diff --git a/theories/base_logic/lib/own.v b/theories/base_logic/lib/own.v index a485df9d5dd6e6f9deeabcc671d9c33b668ad793..7042a0b11e7e22841272be5408d173a17eec8a0a 100644 --- a/theories/base_logic/lib/own.v +++ b/theories/base_logic/lib/own.v @@ -148,7 +148,7 @@ Qed. assertion. However, the map_updateP_alloc does not suffice to show this. *) Lemma own_alloc_strong_dep (f : gname → A) (P : gname → Prop) : pred_infinite P → - (forall γ, ✓ (f γ)) → + (∀ γ, ✓ (f γ)) → (|==> ∃ γ, ⌜P γ⌠∧ own γ (f γ))%I. Proof. intros HP Ha. @@ -168,7 +168,7 @@ Proof. intros HP Ha. eapply own_alloc_strong_dep with (f := λ _, a); eauto. Qed. Lemma own_alloc_cofinite_dep (f : gname → A) (G : gset gname) : - (forall γ, ✓ (f γ)) → (|==> ∃ γ, ⌜γ ∉ G⌠∧ own γ (f γ))%I. + (∀ γ, ✓ (f γ)) → (|==> ∃ γ, ⌜γ ∉ G⌠∧ own γ (f γ))%I. Proof. intros Ha. apply (own_alloc_strong_dep f (λ γ, γ ∉ G))=> //. @@ -182,7 +182,7 @@ Proof. intros Ha. eapply own_alloc_cofinite_dep with (f := λ _, a); eauto. Qed. Lemma own_alloc_dep (f : gname → A) : - (forall γ, ✓ (f γ)) → (|==> ∃ γ, own γ (f γ))%I. + (∀ γ, ✓ (f γ)) → (|==> ∃ γ, own γ (f γ))%I. Proof. intros Ha. rewrite /uPred_valid /bi_emp_valid (own_alloc_cofinite_dep f ∅) //; []. apply bupd_mono, exist_mono=>?. eauto using and_elim_r.