diff --git a/iris/proofmode/ltac_tactics.v b/iris/proofmode/ltac_tactics.v index 7ff16dd1523a0252c962c5547972c16765d0ce51..b0eb97b17523053ae7f2c51214adcaf7da2f811d 100644 --- a/iris/proofmode/ltac_tactics.v +++ b/iris/proofmode/ltac_tactics.v @@ -639,9 +639,19 @@ Local Tactic Notation "iForallRevert" ident(x) := lazymatch type of A with | Prop => revert x; first - [eapply tac_pure_revert; [tc_solve (* [FromAffinely], should never fail *)|] + [eapply tac_pure_revert; + [tc_solve (* [FromAffinely], should never fail *) + |] |err x] - | _ => revert x; first [apply tac_forall_revert|err x] + | _ => + revert x; first + [apply tac_forall_revert; + (* Ensure the name [x] is preserved, see [test_iRevert_order_and_names]. *) + lazymatch goal with + | |- envs_entails ?Δ (bi_forall ?P) => + change (envs_entails Δ (∀ x, P x)); lazy beta + end + |err x] end. (** The tactic [iRevertHyp H with tac] reverts the hypothesis [H] and calls @@ -669,7 +679,10 @@ Tactic Notation "iRevert" constr(Hs) := go Hs | ESelIdent _ ?H :: ?Hs => iRevertHyp H; go Hs end in - iStartProof; let Hs := iElaborateSelPat Hs in go Hs. + iStartProof; + let Hs := iElaborateSelPat Hs in + (* No need to reverse [Hs], [iElaborateSelPat] already does that. *) + go Hs. Tactic Notation "iRevert" "(" ident(x1) ")" := iForallRevert x1. diff --git a/tests/proofmode.ref b/tests/proofmode.ref index 5d08d96a13d9b1feecf948cc4dee3cbc312dc230..480eb6486ef855f2895f0d2512e11c904788eca4 100644 --- a/tests/proofmode.ref +++ b/tests/proofmode.ref @@ -628,6 +628,14 @@ No applicable tactic. "H" : <affine> ⌜φ⌠-∗ P --------------------------------------∗ <affine> ⌜φ⌠-∗ P +"test_iRevert_order_and_names" + : string +1 goal + + PROP : bi + ============================ + --------------------------------------∗ + ∀ P1 P2, P1 -∗ P2 -∗ P1 ∗ P2 "test_iRevert_pure_affine" : string 1 goal diff --git a/tests/proofmode.v b/tests/proofmode.v index 9dec1daa99436b5b81803357d6dce5187183eff9..e78302a57fd3e9d545b2577f58cfdc782d188165 100644 --- a/tests/proofmode.v +++ b/tests/proofmode.v @@ -1433,6 +1433,16 @@ Proof. iIntros (Hφ) "H". iRevert (Hφ). Show. done. Qed. +Check "test_iRevert_order_and_names". +Lemma test_iRevert_order_and_names P1 P2 : P1 -∗ P2 -∗ P1 ∗ P2. +Proof. + iIntros "H1 H2". iRevert (P1 P2) "H1 H2". + (* Check that the reverts are performed in the right order (i.e., reverse), + and that the names [P1] and [P2] are used in the goal. *) + Show. + auto with iFrame. +Qed. + Check "test_iRevert_pure_affine". Lemma test_iRevert_pure_affine `{!BiAffine PROP} (φ : Prop) P : φ → (⌜ φ ⌠-∗ P) -∗ P.