diff --git a/iris/si_logic/siprop.v b/iris/si_logic/siprop.v index d4e4b09eaf26cf5c95f8e7400362590a05eefae2..5361f62d2bca051c28b083c9311cafaf5fcbd1b2 100644 --- a/iris/si_logic/siprop.v +++ b/iris/si_logic/siprop.v @@ -130,8 +130,7 @@ Ltac unseal := rewrite !unseal_eqs /=. Section primitive. Local Arguments siProp_holds !_ _ /. -Notation "P ⊢ Q" := (siProp_entails P Q) - (at level 99, Q at level 200, right associativity). +Notation "P ⊢ Q" := (siProp_entails P Q). Notation "'True'" := (siProp_pure True) : siProp_scope. Notation "'False'" := (siProp_pure False) : siProp_scope. Notation "'⌜' φ 'âŒ'" := (siProp_pure φ%type%stdpp) : siProp_scope. diff --git a/tests/proofmode.v b/tests/proofmode.v index b679d03e14ae48a0eba5a29687fb1a936b20cb4a..8ad3f6da4b95f11a1f86e15748228e9556d8b504 100644 --- a/tests/proofmode.v +++ b/tests/proofmode.v @@ -865,7 +865,7 @@ Lemma test_specialize_intuitionistic P Q : â–¡ P -∗ â–¡ (P -∗ Q) -∗ â–¡ Q. Proof. iIntros "#HP #HQ". iSpecialize ("HQ" with "HP"). done. Qed. -Lemma test_iEval x y : ⌜ (y + x)%nat = 1 ⌠-∗ ⌜ S (x + y) = 2%nat ⌠: PROP. +Lemma test_iEval x y : ⌜ (y + x)%nat = 1 ⌠⊢@{PROP} ⌜ S (x + y) = 2%nat âŒ. Proof. iIntros (H). iEval (rewrite (Nat.add_comm x y) // H). @@ -880,21 +880,21 @@ Proof. Qed. Check "test_iSimpl_in". -Lemma test_iSimpl_in x y : ⌜ (3 + x)%nat = y ⌠-∗ ⌜ S (S (S x)) = y ⌠: PROP. +Lemma test_iSimpl_in x y : ⌜ (3 + x)%nat = y ⌠⊢@{PROP} ⌜ S (S (S x)) = y âŒ. Proof. iIntros "H". iSimpl in "H". Show. done. Qed. Lemma test_iSimpl_in_2 x y z : - ⌜ (3 + x)%nat = y ⌠-∗ ⌜ (1 + y)%nat = z ⌠-∗ - ⌜ S (S (S x)) = y ⌠: PROP. + ⌜ (3 + x)%nat = y ⌠⊢@{PROP} ⌜ (1 + y)%nat = z ⌠-∗ + ⌜ S (S (S x)) = y âŒ. Proof. iIntros "H1 H2". iSimpl in "H1 H2". Show. done. Qed. Lemma test_iSimpl_in3 x y z : - ⌜ (3 + x)%nat = y ⌠-∗ ⌜ (1 + y)%nat = z ⌠-∗ - ⌜ S (S (S x)) = y ⌠: PROP. + ⌜ (3 + x)%nat = y ⌠⊢@{PROP} ⌜ (1 + y)%nat = z ⌠-∗ + ⌜ S (S (S x)) = y âŒ. Proof. iIntros "#H1 H2". iSimpl in "#". Show. done. Qed. Check "test_iSimpl_in4". -Lemma test_iSimpl_in4 x y : ⌜ (3 + x)%nat = y ⌠-∗ ⌜ S (S (S x)) = y ⌠: PROP. +Lemma test_iSimpl_in4 x y : ⌜ (3 + x)%nat = y ⌠⊢@{PROP} ⌜ S (S (S x)) = y âŒ. Proof. iIntros "H". Fail iSimpl in "%". by iSimpl in "H". Qed. Check "test_iRename". diff --git a/tests/proofmode_monpred.v b/tests/proofmode_monpred.v index b9da25e4290bf2a2d49e07f604fbde86c6544883..25b7fe1977c75c6e75cf4e4be9710e1ef9991f70 100644 --- a/tests/proofmode_monpred.v +++ b/tests/proofmode_monpred.v @@ -67,7 +67,7 @@ Section tests. iStartProof. iIntros (n) "$". Qed. - Lemma test_embed_wand (P Q : PROP) : (⎡P⎤ -∗ ⎡Q⎤) -∗ ⎡P -∗ Q⎤ : monPred. + Lemma test_embed_wand (P Q : PROP) : (⎡P⎤ -∗ ⎡Q⎤) ⊢@{monPredI} ⎡P -∗ Q⎤. Proof. iIntros "H HP". by iApply "H". Qed.