diff --git a/iris/bi/derived_connectives.v b/iris/bi/derived_connectives.v index a5f5d62b307d37a701303d1f47e8b93bf65c7a0b..4d707a492c3494b6ddcdc3c2bfebea0d977fadb9 100644 --- a/iris/bi/derived_connectives.v +++ b/iris/bi/derived_connectives.v @@ -76,6 +76,31 @@ Global Instance: Params (@bi_intuitionistically_if) 2 := {}. Global Typeclasses Opaque bi_intuitionistically_if. Notation "'â–¡?' p P" := (bi_intuitionistically_if p P) : bi_scope. +(* The class of [Separable] propositions generalizes [bi_pure] and [Persistent] +propositions. Being separable implies being duplicable, but it is strictly +stronger than that: [P := ∃ q, l ↦{q} v] is duplicable but not separable. +Counterexample: [P ∧ l ↦ v] does not entail [P ∗ l ↦ v]. Therefore, the +hierarchy is: Plain → Persistent → Separable → Duplicable. + +The class of [Separable] propositions is useful for BIs with a degenerative +persistence modality, i.e., without [BiPersistentlyTrue : True ⊢ <pers> True], +see https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/843. For those BIs, +the only persistent proposition is [False], but emp/plain and friends are still +[Separable]. + +We do not provide instances that close [Separable] under the BI connectives, we +only provide the following instances: + +- [pure_separable : Separable ⌜φâŒ] +- [persistent_separable P : Persistent P → Separable P] +- [plain_separable P : Plain P → Separable P], necessary because + [plain_persistent : Plain P → Persistent P] is not an instance, but a + [Hint Immediate]. *) +Class Separable {PROP : bi} (P : PROP) := separable Q : P ∧ Q ⊢ <affine> P ∗ Q. +Global Arguments Separable {_} _%I : simpl never. +Global Arguments separable {_} _%I. +Global Hint Mode Separable + ! : typeclass_instances. + Fixpoint bi_laterN {PROP : bi} (n : nat) (P : PROP) : PROP := match n with | O => P diff --git a/iris/bi/derived_laws.v b/iris/bi/derived_laws.v index 92a0fa1214c180698692cd2f2b6b39e7cd1c2981..835d58db621161821a7e1cf1703cd4a6b3d89a8f 100644 --- a/iris/bi/derived_laws.v +++ b/iris/bi/derived_laws.v @@ -801,67 +801,100 @@ Section bi_affine. Proof. apply wand_intro_l. by rewrite sep_and impl_elim_r. Qed. End bi_affine. -(* The class of "separable" assertions is occasionally useful, but does not -warrant having their own typeclass (since adding a new class to the hierarchy in -Coq unfortunately means a lot of extra work for everyone who declares -"Persistent" instances). - -Being separable implies being duplicable, but it is strictly -stronger than that: [P := ∃ q, l ↦{q} v] is duplicable but not -"separable". Counterexample: [P ∧ l ↦ v] does not entail [P ∗ l ↦ v]. - -Therefore, the hierarchy is: -Persistent → Separable → Duplicable - -The particularly interesting separable assertions are those that are also absorbing: -they satisfy many of the properties of [<pers> P]. -*) -Definition separable (P : PROP) := ∀ Q, P ∧ Q ⊢ <affine> P ∗ Q. +(* Separable propositions *) +Lemma and_affinely_sep_l_1 P Q `{!Separable P} : + P ∧ Q ⊢ <affine> P ∗ Q. +Proof. done. Qed. +Lemma and_affinely_sep_r_1 P Q `{!Separable P} : + Q ∧ P ⊢ Q ∗ <affine> P. +Proof. by rewrite !(comm _ Q) and_affinely_sep_l_1. Qed. -Lemma separable_and_affinely_sep_l `(HP : separable P) Q : - Absorbing P → +Lemma and_affinely_sep_l P Q `{!Separable P, !Absorbing P} : P ∧ Q ⊣⊢ <affine> P ∗ Q. Proof. - intros Pabs. apply (anti_symm (⊢)); first apply HP. apply and_intro. - - rewrite -{2}[P]sep_True. apply sep_mono. 2:apply True_intro. apply affinely_elim. + apply (anti_symm (⊢)); first done. apply and_intro. + - by rewrite affinely_elim sep_elim_l. - rewrite affinely_elim_emp left_id. done. Qed. -Lemma separable_and_affinely_sep_r `(HP : separable P) Q : - Absorbing P → +Lemma and_affinely_sep_r P Q `{!Separable P, !Absorbing P} : Q ∧ P ⊣⊢ Q ∗ <affine> P. -Proof. intros. rewrite comm (separable_and_affinely_sep_l HP) comm //. Qed. +Proof. by rewrite !(comm _ Q) and_affinely_sep_l. Qed. -Lemma separable_and_sep_assoc `(HP : separable P) Q R : - Absorbing P → +Lemma and_sep_assoc P Q R `{!Separable P, !Absorbing P} : P ∧ (Q ∗ R) ⊣⊢ (P ∧ Q) ∗ R. -Proof. - intros. rewrite (separable_and_affinely_sep_l HP) assoc. f_equiv. - rewrite (separable_and_affinely_sep_l HP). done. -Qed. +Proof. rewrite and_affinely_sep_l // assoc. rewrite -and_affinely_sep_l //. Qed. -Lemma separable_sep_absorbingly_and_l `(HP : separable P) Q : - Absorbing P → +Lemma sep_absorbingly_and_l P Q `{!Separable P, !Absorbing P} : P ∗ Q ⊣⊢ P ∧ <absorb> Q. -Proof. intros. rewrite /bi_absorbingly (separable_and_sep_assoc HP) right_id //. Qed. -Lemma separable_sep_absorbingly_and_r `(HP : separable P) Q : - Absorbing P → +Proof. rewrite /bi_absorbingly and_sep_assoc // right_id //. Qed. +Lemma sep_absorbingly_and_r P Q `{!Separable P, !Absorbing P} : Q ∗ P ⊣⊢ <absorb> Q ∧ P. -Proof. intros. rewrite comm (separable_sep_absorbingly_and_l HP) comm //. Qed. +Proof. rewrite comm sep_absorbingly_and_l // comm //. Qed. -Lemma separable_absorbingly_affinely `(HP : separable P) : - Absorbing P → +Lemma absorbingly_affinely_2 P `{!Separable P} : + P ⊢ <absorb> <affine> P. +Proof. by rewrite -{1}(left_id True%I bi_and P) and_affinely_sep_r_1. Qed. + +Lemma absorbingly_affinely P `{!Separable P, !Absorbing P} : <absorb> <affine> P ⊣⊢ P. Proof. - intros. rewrite /bi_absorbingly /bi_affinely. - rewrite [(_ ∧ _)%I]comm [(_ ∗ _)%I]comm -(separable_and_sep_assoc HP) left_id right_id //. + rewrite /bi_absorbingly /bi_affinely. + rewrite [(_ ∧ _)%I]comm [(_ ∗ _)%I]comm -and_sep_assoc //. + rewrite left_id right_id //. Qed. -Lemma separable_impl_wand_affinely `(HP : separable P) Q : - Absorbing P → +Lemma impl_wand_affinely P Q `{!Separable P, !Absorbing P} : (P → Q) ⊣⊢ (<affine> P -∗ Q). Proof. - intros. apply (anti_symm _). - - apply wand_intro_l. rewrite -(separable_and_affinely_sep_l HP) impl_elim_r //. - - apply impl_intro_l. rewrite (separable_and_affinely_sep_l HP) wand_elim_r //. + apply (anti_symm _). + - apply wand_intro_l. rewrite -and_affinely_sep_l // impl_elim_r //. + - apply impl_intro_l. rewrite and_affinely_sep_l // wand_elim_r //. +Qed. + +Lemma and_sep_l_1 P Q `{!Separable P} : P ∧ Q ⊢ P ∗ Q. +Proof. by rewrite and_affinely_sep_l_1 affinely_elim. Qed. +Lemma and_sep_r_1 P Q `{!Separable Q} : P ∧ Q ⊢ P ∗ Q. +Proof. by rewrite and_affinely_sep_r_1 affinely_elim. Qed. +Lemma and_sep_1 P Q `{HPQ : !TCOr (Separable P) (Separable Q)} : + P ∧ Q ⊢ P ∗ Q. +Proof. destruct HPQ; [apply: and_sep_l_1|apply: and_sep_r_1]. Qed. + +Lemma and_sep_l P Q `{!Separable P} + `{!TCOr (Affine P) (Absorbing Q), !TCOr (Affine Q) (Absorbing P)} : + P ∧ Q ⊣⊢ P ∗ Q. +Proof. apply (anti_symm (⊢)); [apply: and_sep_l_1|apply: sep_and]. Qed. +Lemma and_sep_r P Q `{!Separable Q} + `{!TCOr (Affine P) (Absorbing Q), !TCOr (Affine Q) (Absorbing P)} : + P ∧ Q ⊣⊢ P ∗ Q. +Proof. by rewrite !(comm _ P) and_sep_l. Qed. +Lemma and_sep P Q `{!TCOr (Separable P) (Separable Q)} + `{!TCOr (Affine P) (Absorbing Q), !TCOr (Affine Q) (Absorbing P)} : + P ∧ Q ⊣⊢ P ∗ Q. +Proof. + destruct select (TCOr (Separable _) _); [apply: and_sep_l|apply: and_sep_r]. +Qed. + +Lemma sep_dup P `{!Separable P, !TCOr (Affine P) (Absorbing P)} : + P ⊣⊢ P ∗ P. +Proof. by rewrite -{1}(idemp bi_and P) and_sep. Qed. + +Lemma impl_wand_2 P Q `{!Separable P} : (P -∗ Q) ⊢ (P → Q). +Proof. + apply impl_intro_l. rewrite separable. by rewrite affinely_elim wand_elim_r. +Qed. + +Section separable_affine_bi. + Context `{!BiAffine PROP}. + + Lemma impl_wand P Q `{!Separable P} : (P → Q) ⊣⊢ (P -∗ Q). + Proof. apply (anti_symm (⊢)); [apply impl_wand_1|apply: impl_wand_2]. Qed. +End separable_affine_bi. + +Global Instance impl_absorbing P Q : + Separable P → Absorbing P → Absorbing Q → Absorbing (P → Q). +Proof. + intros. rewrite /Absorbing. apply impl_intro_l. + rewrite and_affinely_sep_l_1 absorbingly_sep_r. + by rewrite -and_affinely_sep_l impl_elim_r. Qed. (* Pure stuff *) @@ -963,9 +996,9 @@ Proof. rewrite -decide_bi_True. destruct (decide _); [done|]. by rewrite True_emp. Qed. -Lemma pure_separable {φ} : separable ⌜φâŒ. +Global Instance pure_separable {φ} : Separable (PROP:=PROP) ⌜φâŒ. Proof. - intros Q. apply pure_elim_l=>H. + intros Q. apply pure_elim_l=> ?. rewrite pure_True // affinely_True_emp left_id. done. Qed. @@ -1039,14 +1072,14 @@ Proof. apply persistently_and_sep_elim. Qed. -Lemma persistently_separable {P} : separable (<pers> P). +Global Instance persistent_separable P : Persistent P → Separable P. Proof. - intros Q. rewrite {1}persistently_idemp_2. - rewrite persistently_and_sep_elim_emp. done. + rewrite /Persistent /Separable=> HP Q. + by rewrite {1}HP persistently_and_sep_elim_emp. Qed. Lemma persistently_and_sep_assoc P Q R : <pers> P ∧ (Q ∗ R) ⊣⊢ (<pers> P ∧ Q) ∗ R. -Proof. apply: (separable_and_sep_assoc persistently_separable). Qed. +Proof. apply: and_sep_assoc. Qed. Lemma persistently_and_emp_elim P : emp ∧ <pers> P ⊢ P. Proof. by rewrite comm persistently_and_sep_elim_emp right_id and_elim_r. Qed. Lemma persistently_into_absorbingly P : <pers> P ⊢ <absorb> P. @@ -1079,20 +1112,12 @@ Proof. Qed. Lemma persistently_sep_dup P : <pers> P ⊣⊢ <pers> P ∗ <pers> P. -Proof. - apply (anti_symm _). - - rewrite -{1}(idemp bi_and (<pers> _)%I). - by rewrite -{2}(emp_sep (<pers> _)%I) - persistently_and_sep_assoc and_elim_l. - - by rewrite sep_elim_l. -Qed. +Proof. apply: sep_dup. Qed. Lemma persistently_and_sep_l_1 P Q : <pers> P ∧ Q ⊢ <pers> P ∗ Q. -Proof. - by rewrite -{1}(emp_sep Q) persistently_and_sep_assoc and_elim_l. -Qed. +Proof. apply: and_sep_l_1. Qed. Lemma persistently_and_sep_r_1 P Q : P ∧ <pers> Q ⊢ P ∗ <pers> Q. -Proof. by rewrite !(comm _ P) persistently_and_sep_l_1. Qed. +Proof. apply: and_sep_r_1. Qed. Lemma persistently_and_sep P Q : <pers> (P ∧ Q) ⊢ <pers> (P ∗ Q). Proof. @@ -1108,12 +1133,7 @@ Proof. Qed. Lemma and_sep_persistently P Q : <pers> P ∧ <pers> Q ⊣⊢ <pers> P ∗ <pers> Q. -Proof. - apply (anti_symm _); auto using persistently_and_sep_l_1. - apply and_intro. - - by rewrite sep_elim_l. - - by rewrite sep_elim_r. -Qed. +Proof. apply: and_sep. Qed. Lemma persistently_sep_2 P Q : <pers> P ∗ <pers> Q ⊢ <pers> (P ∗ Q). Proof. by rewrite -persistently_and_sep persistently_and -and_sep_persistently. @@ -1159,7 +1179,7 @@ Proof. Qed. Lemma impl_wand_persistently_2 P Q : (<pers> P -∗ Q) ⊢ (<pers> P → Q). -Proof. apply impl_intro_l. by rewrite persistently_and_sep_l_1 wand_elim_r. Qed. +Proof. apply: impl_wand_2. Qed. Section persistently_affine_bi. Context `{!BiAffine PROP}. @@ -1168,12 +1188,9 @@ Section persistently_affine_bi. Proof. by rewrite -!True_emp persistently_pure. Qed. Lemma persistently_and_sep_l P Q : <pers> P ∧ Q ⊣⊢ <pers> P ∗ Q. - Proof. - apply (anti_symm (⊢)); - eauto using persistently_and_sep_l_1, sep_and with typeclass_instances. - Qed. + Proof. apply: and_sep_l. Qed. Lemma persistently_and_sep_r P Q : P ∧ <pers> Q ⊣⊢ P ∗ <pers> Q. - Proof. by rewrite !(comm _ P) persistently_and_sep_l. Qed. + Proof. apply: and_sep_r. Qed. Lemma persistently_impl_wand P Q : <pers> (P → Q) ⊣⊢ <pers> (P -∗ Q). Proof. @@ -1183,11 +1200,7 @@ Section persistently_affine_bi. Qed. Lemma impl_wand_persistently P Q : (<pers> P → Q) ⊣⊢ (<pers> P -∗ Q). - Proof. - apply (anti_symm (⊢)). - - by rewrite -impl_wand_1. - - apply impl_wand_persistently_2. - Qed. + Proof. apply: impl_wand. Qed. Lemma wand_alt P Q : (P -∗ Q) ⊣⊢ ∃ R, R ∗ <pers> (P ∗ R → Q). Proof. @@ -1323,16 +1336,9 @@ Lemma intuitionistically_affinely_elim P : â–¡ <affine> P ⊣⊢ â–¡ P. Proof. rewrite /bi_intuitionistically persistently_affinely_elim //. Qed. Lemma persistently_and_intuitionistically_sep_l P Q : <pers> P ∧ Q ⊣⊢ â–¡ P ∗ Q. -Proof. - rewrite /bi_intuitionistically. apply (anti_symm _). - - by rewrite /bi_affinely -(comm bi_and (<pers> P)%I) - -persistently_and_sep_assoc left_id. - - apply and_intro. - + by rewrite affinely_elim sep_elim_l. - + by rewrite affinely_elim_emp left_id. -Qed. +Proof. apply: and_affinely_sep_l. Qed. Lemma persistently_and_intuitionistically_sep_r P Q : P ∧ <pers> Q ⊣⊢ P ∗ â–¡ Q. -Proof. by rewrite !(comm _ P) persistently_and_intuitionistically_sep_l. Qed. +Proof. apply: and_affinely_sep_r. Qed. Lemma and_sep_intuitionistically P Q : â–¡ P ∧ â–¡ Q ⊣⊢ â–¡ P ∗ â–¡ Q. Proof. rewrite -persistently_and_intuitionistically_sep_l. @@ -1345,13 +1351,7 @@ Proof. Qed. Lemma impl_wand_intuitionistically P Q : (<pers> P → Q) ⊣⊢ (â–¡ P -∗ Q). -Proof. - apply (anti_symm (⊢)). - - apply wand_intro_l. - by rewrite -persistently_and_intuitionistically_sep_l impl_elim_r. - - apply impl_intro_l. - by rewrite persistently_and_intuitionistically_sep_l wand_elim_r. -Qed. +Proof. apply: impl_wand_affinely. Qed. Lemma intuitionistically_alt_fixpoint P : â–¡ P ⊣⊢ emp ∧ (P ∗ â–¡ P). @@ -1612,33 +1612,19 @@ Lemma persistently_intro P Q `{!Persistent P} : (P ⊢ Q) → P ⊢ <pers> Q. Proof. intros HP. by rewrite (persistent P) HP. Qed. Lemma persistent_and_affinely_sep_l_1 P Q `{!Persistent P} : P ∧ Q ⊢ <affine> P ∗ Q. -Proof. - rewrite {1}(persistent_persistently_2 P). - rewrite persistently_and_intuitionistically_sep_l. - rewrite intuitionistically_affinely //. -Qed. +Proof. apply: and_affinely_sep_l_1. Qed. Lemma persistent_and_affinely_sep_r_1 P Q `{!Persistent Q} : P ∧ Q ⊢ P ∗ <affine> Q. -Proof. by rewrite !(comm _ P) persistent_and_affinely_sep_l_1. Qed. +Proof. apply: and_affinely_sep_r_1. Qed. Lemma persistent_and_sep_1 P Q `{HPQ : !TCOr (Persistent P) (Persistent Q)} : P ∧ Q ⊢ P ∗ Q. -Proof. - destruct HPQ. - - by rewrite persistent_and_affinely_sep_l_1 affinely_elim. - - by rewrite persistent_and_affinely_sep_r_1 affinely_elim. -Qed. +Proof. apply and_sep_1; destruct HPQ; apply _. Qed. Lemma persistent_sep_dup P `{HP : !TCOr (Affine P) (Absorbing P), !Persistent P} : P ⊣⊢ P ∗ P. -Proof. - destruct HP; last by rewrite -(persistent_persistently P) -persistently_sep_dup. - apply (anti_symm (⊢)). - - by rewrite -{1}(intuitionistic_intuitionistically P) - intuitionistically_sep_dup intuitionistically_elim. - - by rewrite {1}(affine P) left_id. -Qed. +Proof. apply: sep_dup. Qed. Lemma persistent_entails_l P Q `{!Persistent Q} : (P ⊢ Q) → P ⊢ Q ∗ P. Proof. intros. rewrite -persistent_and_sep_1; auto. Qed. @@ -1647,43 +1633,30 @@ Proof. intros. rewrite -persistent_and_sep_1; auto. Qed. Lemma absorbingly_intuitionistically_into_persistently P : <absorb> â–¡ P ⊣⊢ <pers> P. -Proof. - apply (anti_symm _). - - rewrite intuitionistically_into_persistently_1. - by rewrite absorbingly_elim_persistently. - - rewrite -{1}(idemp bi_and (<pers> _)%I). - rewrite persistently_and_intuitionistically_sep_r. - by rewrite {1} (True_intro (<pers> _)%I). -Qed. +Proof. apply: absorbingly_affinely. Qed. Lemma persistent_absorbingly_affinely_2 P `{!Persistent P} : P ⊢ <absorb> <affine> P. -Proof. - rewrite {1}(persistent P) -absorbingly_intuitionistically_into_persistently. - by rewrite intuitionistically_affinely. -Qed. +Proof. apply: absorbingly_affinely_2. Qed. -Lemma impl_wand_2 P `{!Persistent P} Q : (P -∗ Q) ⊢ P → Q. -Proof. apply impl_intro_l. by rewrite persistent_and_sep_1 wand_elim_r. Qed. - -Lemma persistent_separable `{!Persistent P} : separable P. -Proof. intros Q. apply persistent_and_affinely_sep_l_1. done. Qed. +Lemma persistent_impl_wand_2 P `{!Persistent P} Q : (P -∗ Q) ⊢ P → Q. +Proof. apply: impl_wand_2. Qed. Lemma persistent_and_affinely_sep_l P Q `{!Persistent P, !Absorbing P} : P ∧ Q ⊣⊢ <affine> P ∗ Q. -Proof. apply (separable_and_affinely_sep_l persistent_separable). done. Qed. +Proof. apply: and_affinely_sep_l. Qed. Lemma persistent_and_affinely_sep_r P Q `{!Persistent Q, !Absorbing Q} : P ∧ Q ⊣⊢ P ∗ <affine> Q. -Proof. apply (separable_and_affinely_sep_r persistent_separable). done. Qed. +Proof. apply: and_affinely_sep_r. Qed. Lemma persistent_and_sep_assoc P `{!Persistent P, !Absorbing P} Q R : P ∧ (Q ∗ R) ⊣⊢ (P ∧ Q) ∗ R. -Proof. apply (separable_and_sep_assoc persistent_separable). done. Qed. +Proof. apply: and_sep_assoc. Qed. Lemma persistent_absorbingly_affinely P `{!Persistent P, !Absorbing P} : <absorb> <affine> P ⊣⊢ P. -Proof. apply (separable_absorbingly_affinely persistent_separable). done. Qed. +Proof. apply: absorbingly_affinely. Qed. Lemma persistent_impl_wand_affinely P `{!Persistent P, !Absorbing P} Q : (P → Q) ⊣⊢ (<affine> P -∗ Q). -Proof. apply (separable_impl_wand_affinely persistent_separable). done. Qed. +Proof. apply: impl_wand_affinely. Qed. (** We don't have a [Intuitionistic] typeclass, but if we did, this would be its only field. *) @@ -1704,18 +1677,10 @@ Section persistent_bi_absorbing. - by rewrite -(persistent_persistently Q) persistently_and_sep_r. Qed. - Lemma impl_wand P `{!Persistent P} Q : (P → Q) ⊣⊢ (P -∗ Q). - Proof. apply (anti_symm _); auto using impl_wand_1, impl_wand_2. Qed. + Lemma persistent_impl_wand P `{!Persistent P} Q : (P → Q) ⊣⊢ (P -∗ Q). + Proof. apply: impl_wand. Qed. End persistent_bi_absorbing. -Global Instance impl_absorbing P Q : - Persistent P → Absorbing P → Absorbing Q → Absorbing (P → Q). -Proof. - intros. rewrite /Absorbing. apply impl_intro_l. - rewrite persistent_and_affinely_sep_l_1 absorbingly_sep_r. - by rewrite -persistent_and_affinely_sep_l impl_elim_r. -Qed. - (* For big ops *) Global Instance bi_and_monoid : Monoid (@bi_and PROP) := {| monoid_unit := True%I |}. diff --git a/iris/bi/plainly.v b/iris/bi/plainly.v index 3f87dbfc3a7f7015d7b0384899fc96841cc98ef1..7607746589761a76889b59bd213fe4b3ea6e1ba1 100644 --- a/iris/bi/plainly.v +++ b/iris/bi/plainly.v @@ -373,6 +373,9 @@ Section plainly_derived. Lemma plain_persistent P : Plain P → Persistent P. Proof. intros. by rewrite /Persistent -plainly_elim_persistently. Qed. + Global Instance plain_separable P : Plain P → Separable P. + Proof. intros. by apply persistent_separable, plain_persistent. Qed. + Global Instance impl_persistent `{!BiPersistentlyImplPlainly PROP} P Q : Absorbing P → Plain P → Persistent Q → Persistent (P → Q). Proof.