I ↔ P. + Proof. + by rewrite /bi_valid -bi_embed_emp; split=>?; [apply (inj bi_embed)|f_equiv]. + Qed. + + Lemma bi_embed_forall A (Φ : A → PROP1) : ⎡∀ x, Φ x⎤ ⊣⊢ ∀ x, ⎡Φ x⎤. + Proof. + apply bi.equiv_spec; split; [|apply bi_embed_forall_2]. + apply bi.forall_intro=>?. by rewrite bi.forall_elim. + Qed. + Lemma bi_embed_exist A (Φ : A → PROP1) : ⎡∃ x, Φ x⎤ ⊣⊢ ∃ x, ⎡Φ x⎤. + Proof. + apply bi.equiv_spec; split; [apply bi_embed_exist_1|]. + apply bi.exist_elim=>?. by rewrite -bi.exist_intro. + Qed. + Lemma bi_embed_and P Q : ⎡P ∧ Q⎤ ⊣⊢ ⎡P⎤ ∧ ⎡Q⎤. + Proof. rewrite !bi.and_alt bi_embed_forall. by f_equiv=>-[]. Qed. + Lemma bi_embed_or P Q : ⎡P ∨ Q⎤ ⊣⊢ ⎡P⎤ ∨ ⎡Q⎤. + Proof. rewrite !bi.or_alt bi_embed_exist. by f_equiv=>-[]. Qed. + Lemma bi_embed_impl P Q : ⎡P → Q⎤ ⊣⊢ (⎡P⎤ → ⎡Q⎤). + Proof. + apply bi.equiv_spec; split; [|apply bi_embed_impl_2]. + apply bi.impl_intro_l. by rewrite -bi_embed_and bi.impl_elim_r. + Qed. + Lemma bi_embed_wand P Q : ⎡P -∗ Q⎤ ⊣⊢ (⎡P⎤ -∗ ⎡Q⎤). + Proof. + apply bi.equiv_spec; split; [|apply bi_embed_wand_2]. + apply bi.wand_intro_l. by rewrite -bi_embed_sep bi.wand_elim_r. + Qed. + Lemma bi_embed_pure φ : ⎡⌜φâŒâŽ¤ ⊣⊢ ⌜φâŒ. + Proof. + rewrite (@bi.pure_alt PROP1) (@bi.pure_alt PROP2) bi_embed_exist. + do 2 f_equiv. apply bi.equiv_spec. split; [apply bi.True_intro|]. + rewrite -(_ : (emp → emp : PROP1) ⊢ True) ?bi_embed_impl; + last apply bi.True_intro. + apply bi.impl_intro_l. by rewrite right_id. + Qed. + Lemma bi_embed_internal_eq (A : ofeT) (x y : A) : ⎡x ≡ y⎤ ⊣⊢ x ≡ y. + Proof. + apply bi.equiv_spec; split; [apply bi_embed_internal_eq_1|]. + etrans; [apply (bi.internal_eq_rewrite x y (λ y, ⎡x ≡ y⎤%I)); solve_proper|]. + rewrite -(bi.internal_eq_refl True%I) bi_embed_pure. + eapply bi.impl_elim; [done|]. apply bi.True_intro. + Qed. + Lemma bi_embed_iff P Q : ⎡P ↔ Q⎤ ⊣⊢ (⎡P⎤ ↔ ⎡Q⎤). + Proof. by rewrite bi_embed_and !bi_embed_impl. Qed. + Lemma bi_embed_wand_iff P Q : ⎡P ∗-∗ Q⎤ ⊣⊢ (⎡P⎤ ∗-∗ ⎡Q⎤). + Proof. by rewrite bi_embed_and !bi_embed_wand. Qed. + Lemma bi_embed_affinely P : ⎡bi_affinely P⎤ ⊣⊢ bi_affinely ⎡P⎤. + Proof. by rewrite bi_embed_and bi_embed_emp. Qed. + Lemma bi_embed_absorbingly P : ⎡bi_absorbingly P⎤ ⊣⊢ bi_absorbingly ⎡P⎤. + Proof. by rewrite bi_embed_sep bi_embed_pure. Qed. + Lemma bi_embed_plainly_if P b : ⎡bi_plainly_if b P⎤ ⊣⊢ bi_plainly_if b ⎡P⎤. + Proof. destruct b; simpl; auto using bi_embed_plainly. Qed. + Lemma bi_embed_persistently_if P b : + ⎡bi_persistently_if b P⎤ ⊣⊢ bi_persistently_if b ⎡P⎤. + Proof. destruct b; simpl; auto using bi_embed_persistently. Qed. + Lemma bi_embed_affinely_if P b : ⎡bi_affinely_if b P⎤ ⊣⊢ bi_affinely_if b ⎡P⎤. + Proof. destruct b; simpl; auto using bi_embed_affinely. Qed. + Lemma bi_embed_hforall {As} (Φ : himpl As PROP1): + ⎡bi_hforall Φ⎤ ⊣⊢ bi_hforall (hcompose bi_embed Φ). + Proof. induction As=>//. rewrite /= bi_embed_forall. by do 2 f_equiv. Qed. + Lemma bi_embed_hexist {As} (Φ : himpl As PROP1): + ⎡bi_hexist Φ⎤ ⊣⊢ bi_hexist (hcompose bi_embed Φ). + Proof. induction As=>//. rewrite /= bi_embed_exist. by do 2 f_equiv. Qed. + + Global Instance bi_embed_plain P : Plain P → Plain ⎡P⎤. + Proof. intros ?. by rewrite /Plain -bi_embed_plainly -plain. Qed. + Global Instance bi_embed_persistent P : Persistent P → Persistent ⎡P⎤. + Proof. intros ?. by rewrite /Persistent -bi_embed_persistently -persistent. Qed. + Global Instance bi_embed_affine P : Affine P → Affine ⎡P⎤. + Proof. intros ?. by rewrite /Affine (affine P) bi_embed_emp. Qed. + Global Instance bi_embed_absorbing P : Absorbing P → Absorbing ⎡P⎤. + Proof. intros ?. by rewrite /Absorbing -bi_embed_absorbingly absorbing. Qed. + + Global Instance bi_embed_and_homomorphism : + MonoidHomomorphism bi_and bi_and (≡) bi_embed. + Proof. + by split; [split|]; try apply _; + [setoid_rewrite bi_embed_and|rewrite bi_embed_pure]. + Qed. + Global Instance bi_embed_or_homomorphism : + MonoidHomomorphism bi_or bi_or (≡) bi_embed. + Proof. + by split; [split|]; try apply _; + [setoid_rewrite bi_embed_or|rewrite bi_embed_pure]. + Qed. + Global Instance bi_embed_sep_homomorphism : + MonoidHomomorphism bi_sep bi_sep (≡) bi_embed. + Proof. + by split; [split|]; try apply _; + [setoid_rewrite bi_embed_sep|rewrite bi_embed_emp]. + Qed. +End bi_embedding. + +Section sbi_embedding. + Context `{SbiEmbedding PROP1 PROP2}. + Implicit Types P Q R : PROP1. + + Lemma sbi_embed_laterN n P : ⎡▷^n P⎤ ⊣⊢ â–·^n ⎡P⎤. + Proof. induction n=>//=. rewrite sbi_embed_later. by f_equiv. Qed. + Lemma sbi_embed_except_0 P : ⎡◇ P⎤ ⊣⊢ â—‡ ⎡P⎤. + Proof. by rewrite bi_embed_or sbi_embed_later bi_embed_pure. Qed. + + Global Instance sbi_embed_timeless P : Timeless P → Timeless ⎡P⎤. + Proof. + intros ?. by rewrite /Timeless -sbi_embed_except_0 -sbi_embed_later timeless. + Qed. +End sbi_embedding. diff --git a/theories/bi/interface.v b/theories/bi/interface.v index 0105c21ebb5ef47633b435083e1d0f91e8801867..2add9f305138526a0f9517873b90a5cfc49973c9 100644 --- a/theories/bi/interface.v +++ b/theories/bi/interface.v @@ -329,14 +329,6 @@ Coercion sbi_valid {PROP : sbi} : PROP → Prop := bi_valid. Arguments bi_valid {_} _%I : simpl never. Typeclasses Opaque bi_valid. -(* Typically, embeddings are used to *define* the destination BI. - Hence we cannot ask B to be a BI. *) -Class BiEmbedding (A B : Type) := bi_embedding : A → B. -Arguments bi_embedding {_ _ _} _%I : simpl never. -Notation "⎡ P ⎤" := (bi_embedding P) : bi_scope. -Instance: Params (@bi_embedding) 3. -Typeclasses Opaque bi_embedding. - Module bi. Section bi_laws. Context {PROP : bi}. diff --git a/theories/bi/monpred.v b/theories/bi/monpred.v index b98c092bbf4e8e2aa7dc1d0f163852fd4c934ee3..0a355aa93aaec0d31c2b66862bd9e49e01041873 100644 --- a/theories/bi/monpred.v +++ b/theories/bi/monpred.v @@ -1,4 +1,4 @@ -From iris.bi Require Import derived_laws. +From iris.bi Require Import bi. (** Definitions. *) @@ -97,6 +97,7 @@ Proof. repeat intro. apply equiv_dist=>?. f_equiv=>//. by apply equiv_dist. Qed. End Ofe_Cofe. Arguments monPred _ _ : clear implicits. +Arguments monPred_car {_ _} _%I _. Local Existing Instance monPred_mono. Arguments monPredC _ _ : clear implicits. @@ -116,10 +117,10 @@ Program Definition monPred_upclosed (Φ : I → PROP) : monPred := MonPred (λ i, (∀ j, ⌜i ⊑ j⌠→ Φ j)%I) _. Next Obligation. solve_proper. Qed. -Definition monPred_ipure_def (P : PROP) : monPred := MonPred (λ _, P) _. -Definition monPred_ipure_aux : seal (@monPred_ipure_def). by eexists. Qed. -Global Instance monPred_ipure : BiEmbedding PROP monPred := unseal monPred_ipure_aux. -Definition monPred_ipure_eq : bi_embedding = _ := seal_eq _. +Definition monPred_embed_def (P : PROP) : monPred := MonPred (λ _, P) _. +Definition monPred_embed_aux : seal (@monPred_embed_def). by eexists. Qed. +Global Instance monPred_embed : BiEmbed PROP monPred := unseal monPred_embed_aux. +Definition monPred_embed_eq : bi_embed (A:=PROP) = _ := seal_eq _. Definition monPred_pure (φ : Prop) : monPred := ⎡⌜φâŒâŽ¤%I. Definition monPred_emp : monPred := ⎡emp⎤%I. @@ -215,7 +216,7 @@ Definition unseal_eqs := @monPred_forall_eq, @monPred_exist_eq, @monPred_internal_eq_eq, @monPred_sep_eq, @monPred_wand_eq, @monPred_persistently_eq, @monPred_later_eq, - @monPred_in_eq, @monPred_all_eq, @monPred_ipure_eq). + @monPred_in_eq, @monPred_all_eq, @monPred_embed_eq). Ltac unseal := unfold bi_affinely, bi_absorbingly, sbi_except_0, bi_pure, bi_emp, monPred_upclosed, bi_and, bi_or, bi_impl, bi_forall, bi_exist, @@ -372,19 +373,6 @@ Global Instance monPred_car_mono_flip : Proper (flip (⊢) ==> flip (⊑) ==> flip (⊢)) (@monPred_car I PROP). Proof. solve_proper. Qed. -Global Instance monPred_ipure_ne : - NonExpansive (@bi_embedding PROP (monPred I PROP) _). -Proof. unseal. by split. Qed. -Global Instance monPred_ipure_proper : - Proper ((≡) ==> (≡)) (@bi_embedding PROP (monPred I PROP) _). -Proof. apply (ne_proper _). Qed. -Global Instance monPred_ipure_mono : - Proper ((⊢) ==> (⊢)) (@bi_embedding PROP (monPred I PROP) _). -Proof. unseal. by split. Qed. -Global Instance monPred_ipure_mono_flip : - Proper (flip (⊢) ==> flip (⊢)) (@bi_embedding PROP (monPred I PROP) _). -Proof. solve_proper. Qed. - Global Instance monPred_in_proper (R : relation I) : Proper (R ==> R ==> iff) (⊑) → Reflexive R → Proper (R ==> (≡)) (@monPred_in I PROP). @@ -426,6 +414,10 @@ Proof. unseal. rewrite bi.forall_elim bi.pure_impl_forall bi.forall_elim //. Qed Lemma monPred_impl_force P Q i : (P → Q) i -∗ (P i → Q i). Proof. unseal. rewrite bi.forall_elim bi.pure_impl_forall bi.forall_elim //. Qed. +Lemma monPred_car_embed (P : PROP) (i : I) : + (bi_embed (B := monPred _ _) P) i ⊣⊢ P. +Proof. by unseal. Qed. + Lemma monPred_persistently_if_eq p P i: (bi_persistently_if p P) i = bi_persistently_if p (P i). Proof. rewrite /bi_persistently_if. unseal. by destruct p. Qed. @@ -443,19 +435,6 @@ Proof. move => [] /(_ i). unfold Absorbing. by unseal. Qed. Global Instance monPred_car_affine P i : Affine P → Affine (P i). Proof. move => [] /(_ i). unfold Affine. by unseal. Qed. -Global Instance monPred_ipure_plain (P : PROP) : - Plain P → @Plain (monPredI I PROP) ⎡P⎤%I. -Proof. split => ? /=. unseal. apply bi.forall_intro=>?. apply (plain _). Qed. -Global Instance monPred_ipure_persistent (P : PROP) : - Persistent P → @Persistent (monPredI I PROP) ⎡P⎤%I. -Proof. split => ? /=. unseal. exact: H. Qed. -Global Instance monPred_ipure_absorbing (P : PROP) : - Absorbing P → @Absorbing (monPredI I PROP) ⎡P⎤%I. -Proof. unfold Absorbing. split => ? /=. by unseal. Qed. -Global Instance monPred_ipure_affine (P : PROP) : - Affine P → @Affine (monPredI I PROP) ⎡P⎤%I. -Proof. unfold Affine. split => ? /=. by unseal. Qed. - (* Note that monPred_in is *not* Plain, because it does depend on the index. *) Global Instance monPred_in_persistent V : @@ -489,6 +468,18 @@ Proof. move=> []. unfold Affine. unseal=>Hp. split => ?. by apply affine, bi.forall_affine. Qed. + +Global Instance monPred_bi_embedding : BiEmbedding PROP (monPredI I PROP). +Proof. + split; try apply _; unseal; try done. + - move =>?? /= [/(_ inhabitant) ?] //. + - split=>? /=. + by rewrite bi.forall_elim bi.pure_impl_forall bi.forall_elim. + - split=>? /=. + by rewrite bi.forall_elim bi.pure_impl_forall bi.forall_elim. + - intros ?. split => ? /=. apply bi.equiv_spec; split. + by apply bi.forall_intro. by rewrite bi.forall_elim. +Qed. End bi_facts. Section sbi_facts. @@ -498,7 +489,7 @@ Implicit Types P Q : monPred I PROP. Global Instance monPred_car_timeless P i : Timeless P → Timeless (P i). Proof. move => [] /(_ i). unfold Timeless. by unseal. Qed. -Global Instance monPred_ipure_timeless (P : PROP) : +Global Instance monPred_embed_timeless (P : PROP) : Timeless P → @Timeless (monPredSI I PROP) ⎡P⎤%I. Proof. intros. split => ? /=. by unseal. Qed. Global Instance monPred_in_timeless i0 : Timeless (@monPred_in I PROP i0). @@ -509,4 +500,7 @@ Proof. move=>[]. unfold Timeless. unseal=>Hti. split=> ? /=. by apply timeless, bi.forall_timeless. Qed. + +Global Instance monPred_sbi_embedding : SbiEmbedding PROP (monPredSI I PROP). +Proof. split; try apply _. by unseal. Qed. End sbi_facts. diff --git a/theories/proofmode/class_instances.v b/theories/proofmode/class_instances.v index a75fe20cf9e1df233f8ff3639e91310a768845d9..d9e42bee2135f0eda69d694df9f6ed97db37fee6 100644 --- a/theories/proofmode/class_instances.v +++ b/theories/proofmode/class_instances.v @@ -115,6 +115,9 @@ Proof. rewrite /IntoPure=> ->. apply: plainly_elim. Qed. Global Instance into_pure_persistently P φ : IntoPure P φ → IntoPure (bi_persistently P) φ. Proof. rewrite /IntoPure=> ->. apply: persistently_elim. Qed. +Global Instance into_pure_embed `{BiEmbedding PROP PROP'} P φ : + IntoPure P φ → IntoPure ⎡P⎤ φ. +Proof. rewrite /IntoPure=> ->. by rewrite bi_embed_pure. Qed. (* FromPure *) Global Instance from_pure_pure φ : @FromPure PROP ⌜φ⌠φ. @@ -161,6 +164,9 @@ Global Instance from_pure_affinely P φ `{!Affine P} : Proof. by rewrite /FromPure affine_affinely. Qed. Global Instance from_pure_absorbingly P φ : FromPure P φ → FromPure (bi_absorbingly P) φ. Proof. rewrite /FromPure=> <-. by rewrite absorbingly_pure. Qed. +Global Instance from_pure_embed `{BiEmbedding PROP PROP'} P φ : + FromPure P φ → FromPure ⎡P⎤ φ. +Proof. rewrite /FromPure=> <-. by rewrite bi_embed_pure. Qed. (* IntoInternalEq *) Global Instance into_internal_eq_internal_eq {A : ofeT} (x y : A) : @@ -178,6 +184,10 @@ Proof. rewrite /IntoInternalEq=> ->. by rewrite plainly_elim. Qed. Global Instance into_internal_eq_persistently {A : ofeT} (x y : A) P : IntoInternalEq P x y → IntoInternalEq (bi_persistently P) x y. Proof. rewrite /IntoInternalEq=> ->. by rewrite persistently_elim. Qed. +Global Instance into_internal_eq_embed + `{BiEmbedding PROP PROP'} {A : ofeT} (x y : A) P : + IntoInternalEq P x y → IntoInternalEq ⎡P⎤ x y. +Proof. rewrite /IntoInternalEq=> ->. by rewrite bi_embed_internal_eq. Qed. (* IntoPersistent *) Global Instance into_persistent_persistently p P Q : @@ -189,6 +199,11 @@ Qed. Global Instance into_persistent_affinely p P Q : IntoPersistent p P Q → IntoPersistent p (bi_affinely P) Q | 0. Proof. rewrite /IntoPersistent /= => <-. by rewrite affinely_elim. Qed. +Global Instance into_persistent_embed `{BiEmbedding PROP PROP'} p P Q : + IntoPersistent p P Q → IntoPersistent p ⎡P⎤ ⎡Q⎤ | 0. +Proof. + rewrite /IntoPersistent -bi_embed_persistently -bi_embed_persistently_if=> -> //. +Qed. Global Instance into_persistent_here P : IntoPersistent true P P | 1. Proof. by rewrite /IntoPersistent. Qed. Global Instance into_persistent_persistent P : @@ -216,6 +231,12 @@ Global Instance from_always_affinely a pe pl P Q : Proof. rewrite /FromAlways /= => <-. destruct a; by rewrite /= ?affinely_idemp. Qed. +Global Instance from_always_embed `{BiEmbedding PROP PROP'} a pe pl P Q : + FromAlways a pe pl P Q → FromAlways a pe pl ⎡P⎤ ⎡Q⎤ | 0. +Proof. + rewrite /FromAlways=><-. + by rewrite bi_embed_affinely_if bi_embed_persistently_if bi_embed_plainly_if. +Qed. (* IntoWand *) Global Instance into_wand_wand p q P Q P' : @@ -302,6 +323,12 @@ Proof. by rewrite /IntoWand /= persistently_idemp. Qed. Global Instance into_wand_persistently_false `{!BiAffine PROP} q R P Q : IntoWand false q R P Q → IntoWand false q (bi_persistently R) P Q. Proof. by rewrite /IntoWand persistently_elim. Qed. +Global Instance into_wand_embed `{BiEmbedding PROP PROP'} p q R P Q : + IntoWand p q R P Q → IntoWand p q ⎡R⎤ ⎡P⎤ ⎡Q⎤. +Proof. + rewrite /IntoWand -!bi_embed_persistently_if -!bi_embed_affinely_if + -bi_embed_wand => -> //. +Qed. (* FromAnd *) Global Instance from_and_and P1 P2 : FromAnd (P1 ∧ P2) P1 P2 | 100. @@ -343,6 +370,10 @@ Global Instance from_and_persistently_sep P Q1 Q2 : FromAnd (bi_persistently P) (bi_persistently Q1) (bi_persistently Q2) | 11. Proof. rewrite /FromAnd=> <-. by rewrite -persistently_and persistently_and_sep. Qed. +Global Instance from_and_embed `{BiEmbedding PROP PROP'} P Q1 Q2 : + FromAnd P Q1 Q2 → FromAnd ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. +Proof. by rewrite /FromAnd -bi_embed_and => <-. Qed. + Global Instance from_and_big_sepL_cons_persistent {A} (Φ : nat → A → PROP) x l : Persistent (Φ 0 x) → FromAnd ([∗ list] k ↦ y ∈ x :: l, Φ k y) (Φ 0 x) ([∗ list] k ↦ y ∈ l, Φ (S k) y). @@ -379,6 +410,10 @@ Global Instance from_sep_persistently P Q1 Q2 : FromSep (bi_persistently P) (bi_persistently Q1) (bi_persistently Q2). Proof. rewrite /FromSep=> <-. by rewrite persistently_sep_2. Qed. +Global Instance from_sep_embed `{BiEmbedding PROP PROP'} P Q1 Q2 : + FromSep P Q1 Q2 → FromSep ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. +Proof. by rewrite /FromSep -bi_embed_sep => <-. Qed. + Global Instance from_sep_big_sepL_cons {A} (Φ : nat → A → PROP) x l : FromSep ([∗ list] k ↦ y ∈ x :: l, Φ k y) (Φ 0 x) ([∗ list] k ↦ y ∈ l, Φ (S k) y). Proof. by rewrite /FromSep big_sepL_cons. Qed. @@ -436,6 +471,12 @@ Proof. - by rewrite -persistently_and !persistently_idemp. - intros ->. by rewrite persistently_and. Qed. +Global Instance into_and_embed `{BiEmbedding PROP PROP'} p P Q1 Q2 : + IntoAnd p P Q1 Q2 → IntoAnd p ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. +Proof. + rewrite /IntoAnd -bi_embed_and -!bi_embed_persistently_if + -!bi_embed_affinely_if=> -> //. +Qed. (* IntoSep *) Global Instance into_sep_sep P Q : IntoSep (P ∗ Q) P Q. @@ -469,6 +510,10 @@ Qed. Global Instance into_sep_pure φ ψ : @IntoSep PROP ⌜φ ∧ ψ⌠⌜φ⌠⌜ψâŒ. Proof. by rewrite /IntoSep pure_and persistent_and_sep_1. Qed. +Global Instance into_sep_embed `{BiEmbedding PROP PROP'} P Q1 Q2 : + IntoSep P Q1 Q2 → IntoSep ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. +Proof. rewrite /IntoSep -bi_embed_sep=> -> //. Qed. + (* FIXME: This instance is kind of strange, it just gets rid of the bi_affinely. Also, it overlaps with `into_sep_affinely_later`, and hence has lower precedence. *) Global Instance into_sep_affinely P Q1 Q2 : @@ -515,6 +560,9 @@ Global Instance from_or_persistently P Q1 Q2 : FromOr P Q1 Q2 → FromOr (bi_persistently P) (bi_persistently Q1) (bi_persistently Q2). Proof. rewrite /FromOr=> <-. by rewrite persistently_or. Qed. +Global Instance from_or_embed `{BiEmbedding PROP PROP'} P Q1 Q2 : + FromOr P Q1 Q2 → FromOr ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. +Proof. by rewrite /FromOr -bi_embed_or => <-. Qed. (* IntoOr *) Global Instance into_or_or P Q : IntoOr (P ∨ Q) P Q. @@ -534,6 +582,9 @@ Global Instance into_or_persistently P Q1 Q2 : IntoOr P Q1 Q2 → IntoOr (bi_persistently P) (bi_persistently Q1) (bi_persistently Q2). Proof. rewrite /IntoOr=>->. by rewrite persistently_or. Qed. +Global Instance into_or_embed `{BiEmbedding PROP PROP'} P Q1 Q2 : + IntoOr P Q1 Q2 → IntoOr ⎡P⎤ ⎡Q1⎤ ⎡Q2⎤. +Proof. by rewrite /IntoOr -bi_embed_or => <-. Qed. (* FromExist *) Global Instance from_exist_exist {A} (Φ : A → PROP): FromExist (∃ a, Φ a) Φ. @@ -553,6 +604,9 @@ Proof. rewrite /FromExist=> <-. by rewrite -plainly_exist_2. Qed. Global Instance from_exist_persistently {A} P (Φ : A → PROP) : FromExist P Φ → FromExist (bi_persistently P) (λ a, bi_persistently (Φ a))%I. Proof. rewrite /FromExist=> <-. by rewrite persistently_exist. Qed. +Global Instance from_exist_embed `{BiEmbedding PROP PROP'} {A} P (Φ : A → PROP) : + FromExist P Φ → FromExist ⎡P⎤ (λ a, ⎡Φ a⎤%I). +Proof. by rewrite /FromExist -bi_embed_exist => <-. Qed. (* IntoExist *) Global Instance into_exist_exist {A} (Φ : A → PROP) : IntoExist (∃ a, Φ a) Φ. @@ -585,6 +639,9 @@ Proof. rewrite /IntoExist=> HP. by rewrite HP plainly_exist. Qed. Global Instance into_exist_persistently {A} P (Φ : A → PROP) : IntoExist P Φ → IntoExist (bi_persistently P) (λ a, bi_persistently (Φ a))%I. Proof. rewrite /IntoExist=> HP. by rewrite HP persistently_exist. Qed. +Global Instance into_exist_embed `{BiEmbedding PROP PROP'} {A} P (Φ : A → PROP) : + IntoExist P Φ → IntoExist ⎡P⎤ (λ a, ⎡Φ a⎤%I). +Proof. by rewrite /IntoExist -bi_embed_exist => <-. Qed. (* IntoForall *) Global Instance into_forall_forall {A} (Φ : A → PROP) : IntoForall (∀ a, Φ a) Φ. @@ -598,6 +655,9 @@ Proof. rewrite /IntoForall=> HP. by rewrite HP plainly_forall. Qed. Global Instance into_forall_persistently {A} P (Φ : A → PROP) : IntoForall P Φ → IntoForall (bi_persistently P) (λ a, bi_persistently (Φ a))%I. Proof. rewrite /IntoForall=> HP. by rewrite HP persistently_forall. Qed. +Global Instance into_forall_embed `{BiEmbedding PROP PROP'} {A} P (Φ : A → PROP) : + IntoForall P Φ → IntoForall ⎡P⎤ (λ a, ⎡Φ a⎤%I). +Proof. by rewrite /IntoForall -bi_embed_forall => <-. Qed. (* FromForall *) Global Instance from_forall_forall {A} (Φ : A → PROP) : @@ -635,6 +695,9 @@ Proof. rewrite /FromForall=> <-. by rewrite plainly_forall. Qed. Global Instance from_forall_persistently {A} P (Φ : A → PROP) : FromForall P Φ → FromForall (bi_persistently P)%I (λ a, bi_persistently (Φ a))%I. Proof. rewrite /FromForall=> <-. by rewrite persistently_forall. Qed. +Global Instance from_forall_embed `{BiEmbedding PROP PROP'} {A} P (Φ : A → PROP) : + FromForall P Φ → FromForall ⎡P⎤%I (λ a, ⎡Φ a⎤%I). +Proof. by rewrite /FromForall -bi_embed_forall => <-. Qed. (* ElimModal *) Global Instance elim_modal_wand P P' Q Q' R : @@ -673,6 +736,26 @@ Proof. rewrite /FromPure /Frame=> <-. by rewrite affinely_persistently_if_elim sep_elim_l. Qed. +Class MakeMorphism `{BiEmbedding PROP PROP'} P (Q : PROP') := + make_embed : ⎡P⎤ ⊣⊢ Q. +Arguments MakeMorphism {_ _ _} _%I _%I. +Global Instance make_embed_pure `{BiEmbedding PROP PROP'} φ : + MakeMorphism ⌜φ⌠⌜φâŒ. +Proof. by rewrite /MakeMorphism bi_embed_pure. Qed. +Global Instance make_embed_emp `{BiEmbedding PROP PROP'} : + MakeMorphism emp emp. +Proof. by rewrite /MakeMorphism bi_embed_emp. Qed. +Global Instance make_embed_default `{BiEmbedding PROP PROP'} : + MakeMorphism P ⎡P⎤ | 100. +Proof. by rewrite /MakeMorphism. Qed. + +Global Instance frame_embed `{BiEmbedding PROP PROP'} p P Q (Q' : PROP') R : + Frame p R P Q → MakeMorphism Q Q' → Frame p ⎡R⎤ ⎡P⎤ Q'. +Proof. + rewrite /Frame /MakeMorphism => <- <-. + rewrite bi_embed_sep bi_embed_affinely_if bi_embed_persistently_if => //. +Qed. + Class MakeSep (P Q PQ : PROP) := make_sep : P ∗ Q ⊣⊢ PQ. Arguments MakeSep _%I _%I _%I. Global Instance make_sep_emp_l P : MakeSep emp P P. @@ -851,6 +934,9 @@ Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed. (* FromModal *) Global Instance from_modal_absorbingly P : FromModal (bi_absorbingly P) P. Proof. apply absorbingly_intro. Qed. +Global Instance from_modal_embed `{BiEmbedding PROP PROP'} P Q : + FromModal P Q → FromModal ⎡P⎤ ⎡Q⎤. +Proof. by rewrite /FromModal=> ->. Qed. End bi_instances. @@ -1057,6 +1143,9 @@ Global Instance is_except_0_except_0 P : IsExcept0 (â—‡ P). Proof. by rewrite /IsExcept0 except_0_idemp. Qed. Global Instance is_except_0_later P : IsExcept0 (â–· P). Proof. by rewrite /IsExcept0 except_0_later. Qed. +Global Instance is_except_0_embed `{SbiEmbedding PROP PROP'} P : + IsExcept0 P → IsExcept0 ⎡P⎤. +Proof. by rewrite /IsExcept0 -sbi_embed_except_0=>->. Qed. (* FromModal *) Global Instance from_modal_later P : FromModal (â–· P) P. @@ -1084,6 +1173,9 @@ Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_plainly. Qed. Global Instance into_except_0_persistently P Q : IntoExcept0 P Q → IntoExcept0 (bi_persistently P) (bi_persistently Q). Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_persistently. Qed. +Global Instance into_except_0_embed `{SbiEmbedding PROP PROP'} P Q : + IntoExcept0 P Q → IntoExcept0 ⎡P⎤ ⎡Q⎤. +Proof. rewrite /IntoExcept0=> ->. by rewrite sbi_embed_except_0. Qed. (* ElimModal *) Global Instance elim_modal_timeless P Q : @@ -1190,6 +1282,9 @@ Proof. rewrite /IntoLaterN=> ->. by rewrite laterN_plainly. Qed. Global Instance into_later_persistently n P Q : IntoLaterN n P Q → IntoLaterN n (bi_persistently P) (bi_persistently Q). Proof. rewrite /IntoLaterN=> ->. by rewrite laterN_persistently. Qed. +Global Instance into_later_embed`{SbiEmbedding PROP PROP'} n P Q : + IntoLaterN n P Q → IntoLaterN n ⎡P⎤ ⎡Q⎤. +Proof. rewrite /IntoLaterN=> ->. by rewrite sbi_embed_laterN. Qed. Global Instance into_laterN_sep_l n P1 P2 Q1 Q2 : IntoLaterN' n P1 Q1 → IntoLaterN n P2 Q2 → @@ -1273,6 +1368,9 @@ Proof. by rewrite /FromLaterN laterN_persistently=> ->. Qed. Global Instance from_later_absorbingly n P Q : FromLaterN n P Q → FromLaterN n (bi_absorbingly P) (bi_absorbingly Q). Proof. by rewrite /FromLaterN laterN_absorbingly=> ->. Qed. +Global Instance from_later_embed`{SbiEmbedding PROP PROP'} n P Q : + FromLaterN n P Q → FromLaterN n ⎡P⎤ ⎡Q⎤. +Proof. rewrite /FromLaterN=> <-. by rewrite sbi_embed_laterN. Qed. Global Instance from_later_forall {A} n (Φ Ψ : A → PROP) : (∀ x, FromLaterN n (Φ x) (Ψ x)) → FromLaterN n (∀ x, Φ x) (∀ x, Ψ x). diff --git a/theories/proofmode/monpred.v b/theories/proofmode/monpred.v new file mode 100644 index 0000000000000000000000000000000000000000..a3afd86cccd638e56591cc6bf94e26c74decdd89 --- /dev/null +++ b/theories/proofmode/monpred.v @@ -0,0 +1,363 @@ +From iris.bi Require Export monpred. +From iris.proofmode Require Import tactics. +Import MonPred. + +Class MakeMonPredCar {I : bi_index} {PROP : bi} (i : I) + (P : monPred I PROP) (ð“Ÿ : PROP) := + make_monPred_car : P i ⊣⊢ ð“Ÿ. +Arguments MakeMonPredCar {_ _} _ _%I _%I. +Hint Mode MakeMonPredCar + + - ! - : typeclass_instances. + +Class IsBiIndexRel {I : bi_index} (i j : I) := is_bi_index_rel : i ⊑ j. +Hint Mode IsBiIndexRel + - - : typeclass_instances. +Instance is_bi_index_rel_refl {I : bi_index} (i : I) : IsBiIndexRel i i | 0. +Proof. by rewrite /IsBiIndexRel. Qed. +Hint Extern 1 (IsBiIndexRel _ _) => unfold IsBiIndexRel; assumption + : typeclass_instances. + +Section bi. +Context {I : bi_index} {PROP : bi}. +Local Notation monPred := (monPred I PROP). +Local Notation MakeMonPredCar := (@MakeMonPredCar I PROP). +Implicit Types P Q R : monPred. +Implicit Types ð“Ÿ ð“ ð“¡ : PROP. +Implicit Types φ : Prop. +Implicit Types i j : I. + +Global Instance make_monPred_car_pure φ i : MakeMonPredCar i ⌜φ⌠⌜φâŒ. +Proof. rewrite /MakeMonPredCar. by unseal. Qed. +Global Instance make_monPred_car_internal_eq {A : ofeT} (x y : A) i : + MakeMonPredCar i (x ≡ y) (x ≡ y). +Proof. rewrite /MakeMonPredCar. by unseal. Qed. +Global Instance make_monPred_car_emp i : MakeMonPredCar i emp emp. +Proof. rewrite /MakeMonPredCar. by unseal. Qed. +Global Instance make_monPred_car_sep i P ð“Ÿ Q ð“ : + MakeMonPredCar i P 𓟠→ MakeMonPredCar i Q ð“ → + MakeMonPredCar i (P ∗ Q) (𓟠∗ ð“ ). +Proof. rewrite /MakeMonPredCar=><-<-. by unseal. Qed. +Global Instance make_monPred_car_and i P ð“Ÿ Q ð“ : + MakeMonPredCar i P 𓟠→ MakeMonPredCar i Q ð“ → + MakeMonPredCar i (P ∧ Q) (𓟠∧ ð“ ). +Proof. rewrite /MakeMonPredCar=><-<-. by unseal. Qed. +Global Instance make_monPred_car_or i P ð“Ÿ Q ð“ : + MakeMonPredCar i P 𓟠→ MakeMonPredCar i Q ð“ → + MakeMonPredCar i (P ∨ Q) (𓟠∨ ð“ ). +Proof. rewrite /MakeMonPredCar=><-<-. by unseal. Qed. +Global Instance make_monPred_car_forall {A} i (Φ : A → monPred) (Ψ : A → PROP) : + (∀ a, MakeMonPredCar i (Φ a) (Ψ a)) → MakeMonPredCar i (∀ a, Φ a) (∀ a, Ψ a). +Proof. rewrite /MakeMonPredCar=>H. setoid_rewrite <- H. by unseal. Qed. +Global Instance make_monPred_car_exists {A} i (Φ : A → monPred) (Ψ : A → PROP) : + (∀ a, MakeMonPredCar i (Φ a) (Ψ a)) → MakeMonPredCar i (∃ a, Φ a) (∃ a, Ψ a). +Proof. rewrite /MakeMonPredCar=>H. setoid_rewrite <- H. by unseal. Qed. +Global Instance make_monPred_car_persistently i P ð“Ÿ : + MakeMonPredCar i P 𓟠→ MakeMonPredCar i (bi_persistently P) (bi_persistently ð“Ÿ). +Proof. rewrite /MakeMonPredCar=><-. by unseal. Qed. +Global Instance make_monPred_car_affinely i P ð“Ÿ : + MakeMonPredCar i P 𓟠→ MakeMonPredCar i (bi_affinely P) (bi_affinely ð“Ÿ). +Proof. rewrite /MakeMonPredCar=><-. by unseal. Qed. +Global Instance make_monPred_car_absorbingly i P ð“Ÿ : + MakeMonPredCar i P 𓟠→ MakeMonPredCar i (bi_absorbingly P) (bi_absorbingly ð“Ÿ). +Proof. rewrite /MakeMonPredCar=><-. by unseal. Qed. +Global Instance make_monPred_car_persistently_if i P ð“Ÿ p : + MakeMonPredCar i P 𓟠→ + MakeMonPredCar i (bi_persistently_if p P) (bi_persistently_if p ð“Ÿ). +Proof. destruct p; simpl; apply _. Qed. +Global Instance make_monPred_car_affinely_if i P ð“Ÿ p : + MakeMonPredCar i P 𓟠→ + MakeMonPredCar i (bi_affinely_if p P) (bi_affinely_if p ð“Ÿ). +Proof. destruct p; simpl; apply _. Qed. +Global Instance make_monPred_car_embed i : MakeMonPredCar i ⎡P⎤ P. +Proof. rewrite /MakeMonPredCar. by unseal. Qed. +Global Instance make_monPred_car_in i j : MakeMonPredCar j (monPred_in i) ⌜i ⊑ jâŒ. +Proof. rewrite /MakeMonPredCar. by unseal. Qed. +Global Instance make_monPred_car_default i P : MakeMonPredCar i P (P i) | 100. +Proof. by rewrite /MakeMonPredCar. Qed. + +Global Instance from_assumption_make_monPred_car_l p i j P ð“Ÿ : + MakeMonPredCar i P 𓟠→ IsBiIndexRel j i → FromAssumption p (P j) ð“Ÿ. +Proof. + rewrite /MakeMonPredCar /FromAssumption /IsBiIndexRel=><- ->. + apply bi.affinely_persistently_if_elim. +Qed. +Global Instance from_assumption_make_monPred_car_r p i j P ð“Ÿ : + MakeMonPredCar i P 𓟠→ IsBiIndexRel i j → FromAssumption p ð“Ÿ (P j). +Proof. + rewrite /MakeMonPredCar /FromAssumption /IsBiIndexRel=><- ->. + apply bi.affinely_persistently_if_elim. +Qed. + +Global Instance as_valid_monPred_car φ P (Φ : I → PROP) : + AsValid φ P → (∀ i, MakeMonPredCar i P (Φ i)) → AsValid' φ (∀ i, Φ i) | 100. +Proof. + rewrite /MakeMonPredCar /AsValid' /AsValid /bi_valid=> -> EQ. + setoid_rewrite <-EQ. unseal; split. + - move=>[/= /bi.forall_intro //]. + - move=>HP. split=>i. rewrite /= HP bi.forall_elim //. +Qed. +Global Instance as_valid_monPred_car_wand φ P Q (Φ Ψ : I → PROP) : + AsValid φ (P -∗ Q) → + (∀ i, MakeMonPredCar i P (Φ i)) → (∀ i, MakeMonPredCar i Q (Ψ i)) → + AsValid' φ (∀ i, Φ i -∗ Ψ i). +Proof. + rewrite /AsValid' /AsValid /MakeMonPredCar. intros -> EQ1 EQ2. + setoid_rewrite <-EQ1. setoid_rewrite <-EQ2. split. + - move=>/bi.wand_entails HP. setoid_rewrite HP. by iIntros (i) "$". + - move=>HP. apply bi.entails_wand. split=>i. iIntros "H". by iApply HP. +Qed. +Global Instance as_valid_monPred_car_equiv φ P Q (Φ Ψ : I → PROP) : + AsValid φ (P ∗-∗ Q) → + (∀ i, MakeMonPredCar i P (Φ i)) → (∀ i, MakeMonPredCar i Q (Ψ i)) → + AsValid' φ (∀ i, Φ i ∗-∗ Ψ i). +Proof. + rewrite /AsValid' /AsValid /MakeMonPredCar. intros -> EQ1 EQ2. + setoid_rewrite <-EQ1. setoid_rewrite <-EQ2. split. + - move=>/bi.wand_iff_equiv HP. setoid_rewrite HP. iIntros. iSplit; iIntros "$". + - move=>HP. apply bi.equiv_wand_iff. split=>i. by iSplit; iIntros; iApply HP. +Qed. + +Global Instance into_pure_monPred_car P φ i : + IntoPure P φ → IntoPure (P i) φ. +Proof. rewrite /IntoPure=>->. by unseal. Qed. +Global Instance from_pure_monPred_car P φ i : + FromPure P φ → FromPure (P i) φ. +Proof. rewrite /FromPure=><-. by unseal. Qed. +Global Instance into_pure_monPred_in i j : + @IntoPure PROP (monPred_in i j) (i ⊑ j). +Proof. rewrite /IntoPure. by unseal. Qed. +Global Instance from_pure_monPred_in i j : + @FromPure PROP (monPred_in i j) (i ⊑ j). +Proof. rewrite /FromPure. by unseal. Qed. + +Global Instance into_internal_eq_monPred_car {A : ofeT} (x y : A) P i : + IntoInternalEq P x y → IntoInternalEq (P i) x y. +Proof. rewrite /IntoInternalEq=> ->. by unseal. Qed. + +Global Instance into_persistent_monPred_car p P Q ð“ i : + IntoPersistent p P Q → MakeMonPredCar i Q ð“ → IntoPersistent p (P i) ð“ | 0. +Proof. + rewrite /IntoPersistent /MakeMonPredCar /bi_persistently_if. + unseal=>-[/(_ i) ?] <-. by destruct p. +Qed. + +Global Instance from_always_monPred_car a pe P Q ð“ i : + FromAlways a pe false P Q → MakeMonPredCar i Q ð“ → + FromAlways a pe false (P i) ð“ | 0. +Proof. + rewrite /FromAlways /MakeMonPredCar /bi_persistently_if /bi_affinely_if=><-. + by destruct a, pe=><-; try unseal. +Qed. + +Lemma into_wand_monPred_car_unknown_unknown p q R P ð“Ÿ Q ð“ i : + IntoWand p q R P Q → MakeMonPredCar i P 𓟠→ MakeMonPredCar i Q ð“ → + IntoWand p q (R i) ð“Ÿ ð“ . +Proof. + rewrite /IntoWand /MakeMonPredCar /bi_affinely_if /bi_persistently_if. + destruct p, q=> /bi.wand_elim_l' [/(_ i) H] <- <-; apply bi.wand_intro_r; + revert H; unseal; done. +Qed. +Lemma into_wand_monPred_car_unknown_known p q R P ð“Ÿ Q i j : + IsBiIndexRel i j → IntoWand p q R P Q → + MakeMonPredCar j P 𓟠→ IntoWand p q (R i) ð“Ÿ (Q j). +Proof. + rewrite /IntoWand /IsBiIndexRel /MakeMonPredCar=>-> ? ?. + eapply into_wand_monPred_car_unknown_unknown=>//. apply _. +Qed. +Lemma into_wand_monPred_car_known_unknown_le p q R P Q ð“ i j : + IsBiIndexRel i j → IntoWand p q R P Q → + MakeMonPredCar j Q ð“ → IntoWand p q (R i) (P j) ð“ . +Proof. + rewrite /IntoWand /IsBiIndexRel /MakeMonPredCar=>-> ? ?. + eapply into_wand_monPred_car_unknown_unknown=>//. apply _. +Qed. +Lemma into_wand_monPred_car_known_unknown_ge p q R P Q ð“ i j : + IsBiIndexRel i j → IntoWand p q R P Q → + MakeMonPredCar j Q ð“ → IntoWand p q (R j) (P i) ð“ . +Proof. + rewrite /IntoWand /IsBiIndexRel /MakeMonPredCar=>-> ? ?. + eapply into_wand_monPred_car_unknown_unknown=>//. apply _. +Qed. + +Global Instance into_wand_wand'_monPred p q P Q ð“Ÿ ð“ i : + IntoWand' p q ((P -∗ Q) i) ð“Ÿ ð“ → IntoWand p q ((P -∗ Q) i) ð“Ÿ ð“ | 100. +Proof. done. Qed. +Global Instance into_wand_impl'_monPred p q P Q ð“Ÿ ð“ i : + IntoWand' p q ((P → Q) i) ð“Ÿ ð“ → IntoWand p q ((P → Q) i) ð“Ÿ ð“ | 100. +Proof. done. Qed. + +Global Instance from_forall_monPred_car_wand P Q (Φ Ψ : I → PROP) i : + (∀ j, MakeMonPredCar j P (Φ j)) → (∀ j, MakeMonPredCar j Q (Ψ j)) → + FromForall ((P -∗ Q) i)%I (λ j, ⌜i ⊑ j⌠→ Φ j -∗ Ψ j)%I. +Proof. + rewrite /FromForall /MakeMonPredCar. unseal=> H1 H2. do 2 f_equiv. + by rewrite H1 H2. +Qed. +Global Instance from_forall_monPred_car_impl P Q (Φ Ψ : I → PROP) i : + (∀ j, MakeMonPredCar j P (Φ j)) → (∀ j, MakeMonPredCar j Q (Ψ j)) → + FromForall ((P → Q) i)%I (λ j, ⌜i ⊑ j⌠→ Φ j → Ψ j)%I. +Proof. + rewrite /FromForall /MakeMonPredCar. unseal=> H1 H2. do 2 f_equiv. + by rewrite H1 H2 bi.pure_impl_forall. +Qed. + +Global Instance into_forall_monPred_car_index P i : + IntoForall (P i) (λ j, ⌜i ⊑ j⌠→ P j)%I | 100. +Proof. + rewrite /IntoForall. setoid_rewrite bi.pure_impl_forall. + do 2 apply bi.forall_intro=>?. by f_equiv. +Qed. + +Global Instance from_and_monPred_car P Q1 ð“ 1 Q2 ð“ 2 i : + FromAnd P Q1 Q2 → MakeMonPredCar i Q1 ð“ 1 → MakeMonPredCar i Q2 ð“ 2 → + FromAnd (P i) ð“ 1 ð“ 2. +Proof. rewrite /FromAnd /MakeMonPredCar /MakeMonPredCar=> <- <- <-. by unseal. Qed. +Global Instance into_and_monPred_car p P Q1 ð“ 1 Q2 ð“ 2 i : + IntoAnd p P Q1 Q2 → MakeMonPredCar i Q1 ð“ 1 → MakeMonPredCar i Q2 ð“ 2 → + IntoAnd p (P i) ð“ 1 ð“ 2. +Proof. + rewrite /IntoAnd /MakeMonPredCar /bi_affinely_if /bi_persistently_if. + destruct p=>-[/(_ i) H] <- <-; revert H; unseal; done. +Qed. + +Global Instance from_sep_monPred_car P Q1 ð“ 1 Q2 ð“ 2 i : + FromSep P Q1 Q2 → MakeMonPredCar i Q1 ð“ 1 → MakeMonPredCar i Q2 ð“ 2 → + FromSep (P i) ð“ 1 ð“ 2. +Proof. rewrite /FromSep /MakeMonPredCar=> <- <- <-. by unseal. Qed. +Global Instance into_sep_monPred_car P Q1 ð“ 1 Q2 ð“ 2 i : + IntoSep P Q1 Q2 → MakeMonPredCar i Q1 ð“ 1 → MakeMonPredCar i Q2 ð“ 2 → + IntoSep (P i) ð“ 1 ð“ 2. +Proof. rewrite /IntoSep /MakeMonPredCar=> -> <- <-. by unseal. Qed. + +Global Instance from_or_monPred_car P Q1 ð“ 1 Q2 ð“ 2 i : + FromOr P Q1 Q2 → MakeMonPredCar i Q1 ð“ 1 → MakeMonPredCar i Q2 ð“ 2 → + FromOr (P i) ð“ 1 ð“ 2. +Proof. rewrite /FromOr /MakeMonPredCar=> <- <- <-. by unseal. Qed. +Global Instance into_or_monPred_car P Q1 ð“ 1 Q2 ð“ 2 i : + IntoOr P Q1 Q2 → MakeMonPredCar i Q1 ð“ 1 → MakeMonPredCar i Q2 ð“ 2 → + IntoOr (P i) ð“ 1 ð“ 2. +Proof. rewrite /IntoOr /MakeMonPredCar=> -> <- <-. by unseal. Qed. + +Global Instance from_exist_monPred_car {A} P (Φ : A → monPred) (Ψ : A → PROP) i : + FromExist P Φ → (∀ a, MakeMonPredCar i (Φ a) (Ψ a)) → FromExist (P i) Ψ. +Proof. + rewrite /FromExist /MakeMonPredCar=><- H. setoid_rewrite <- H. by unseal. +Qed. +Global Instance into_exist_monPred_car {A} P (Φ : A → monPred) (Ψ : A → PROP) i : + IntoExist P Φ → (∀ a, MakeMonPredCar i (Φ a) (Ψ a)) → IntoExist (P i) Ψ. +Proof. + rewrite /IntoExist /MakeMonPredCar=>-> H. setoid_rewrite <- H. by unseal. +Qed. + +Global Instance foram_forall_monPred_car_plainly i P Φ : + (∀ i, MakeMonPredCar i P (Φ i)) → + FromForall (bi_plainly P i) (λ j, bi_plainly (Φ j)). +Proof. rewrite /FromForall /MakeMonPredCar=>H. unseal. do 3 f_equiv. rewrite H //. Qed. +Global Instance into_forall_monPred_car_plainly i P Φ : + (∀ i, MakeMonPredCar i P (Φ i)) → + IntoForall (bi_plainly P i) (λ j, bi_plainly (Φ j)). +Proof. rewrite /IntoForall /MakeMonPredCar=>H. unseal. do 3 f_equiv. rewrite H //. Qed. + +Global Instance from_forall_monPred_car_all P (Φ : I → PROP) i : + (∀ i, MakeMonPredCar i P (Φ i)) → FromForall (monPred_all P i) Φ. +Proof. + rewrite /FromForall /MakeMonPredCar=>H. setoid_rewrite <- H. by unseal. +Qed. +Global Instance into_forall_monPred_car_all P (Φ : I → PROP) i : + (∀ i, MakeMonPredCar i P (Φ i)) → IntoForall (monPred_all P i) Φ. +Proof. + rewrite /IntoForall /MakeMonPredCar=>H. setoid_rewrite <- H. by unseal. +Qed. + +Global Instance from_forall_monPred_car {A} P (Φ : A → monPred) (Ψ : A → PROP) i : + FromForall P Φ → (∀ a, MakeMonPredCar i (Φ a) (Ψ a)) → FromForall (P i) Ψ. +Proof. + rewrite /FromForall /MakeMonPredCar=><- H. setoid_rewrite <- H. by unseal. +Qed. +Global Instance into_forall_monPred_car {A} P (Φ : A → monPred) (Ψ : A → PROP) i : + IntoForall P Φ → (∀ a, MakeMonPredCar i (Φ a) (Ψ a)) → IntoForall (P i) Ψ. +Proof. + rewrite /IntoForall /MakeMonPredCar=>-> H. setoid_rewrite <- H. by unseal. +Qed. + +(* FIXME : there are two good ways to frame under a call to + monPred_car. This may cause some backtracking in the typeclass + search, and hence performance issues. *) +Global Instance frame_monPred_car p P Q ð“ R i j : + IsBiIndexRel i j → Frame p R P Q → MakeMonPredCar j Q ð“ → + Frame p (R i) (P j) ð“ . +Proof. + rewrite /Frame /MakeMonPredCar /bi_affinely_if /bi_persistently_if + /IsBiIndexRel=> Hij <- <-. + by destruct p; rewrite Hij; unseal. +Qed. +Global Instance frame_monPred_car_embed i p P Q ð“ ð“¡ : + Frame p ⎡ð“¡âŽ¤ P Q → MakeMonPredCar i Q ð“ → Frame p ð“¡ (P i) ð“ . +Proof. + rewrite /Frame /MakeMonPredCar /bi_affinely_if /bi_persistently_if=> <- <-. + by destruct p; unseal. +Qed. + +Global Instance from_modal_monPred_car i P Q ð“ : + FromModal P Q → MakeMonPredCar i Q ð“ → FromModal (P i) ð“ . +Proof. by rewrite /FromModal /MakeMonPredCar=> <- <-. Qed. +End bi. + +(* When P and/or Q are evars when doing typeclass search on [IntoWand + (R i) P Q], we use [MakeMonPredCar] in order to normalize the + result of unification. However, when they are not evars, we want to + propagate the known information through typeclass search. Hence, we + do not want to use [MakeMonPredCar]. + + As a result, depending on P and Q being evars, we use a different + version of [into_wand_monPred_car_xx_xx]. *) +Hint Extern 3 (IntoWand _ _ (monPred_car _ _) ?P ?Q) => + is_evar P; is_evar Q; + eapply @into_wand_monPred_car_unknown_unknown + : typeclass_instances. +Hint Extern 2 (IntoWand _ _ (monPred_car _ _) ?P (monPred_car ?Q _)) => + eapply @into_wand_monPred_car_unknown_known + : typeclass_instances. +Hint Extern 2 (IntoWand _ _ (monPred_car _ _) (monPred_car ?P _) ?Q) => + eapply @into_wand_monPred_car_known_unknown_le + : typeclass_instances. +Hint Extern 2 (IntoWand _ _ (monPred_car _ _) (monPred_car ?P _) ?Q) => + eapply @into_wand_monPred_car_known_unknown_ge + : typeclass_instances. + +Section sbi. +Context {I : bi_index} {PROP : sbi}. +Local Notation monPred := (monPred I PROP). +Implicit Types P Q R : monPred. +Implicit Types ð“Ÿ ð“ ð“¡ : PROP. +Implicit Types φ : Prop. +Implicit Types i j : I. + +Global Instance is_except_0_monPred_car i P : + IsExcept0 P → IsExcept0 (P i). +Proof. rewrite /IsExcept0=>- [/(_ i)]. by unseal. Qed. + +Global Instance make_monPred_car_except_0 i P ð“ : + MakeMonPredCar i P ð“ → MakeMonPredCar i (â—‡ P)%I (â—‡ ð“ )%I. +Proof. rewrite /MakeMonPredCar=><-. by unseal. Qed. +Global Instance make_monPred_car_later i P ð“ : + MakeMonPredCar i P ð“ → MakeMonPredCar i (â–· P)%I (â–· ð“ )%I. +Proof. rewrite /MakeMonPredCar=><-. by unseal. Qed. +Global Instance make_monPred_car_laterN i n P ð“ : + MakeMonPredCar i P ð“ → MakeMonPredCar i (â–·^n P)%I (â–·^n ð“ )%I. +Proof. rewrite /MakeMonPredCar=> <-. elim n=>//= ? <-. by unseal. Qed. + +Global Instance into_except_0_monPred_car_fwd i P Q ð“ : + IntoExcept0 P Q → MakeMonPredCar i Q ð“ → IntoExcept0 (P i) ð“ . +Proof. rewrite /IntoExcept0 /MakeMonPredCar=> -> <-. by unseal. Qed. +Global Instance into_except_0_monPred_car_bwd i P ð“Ÿ Q : + IntoExcept0 P Q → MakeMonPredCar i P 𓟠→ IntoExcept0 ð“Ÿ (Q i). +Proof. rewrite /IntoExcept0 /MakeMonPredCar=> H <-. rewrite H. by unseal. Qed. + +Global Instance into_later_monPred_car i n P Q ð“ : + IntoLaterN n P Q → MakeMonPredCar i Q ð“ → IntoLaterN n (P i) ð“ . +Proof. + rewrite /IntoLaterN /MakeMonPredCar=> -> <-. elim n=>//= ? <-. by unseal. +Qed. +Global Instance from_later_monPred_car i n P Q ð“ : + FromLaterN n P Q → MakeMonPredCar i Q ð“ → FromLaterN n (P i) ð“ . +Proof. rewrite /FromLaterN /MakeMonPredCar=> <- <-. elim n=>//= ? ->. by unseal. Qed. +End sbi. diff --git a/theories/proofmode/tactics.v b/theories/proofmode/tactics.v index 09b1b98c96bf7ddccccafaba4d92d23878631f35..ff7858d035f8a98326fa3512c22daf76b3198634 100644 --- a/theories/proofmode/tactics.v +++ b/theories/proofmode/tactics.v @@ -65,22 +65,39 @@ Proof. by apply as_valid. Qed. Instance as_valid_valid {PROP : bi} (P : PROP) : AsValid (bi_valid P) P | 0. Proof. by rewrite /AsValid. Qed. -Instance as_valid_entails {PROP : bi} (P Q : PROP) : AsValid (P ⊢ Q) (P -∗ Q) | 1. +Instance as_valid_entails {PROP : bi} (P Q : PROP) : AsValid (P ⊢ Q) (P -∗ Q) | 0. Proof. split. apply bi.entails_wand. apply bi.wand_entails. Qed. -Instance as_valid_equiv {PROP : bi} (P Q : PROP) : AsValid (P ≡ Q) (P ∗-∗ Q). +Instance as_valid_equiv {PROP : bi} (P Q : PROP) : AsValid (P ≡ Q) (P ∗-∗ Q) | 0. Proof. split. apply bi.equiv_wand_iff. apply bi.wand_iff_equiv. Qed. +Class AsValid' {PROP : bi} (φ : Prop) (P : PROP) := as_valid' :> AsValid φ P. +Arguments AsValid' {_} _%type _%I. +Hint Mode AsValid' ! ! - : typeclass_instances. + +Instance as_valid_embed `{BiEmbedding PROP PROP'} (φ : Prop) (P : PROP) : + AsValid φ P → AsValid' φ ⎡P⎤. +Proof. rewrite /AsValid' /AsValid=> ->. rewrite bi_embed_valid //. Qed. + (** * Start a proof *) -Ltac iStartProof := +Tactic Notation "iStartProof" uconstr(PROP) := lazymatch goal with - | |- envs_entails _ _ => idtac + | |- @envs_entails ?PROP' _ _ => + let x := type_term (eq_refl : @eq Type PROP PROP') in idtac | |- let _ := _ in _ => fail - | |- ?φ => eapply (as_valid_2 φ); + + (* We eta-expand [as_valid_2], in order to make sure that + [iStartProof works] even if [PROP] is the carrier type. In this + case, typing this expression will end up unifying PROP with + [bi_car _], and hence trigger the canonical structures mechanism + to find the corresponding bi. *) + | |- ?φ => eapply (λ P : PROP, @as_valid_2 φ _ P); [apply _ || fail "iStartProof: not a Bi entailment" |apply tac_adequate] end. +Tactic Notation "iStartProof" := iStartProof _. + (** * Context manipulation *) Tactic Notation "iRename" constr(H1) "into" constr(H2) := eapply tac_rename with _ H1 H2 _ _; (* (i:=H1) (j:=H2) *) diff --git a/theories/tests/proofmode_iris.v b/theories/tests/proofmode_iris.v index ec136a553766ebe890b304ab87e38872e93276aa..f22e3838ee11d88973c94d78cc60d124ee9878f4 100644 --- a/theories/tests/proofmode_iris.v +++ b/theories/tests/proofmode_iris.v @@ -36,6 +36,15 @@ Section base_logic_tests. Lemma test_iAssert_modality P : (|==> False) -∗ |==> P. Proof. iIntros. iAssert False%I with "[> - //]" as %[]. Qed. + + Lemma test_iStartProof_1 P : P -∗ P. + Proof. iStartProof. iStartProof. iIntros "$". Qed. + Lemma test_iStartProof_2 P : P -∗ P. + Proof. iStartProof (uPred _). iStartProof (uPredI _). iIntros "$". Qed. + Lemma test_iStartProof_3 P : P -∗ P. + Proof. iStartProof (uPredI _). iStartProof (uPredSI _). iIntros "$". Qed. + Lemma test_iStartProof_4 P : P -∗ P. + Proof. iStartProof (uPredSI _). iStartProof (uPred _). iIntros "$". Qed. End base_logic_tests. Section iris_tests. diff --git a/theories/tests/proofmode_monpred.v b/theories/tests/proofmode_monpred.v new file mode 100644 index 0000000000000000000000000000000000000000..a18ce8ef0eeeb5d60a23538a274dd37c4b9a921f --- /dev/null +++ b/theories/tests/proofmode_monpred.v @@ -0,0 +1,53 @@ +From iris.proofmode Require Import tactics monpred. +From iris.base_logic Require Import base_logic lib.invariants. + +Section tests. + Context {I : bi_index} {PROP : sbi}. + Local Notation monPred := (monPred I PROP). + Local Notation monPredI := (monPredI I PROP). + Local Notation monPredSI := (monPredSI I PROP). + Implicit Types P Q R : monPred. + Implicit Types i j : I. + + Lemma test0 P : P -∗ P. + Proof. iIntros "$". Qed. + + Lemma test_iStartProof_1 P : P -∗ P. + Proof. iStartProof. iStartProof. iIntros "$". Qed. + Lemma test_iStartProof_2 P : P -∗ P. + Proof. iStartProof monPred. iStartProof monPredI. iIntros "$". Qed. + Lemma test_iStartProof_3 P : P -∗ P. + Proof. iStartProof monPredI. iStartProof monPredSI. iIntros "$". Qed. + Lemma test_iStartProof_4 P : P -∗ P. + Proof. iStartProof monPredSI. iStartProof monPred. iIntros "$". Qed. + Lemma test_iStartProof_5 P : P -∗ P. + Proof. iStartProof PROP. iIntros (i) "$". Qed. + Lemma test_iStartProof_6 P : P ⊣⊢ P. + Proof. iStartProof PROP. iIntros (i). iSplit; iIntros "$". Qed. + Lemma test_iStartProof_7 P : ((P ≡ P)%I : monPredI). + Proof. iStartProof PROP. done. Qed. + + Lemma test_intowand_1 P Q : (P -∗ Q) -∗ P -∗ Q. + Proof. + iStartProof PROP. iIntros (i) "HW". iIntros (j ->) "HP". by iApply "HW". + Qed. + Lemma test_intowand_2 P Q : (P -∗ Q) -∗ P -∗ Q. + Proof. + iStartProof PROP. iIntros (i) "HW". iIntros (j ->) "HP". + iSpecialize ("HW" with "[HP //]"). done. + Qed. + Lemma test_intowand_3 P Q : (P -∗ Q) -∗ P -∗ Q. + Proof. + iStartProof PROP. iIntros (i) "HW". iIntros (j ->) "HP". + iSpecialize ("HW" with "HP"). done. + Qed. + Lemma test_intowand_4 P Q : (P -∗ Q) -∗ â–· P -∗ â–· Q. + Proof. + iStartProof PROP. iIntros (i) "HW". iIntros (j ->) "HP". by iApply "HW". + Qed. + Lemma test_intowand_5 P Q : (P -∗ Q) -∗ â–· P -∗ â–· Q. + Proof. + iStartProof PROP. iIntros (i) "HW". iIntros (j ->) "HP". + iSpecialize ("HW" with "HP"). done. + Qed. +End tests.