From 97c1b4c6a6279b44f9f5e6f3940f2891c7a0384b Mon Sep 17 00:00:00 2001 From: Ralf Jung <jung@mpi-sws.org> Date: Sun, 13 Nov 2022 11:04:15 +0100 Subject: [PATCH] generalize uPred soundness/consistency to a literally arbitrary nesting of modalities --- iris/base_logic/derived.v | 42 ++++++++++++++++++++++++++------------- 1 file changed, 28 insertions(+), 14 deletions(-) diff --git a/iris/base_logic/derived.v b/iris/base_logic/derived.v index 8b61b8196..3097a2f8f 100644 --- a/iris/base_logic/derived.v +++ b/iris/base_logic/derived.v @@ -85,26 +85,40 @@ Global Instance uPred_ownM_sep_homomorphism : Proof. split; [split|]; try apply _; [apply ownM_op | apply ownM_unit']. Qed. (** Soundness statement: facts derived in the logic / under modalities also hold -outside the logic / without the modalities. -(The other modalities, â–¡ and â– , can simply be stripped so they are obvious.) *) +outside the logic / without the modalities. *) Lemma bupd_soundness P `{!Plain P} : (⊢ |==> P) → ⊢ P. Proof. rewrite bupd_plain. done. Qed. Lemma laterN_soundness P n : (⊢ â–·^n P) → ⊢ P. Proof. induction n; eauto using later_soundness. Qed. -Lemma modal_soundness P `{!Plain P} n : - (⊢ Nat.iter n (bupd ∘ bi_later) P) → ⊢ P. +Corollary soundness φ n : (⊢@{uPredI M} â–·^n ⌜ φ âŒ) → φ. Proof. - intros H. apply (laterN_soundness _ n). - move: H. apply bi_emp_valid_mono. - induction n as [|n IH]; first done; simpl in *. - rewrite IH. apply bupd_plain. apply _. + intros H. eapply pure_soundness, laterN_soundness. done. Qed. -Corollary soundness φ n : (⊢@{uPredI M} â–·^n ⌜ φ âŒ) → φ. +(** In fact we can do this for an arbitrary nesting of modalities. *) +Inductive modality := MBUpd | MLater | MPersistently | MPlainly. +Definition denote_modality (m : modality) : uPred M → uPred M := + match m with + | MBUpd => bupd + | MLater => bi_later + | MPersistently => bi_persistently + | MPlainly => plainly + end. +Definition denote_modalities (ms : list modality) : uPred M → uPred M := + λ P, foldr denote_modality P ms. +Lemma modal_soundness P `{!Plain P} (ms : list modality) : + (⊢ denote_modalities ms P) → ⊢ P. Proof. - intros H. eapply pure_soundness, laterN_soundness. done. + intros H. apply (laterN_soundness _ (length ms)). + move: H. apply bi_emp_valid_mono. + induction ms as [|m ms IH]; first done; simpl in *. + destruct m; simpl; rewrite IH. + - rewrite -later_intro. apply bupd_plain. apply _. + - done. + - rewrite -later_intro persistently_elim. done. + - rewrite -later_intro plainly_elim. done. Qed. (** Consistency: one cannot deive [False] in the logic, not even under @@ -112,11 +126,11 @@ modalities. *) Corollary consistency : ¬ ⊢@{uPredI M} False. Proof. intros H. by eapply pure_soundness. Qed. -Corollary consistency_modal n : - ¬ ⊢@{uPredI M} Nat.iter n (bupd ∘ bi_later) False. +Corollary consistency_modal ms : + ¬ ⊢@{uPredI M} denote_modalities ms False. Proof. - intros H. eapply pure_soundness, modal_soundness, H. - apply _. + intros H. + eapply pure_soundness, modal_soundness, H; first apply _. Qed. End derived. -- GitLab